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Abstract

In this paper we offer new representations for Drazin inverse of
block matrix, which recover some representations from current litera-
ture on this subject.
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1 Introduction

Let A be a square complex matrix. By rank(A) we denote the rank of matrix
A. The index of matrix A, denoted by ind(A), is the smallest nonnegative
integer k such that rank(Ak+1) = rank(Ak). For every matrix A ∈ Cn×n,
such that ind(A) = k, there exists the unique matrix Ad ∈ Cn×n, which
satisfies following relations:

Ak+1Ad = Ak, AdAAd = Ad, AAd = AdA.

Matrix Ad is called the Drazin inverse of matrix A (see [1]). In the case
ind(A) = 1, the Drazin inverse of A is called the group inverse of A, denoted
by A# or Ag. The case ind(A) = 0 is valid if and only if A is nonsingular,
so in that case Ad reduces to A−1. Throughout this paper we suppose that
A0 = I, where I is identity matrix, and

∑k−j
i=1 ∗ = 0, for k ≤ j.

The theory of Drazin inverse of square matrix has numerous applications,
such as in singular differential equations and singular difference equations,
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Markov chains and iterative methods (see [2, 4, 5, 6, 8, 9]). An application
of the Drazin inverse of a 2× 2 block matrix can be found in [2, 3, 7].
In 1979 Campbell and Meyer[4] posed the problem of finding an explicit
representation for the Drazin inverse of 2× 2 complex matrix

M =

[
A B
C D

]
, (1.1)

in terms of its blocks, where A and D are square matrices, not necessarily
of the same size. Until now, there has been no formula for Md without
any side conditions for blocks of matrix M . However, many papers studied
special cases of this open problem and offered a formula for Md under some
specific conditions for blocks of M . Here we list some of them:

(i) B = 0 (or C = 0) (see [10, 11]);

(ii) BC = 0, BD = 0 and DC = 0 (see [6]);

(iii) BC = 0, DC = 0 (or BD = 0) and D is nilpotent (see [7]);

(iv) BC = 0 and DC = 0 (see [12]);

(v) CB = 0 and AB = 0 (or CA = 0) (see [12, 13]);

(vi) BCA = 0, BCB = 0, DCA = 0 and DCB = 0 (see [14]);

(vii) ABC = 0, CBC = 0, ABD = 0 and CBD = 0 (see [14]);

(viii) BCA = 0, BCB = 0, ABD = 0 and CBD = 0 (see [15]);

(ix) BCA = 0, DCA = 0, CBC = 0, and CBD = 0 (see [15]);

(x) BCA = 0, BD = 0 and DC = 0 (or BC is nilpotent) (see [16]);

(xi) BCA = 0, DC = 0 and D is nilpotent (see [16]);

(xii) ABC = 0, DC = 0 and BD = 0 (or BC is nilpotent, or D is nilpotent)
(see [17]);

(xiii) BCA = 0 and BD = 0 (see [18]);

(xiv) ABC = 0 and DC = 0 (or BD = 0) (see [18, 19]).

In this paper we derive representations for Md which recover represen-
tations from previous list.
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2 Key lemmas

In order to prove our main results, we first state some lemmas.

Lemma 2.1 [14] Let P,Q ∈ Cn×n be such that ind(P ) = r and ind(Q) = s.
If PQP = 0 and PQ2 = 0 then

(P +Q)d = Y1 + Y2 +
(
Y1(P

d)2 + (Qd)2Y2 −Qd(P d)2 − (Qd)2P d
)
PQ,

where

Y1 =
s−1∑
i=0

QπQi(P d)i+1, Y2 =
r−1∑
i=0

(Qd)i+1P iP π. (2.1)

Lemma 2.2 [14] Let P,Q ∈ Cn×n be such that ind(P ) = r and ind(Q) = s.
If QPQ = 0 and P 2Q = 0 then

(P +Q)d = Y1 + Y2 + PQ
(
Y1(P

d)2 + (Qd)2Y2 −Qd(P d)2 − (Qd)2P d
)
,

where Y1 and Y2 are defined by (2.1).

Lemma 2.3 [20] Let M ∈ Cn×n be such that M =

[
0 B
C 0

]
, B ∈ Cp×(n−p),

C ∈ C(n−p)×p. Then

Md =

[
0 B(CB)d

(CB)dC 0

]
.

Deng and Wei [21] gave representations for the Drazin inverse of upper
anti-triangular block matrix under some specific conditions. Here we state
these results and some additional facts, which we will be useful to prove our
results. Consider the block matrix of a form (1.1), where D = 0:

M =

[
A B
C 0

]
. (2.2)

Lemma 2.4 [21] Let M ∈ Cn×n be matrix of a form (2.2). If ABC = 0,
then

Md =

[
ΦA ΦB
CΦ CΦ2AB

]
,

where

Φ = (A2 +BC)d =

t1−1∑
i=0

(BC)π(BC)i(Ad)2i+2 +

ν1−1∑
i=0

((BC)d)i+1A2iAπ (2.3)

and t1 = ind(BC), ν1 = ind(A2).
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Remark 1 Let M be matrix of a form (2.2). If conditions of Lemma 2.4
are satisfied, we have that:

M2k+1 =

[
(A2 +BC)kA (A2 +BC)kB
C(A2 +BC)k C(A2 +BC)k−1AB

]
, for k ≥ 1

and

M2k =

[
(A2 +BC)k (A2 +BC)k−1AB

C(A2 +BC)k−1A C(A2 +BC)k−1B

]
, for k ≥ 1.

Notice that (A2 +BC)k =
k∑
j=0

(BC)k−jA2j, for k ≥ 0. Also, (A2 +BC)π =

Aπ −BCΦ = (BC)π − ΦA2. We can check that

Φk =

t1−1∑
i=0

(BC)π(BC)i(Ad)2i+2k+

ν1−1∑
i=0

((BC)d)i+kA2iAπ−
k−1∑
i=1

((BC)d)k−i(Ad)2i,

for k ≥ 1. Therefore we have

(Md)2k+1 =

[
Φk+1A Φk+1B
CΦk+1 CΦk+2AB

]
, for k ≥ 0

and

(Md)2k =

[
Φk Φk+1AB

CΦk+1A C(Φk+1B

]
, for k ≥ 1.

Lemma 2.5 [21] Let M ∈ Cn×n be as in (2.2). If BCA = 0, then

Md =

[
AΩ ΩB
CΩ CAΩ2B

]
,

where

Ω = (A2+BC)d =

t1−1∑
i=0

(Ad)2i+2(BC)i(BC)π+

ν1−1∑
i=0

AπA2i((BC)d)i+1 (2.4)

and t1 = ind(BC), ν1 = ind(A2).
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Remark 2 Let M be matrix of a form (2.2). If conditions of Lemma 2.5
hold, we have that:

M2k+1 =

[
A(A2 +BC)k (A2 +BC)kB
C(A2 +BC)k CA(A2 +BC)k−1B

]
, for k ≥ 1

and

M2k =

[
(A2 +BC)k A(A2 +BC)k−1B

CA(A2 +BC)k−1 C(A2 +BC)k−1B

]
, for k ≥ 1.

Clearly, (A2 + BC)k =
k∑
j=0

A2j(BC)k−j, for k ≥ 0. Also (A2 + BC)π =

Aπ − ΩBC = (BC)π −A2Ω. Furthermore, we have that

Ωk =

t1−1∑
i=0

(Ad)2i+2k(BC)i(BC)π+

ν1−1∑
i=0

AπA2i((BC)d)i+k−
k−1∑
i=1

(Ad)2i((BC)d)k−i,

for k ≥ 1. Hence we get that

(Md)2k+1 =

[
AΩk+1 Ωk+1B
CΩk+1 CAΩk+2B

]
, for k ≥ 0

and

(Md)2k =

[
Ωk AΩk+1B

CAΩk+1 CΩk+1B

]
, for k ≥ 1.

In following two lemmas we present two new representations for Drazin
inverse of lower anti-triangular block matrix. Consider the block matrix of
a form (1.1) such that A = 0:

M =

[
0 B
C D

]
. (2.5)

Lemma 2.6 Let M ∈ Cn×n be matrix of a form (2.5). If DCB = 0, then

Md =

[
BΨ2DC BΨ

ΨC ΨD

]
,

where

Ψ = (D2+CB)d =

t2−1∑
i=0

(CB)π(CB)i(Dd)2i+2+

ν2−1∑
i=0

((CB)d)i+1D2iDπ (2.6)

and t2 = ind(CB), ν2 = ind(D2).
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Proof. First, notice that from DCB = 0 we have that matrices D2 and
CB satisfy the conditions of Lemma 2.1. Hence we get

(D2 + CB)d =

t2−1∑
i=0

(CB)π(CB)i(Dd)2i+2 +

ν2−1∑
i=0

((CB)d)i+1D2iDπ.

Consider the splitting of matrix M

M =

[
0 B
C D

]
=

[
0 0
0 D

]
+

[
0 B
C 0

]
:= P +Q.

Since DCB = 0 we have that PQ2 = 0. Also, we have PQP = 0. Therefore
matrices P and Q satisfy the conditions of Lemma 2.1 and

(P+Q)d = Y1+Y2+
(
Y1(P

d)2 + (Qd)2Y2 −Qd(P d)2 − (Qd)2P d
)
PQ, (2.7)

where Y1, Y2 are as in (2.1). Clearly,

Q2k =

[
(BC)k 0

0 (CB)k

]
, Q2k+1 =

[
0 B(CB)k

(CB)kC 0

]
, for k ≥ 0.

Furthermore, by Lemma 2.3 we have

(Qd)2k =

[
B((CB)d)k+1 0

0 ((CB)d)k

]
, for k ≥ 1,

(Qd)2k+1 =

[
0 B((CB)d)k+1

((CB)d)k+1C 0

]
, for k ≥ 0.

After computing, we get

Y1 =


0 B

t2−1∑
i=0

(CB)π(CB)i(Dd)2i+2

0

t2−1∑
i=0

(CB)π(CB)i(Dd)2i+1

 , (2.8)

Y2 =


0 B

ν2−1∑
i=0

((CB)d)i+1D2iDπ

(CB)dC

ν2−1∑
i=0

((CB)d)i+1D2i+1Dπ

 . (2.9)

After substituting (2.8) and (2.9) into (2.7) we get that the statement of the
lemma is valid. 2
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Remark 3 Let M be matrix of a form (2.5) such that DCB = 0. Then

M2k+1 =

[
B(D2 + CB)k−1DC B(D2 + CB)k

(D2 + CB)kC (D2 + CB)kD

]
, for k ≥ 1

and

M2k =

[
B(D2 + CB)k−1C B(D2 + CB)k−1D
(D2 + CB)k−1DC (D2 + CB)k

]
, for k ≥ 1.

It can be checked easily that (D2 +CB)k =
k∑
j=0

(CB)k−jD2j, for k ≥ 0, and

(D2 + CB)π = Dπ − CBΨ = (CB)π −ΨD2. Also, we have that

Ψk =

t2−1∑
i=0

(CB)π(CB)i(Dd)2i+2k+

ν2−1∑
i=0

((CB)d)i+kD2iDπ−
k−1∑
i=1

((CB)d)k−i(Dd)2i,

for k ≥ 1. Therefore we get

(Md)2k+1 =

[
BΨk+2DC BΨk+1

Ψk+1C Ψk+1D

]
, for k ≥ 0

and

(Md)2k =

[
BΨk+1C BΨk+1D
Ψk+1DC Ψk

]
, for k ≥ 1.

Using the similar method as in the proof of Lemma 2.6 we can get the
following result.

Lemma 2.7 Let M ∈ Cn×n be as in (2.5). If CBD = 0, then

Md =

[
BDΓ2C BΓ

ΓC DΓ

]
,

where

Γ =

t2−1∑
i=0

(Dd)2i+2(CB)i(CB)π +

ν2−1∑
i=0

DπD2i((CB)d)i+1 (2.10)

and t2 = ind(CB), ν2 = ind(D2).
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Proof. Since CBD = 0, using Lemma 2.1 we get (2.10). Now, if we split
matrix M as

M =

[
0 B
C D

]
=

[
0 B
C 0

]
+

[
0 0
0 D

]
:= P +Q,

we have that QPQ = 0 and P 2Q = 0. Hence, the conditions of Lemma 2.2
are satisfied. After applying Lemma 2.2 and Lemma 2.3 we complete the
proof.2

Remark 4 Let M be as in (2.5) and let CBD = 0. Then

M2k+1 =

[
BD(D2 + CB)k−1C B(D2 + CB)k

(D2 + CB)kC D(D2 + CB)k

]
, for k ≥ 1

and

M2k =

[
B(D2 + CB)k−1C BD(D2 + CB)k−1

(D2 + CB)k−1C (D2 + CB)k

]
, for k ≥ 1.

Clearly (D2 + CB)k =
k∑
j=0

D2j(CB)k−j, for k ≥ 0, and (D2 + CB)π =

Dπ − ΓCB = (CB)π −D2Γ. In addition, we can get that

Γk =

t2−1∑
i=0

(Dd)2i+2k(CB)i(CB)π+

ν2−1∑
i=0

DπD2i((CB)d)i+k−
k−1∑
i=1

(Dd)2i((CB)d)k−i,

for k ≥ 1. Also, we can get that

(Md)2k+1 =

[
BDΓk+2C BΓk+1

Γk+1C DΓk+1

]
, for k ≥ 0

and

(Md)2k =

[
BΓk+1C BDΓk+1

DΓk+1C Γk

]
, for k ≥ 1.

3 Representations

Consider the block matrix M of a form (1.1). Djordjević and Stanimirović
[6] gave explicit representation for Md under conditions BC = 0, BD = 0
and DC = 0. This result was extended to a case BC = 0, DC = 0 (see
[12]). As another generalization of these results, Yang and Liu [14] gave the
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representation for Md under conditions BCA = 0, BCB = 0, DCA = 0
and DCB = 0. In the next theorem we derive an explicit representation for
Md under conditions BCA = 0, DCA = 0 and DCB = 0. Therefore we
can see that the condition BCB = 0 from [14] is superfluous.

Theorem 3.1 Let M be matrix of a form (1.1) such that BCA = 0, DCA =
0 and DCB = 0. Then

Md =

 Ad + Σ0C BΨ +AΣ0

ΨC + CAΣ1C + C(Ad)2

−CAd(BΨ2D +ABΨ2)C
Dd + CΣ0

 ,
where

Σk =
(
V1Ψ

k + (Ad)2kV2

)
D +A

(
V1Ψ

k + (Ad)2kV2

)
, for k = 0, 1, (3.1)

V1 =

ν1−1∑
i=0

AπA2iBΨi+2, (3.2)

V2 =

µ1−1∑
i=0

(Ad)2i+4B(D2 + CB)iDπ −
µ1∑
i=0

(Ad)2i+2B(CB)iΨ, (3.3)

ν1 = ind(A2), µ1 = ind(D2 + CB) and Ψ is defined by (2.6).

Proof. Consider the splitting of matrix M

M =

[
A B
C D

]
=

[
0 B
C D

]
+

[
A 0
0 0

]
:= P +Q.

Since BCA = 0 and DCA = 0 we get P 2Q = 0 and QPQ = 0. Hence
matrices P and Q satisfy the conditions of Lemma 2.2 and

(P +Q)d = Y1 + Y2 +PQY1(P
d)2 +PQdY2−PQQd(P d)2−PQdP d, (3.4)

where Y1 and Y2 are as in (2.1). By the assumption of the theorem DCB = 0
we have that matrix P satisfy the conditions of Lemma 2.6. After applying
Lemma 2.6 and using Remark 3, we get

Y1 =

[
(V1D +AV1)C AπBΨ +A(V1D +AV1)

ΨC ΨD

]
, (3.5)

Y2 =

[
Ad + (V2D +AV2)C BΨ−AπBΨ +A(V2D +AV2)

0 0

]
, (3.6)
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where V1 and V2 are defined by (3.2) and (3.3), respectively. After substitut-
ing (3.5) and (3.6) into (3.4) and computing all elements of (3.4) we obtain
the result. 2

As a direct corollary of the previous theorem we get the following result.

Corollary 3.1 Let M be as in (1.1). If DCB = 0 and CA = 0 then

Md =

[
Ad + Σ0C BΨ +AΣ0

ΨC ΨD

]
,

where Σ0 is defined by (3.1) and Ψ is given in (2.6).

Notice that Corollary 3.1, therefore and Theorem 3.1 is also a generaliza-
tion of representation for Md under conditions CB = 0 and CA = 0 which
is given in [13].

The next result is a corollary of Theorem 3.1. Also, we can get the

following result using the splitting M =

[
0 0
0 D

]
+

[
A B
C 0

]
:= P + Q

and applying Lemma 2.1 and Lemma 2.5.

Corollary 3.2 Let M be matrix of a form (1.1). If BCA = 0 and DC = 0
then

Md =

[
AΩ ΩB +RD
CΩ Dd + CR

]
,

where

R = (R1 +R2)D +A(R1 +R2),

R1 =

µ2−1∑
i=0

Aπ(A2 +BC)iB(Dd)2i+4 −
µ2∑
i=0

Ω(BC)iB(Dd)2i+2,

R2 =

ν2−1∑
i=0

Ωi+2BD2iDπ,

ν2 = ind(D2), µ2 = ind(A2 +BC) and Ω is defined by (2.4).

We remark that Corollary 3.2, hence and Theorem 3.1 is also extension
of results from [16], where beside conditions BCA = 0 and DC = 0 addi-
tional condition BD = 0 (or D is nilpotent) is required.

Castro–González et al. (see [16]) gave explicit representation for Md

under conditions BCA = 0, BD = 0 and BC is nilpotent (or DC = 0).
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This result was extended to a case when BCA = 0 and BD = 0 (see [18]).
The following theorem is extension of these results.

Theorem 3.2 Let M be matrix of a form (1.1) such that BCA = 0, ABD =
0 and CBD = 0. Then

Md =

 AΩ +B(F1 + F2)
ΩB +BD(F1Ω + (Dd)2F2)B

+B(Dd)2 −BDd(CA+DC)Ω2B

CΩ +D(F1 + F2) Dd + (F1 + F2)B

 , (3.7)

where

F1 =

ν2−1∑
i=0

DπD2i(CA+DC)Ωi+2,

F2 =

µ2−1∑
i=0

(Dd)2i+4(CA+DC)(A2 +BC)i(BC)π −
µ2∑
i=0

(Dd)2i+2(CA+DC)A2iΩ,

ν2 = ind(D2), µ2 = ind(A2 +BC) and Ω is defined by (2.4).

Proof. If we split matrix M as

M =

[
A B
C 0

]
+

[
0 0
0 D

]
:= P +Q.

we have that QPQ = 0 and P 2Q = 0. Hence, matrices P and Q satisfy the
conditions of Lemma 2.2. Since BCA = 0, matrix P satisfies conditions of
Lemma 2.5. Using the similar method as in the proof of Theorem 3.1, after
applying Lemma 2.2, Lemma 2.5 and using Remark 2, we get that (3.7)
holds. 2

Notice that Theorem 3.2 is also generalization of representation from
[15] where additional condition BCB = 0 is required.

In [15] a formula for Md is given under conditions BCA = 0, DCA = 0,
CBD = 0 and CBC = 0. In the next theorem we offer a representation
for Md under conditions BCA = 0, DCA = 0 and CBD = 0, without
additional condition CBC = 0.

Theorem 3.3 Let M be as in (1.1). If BCA = 0, DCA = 0 and CBD = 0
then

Md =

 Ad + (G1 +G2)C BΓ +A(G1 +G2)

ΓC + CA(G1Γ + (Ad)2G2)C

+C(Ad)2 − CAd(AB +BD)Γ2C
DΓ + C(G1 +G2)

 ,
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where

G1 =

ν1−1∑
i=0

AπA2i(AB +BD)Γi+2, (3.8)

G2 =

µ1−1∑
i=0

(Ad)2i+4(AB+BD)(D2+CB)i(CB)π−
µ1∑
i=0

(Ad)2i+2(AB+BD)D2iΓ,

(3.9)
ν1 = ind(A2), µ1 = ind(D2 + CB) and Γ is given in (2.10).

Proof. Using the splitting of matrix M

M =

[
0 B
C D

]
+

[
A 0
0 0

]
:= P +Q,

we get that conditions of Lemma 2.2 are satisfied. Also, we have that matrix
P satisfies the conditions of Lemma 2.7. Using these lemmas and Remark
4, similarly as in the proof of Theorem 3.1, we get that the statement of the
theorem is valid. 2

Corollary 3.3 Let M be matrix of a form (1.1). If CBD = 0 and CA = 0,
then

Md =

[
Ad + (G1 +G2)C BΓ +A(G1 +G2)

ΓC DΓ

]
,

where Γ, G1 and G2 are defined by (2.10), (3.8) and (3.9) respectively.

We can see that Theorem 3.3 and Corollary 3.3 are also extensions of
representation for Md under conditions CB = 0 and CA = 0 (see [13]).

In [12] a representation for Md is offered under conditions AB = 0 and
CB = 0. This result was extended in [14], where a formula for Md is given
under conditions ABC = 0, ABD = 0, CBD = 0 and CBC = 0. In
our following result we derive the representation for Md under conditions
ABC = 0, ABD = 0 and CBD = 0, without additional condition CBC = 0.

Theorem 3.4 Let M be matrix of a form (1.1). If ABC = 0, ABD = 0
and CBD = 0. Then

Md =

 Ad +BΘ0
BΓ +BΘ1AB + (Ad)2B

−B(Γ2CA+DΓ2C)AdB

ΓC + Θ0A Dd + Θ0B

 , (3.10)
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where

Θk =
(
K1(A

d)2k + ΓkK2

)
A+D

(
K1(A

d)2k + ΓkK2

)
, for k = 0, 1, (3.11)

K1 =

µ1−1∑
i=0

Dπ(D2 + CB)iC(Ad)2i+4 −
µ1∑
i=0

Γ(CB)iC(Ad)2i+2, (3.12)

K2 =

ν1−1∑
i=0

Γi+2CA2iAπ, (3.13)

ν1 = ind(A2), µ1 = ind(D2 + CB) and Γ is defined by (2.10).

Proof. We can split matrix M as M = P +Q, where

P =

[
A 0
0 0

]
, Q =

[
0 B
C D

]
.

According to assumptions of the theorem, we have that PQP = 0 and
PQ2 = 0. Hence we can apply Lemma 2.1 and we have

(P +Q)d = Y1 + Y2 +
(
Y1(P

d)2 + (Qd)2Y2 −Qd(P d)2 − (Qd)2P d
)
PQ,

(3.14)
where Y1 and Y2 are defined by (2.1). Since CBD = 0, matrix Q satisfies
condition of Lemma 2.7. After applying Lemma 2.7 and facts from Remark
4 we get

Y1 =

[
Ad +B(K1A+DK1) 0

ΓC − ΓCAπ + (K1A+DK1)A 0

]
, (3.15)

Y2 =

[
B(K2A+DK2) BΓ

ΓCAπ + (K2A+DK2)A DΓ

]
, (3.16)

where K1 and K2 are given in (3.12) and (3.13), respectively. Now, by sub-
stituting (3.16) and (3.15) into (3.14) we get that (3.10) holds. 2

Notice that Theorem 3.4 is also an extension of a case when ABC = 0
and BD = 0 (see [19]).

The following result is direct corollary of Theorem 3.4.

Corollary 3.4 Let M be given by (1.1). If CBD = 0 and AB = 0 then

Md =

[
Ad +BΘ0 BΓ
ΓC + Θ0A DΓ

]
,

where Γ and Θ0 are defined by (2.10) and (3.11) respectively.
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As another extension of a result from [12], where formula for Md is given
under conditions AB = 0 and CB = 0, we offer the following theorem and
its corollary.

Theorem 3.5 Let M be matrix of a form (1.1). If ABC = 0, ABD = 0
and DCB = 0 then

Md =

 Ad +B(N1 +N2)
BΨ +B(N1(A

d)2 + ΨN2)AB

+(Ad)2B −BΨ2(CA+DC)AdB

ΨC + (N1 +N2)A ΨD + (N1 +N2)B

 ,
(3.17)

where

N1 =

µ1−1∑
i=0

(CB)π(D2+CB)i(CA+DC)(Ad)2i+4−
µ1∑
i=0

ΨD2i(CA+DC)(Ad)2i+2,

(3.18)

N2 =

ν1−1∑
i=0

Ψi+2(CA+DC)A2iAπ, (3.19)

ν1 = ind(A2), µ1 = ind(D2 + CB) and Ψ is defined by (2.6).

Proof. Using the splitting

M =

[
A 0
0 0

]
+

[
0 B
C D

]
:= P +Q,

we get that matrices P and Q satisfy the conditions of Lemma 2.1. Further-
more, matrix Q satisfies the conditions of Lemma 2.6. After applying these
lemmas, using Remark 3 and computing, we get that (3.17) holds. 2

Next corollary follows immediately from Theorem 3.5.

Corollary 3.5 Let M be given by (1.1). If DCB = 0 and AB = 0 then

Md =

[
Ad +B(N1 +N2) BΨ
ΨC + (N1 +N2)A ΨD

]
,

where Ψ, N1 and N2 are defined by (2.6), (3.18) and (3.19), respectively.

Cvetković and Milovanović (see [17]) offered a representation for Md

under conditions ABC = 0, DC = 0 , with third condition BD = 0 (or
BC is nilpotent, or D is nilpotent). Cvetković - Ilić (see [18]) extended this
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result and gave a formula for Md under conditions ABC = 0 and DC = 0,
without any additional condition. In our next result we replace second
condition DC = 0 from [18] with two weaker conditions. Therefore, we can
get results from [17, 18] as direct corollaries.

Theorem 3.6 Let M be matrix of a form (1.1), such that ABC = 0,
DCA = 0 and DCB = 0. Then

Md =

 ΦA+ (U1 + U2)C ΦB + (U1 + U2)D

CΦ + C(U1(D
d)2 + ΦU2)DC

+(Dd)2C − CΦ2(AB +BD)DdC
Dd + C(U1 + U2)

 ,
where

U1 =

µ2−1∑
i=0

(BC)π(A2 +BC)i(AB +BD)(Dd)2i+4 −
µ2∑
i=0

ΦA2i(AB +BD)(Dd)2i+2

U2 =

ν2−1∑
i=0

Φi+2(AB +BD)D2iDπ,

ν2 = ind(D2), µ2 = ind(A2 +BC) and Φ is defined by (2.3).

Proof. If we split matrix M as

M =

[
0 0
0 D

]
+

[
A B
C 0

]
:= P +Q,

we have PQP = 0 and PQ2 = 0. Also, matrix P satisfies conditions of
Lemma 2.4. After applying Lemma 2.1, Lemma 2.4, Remark 1 and comput-
ing we get that the statement of the theorem is valid. 2
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J.Ljubisavljević, D.S.Cvetković–Ilić: Representations for the Drazin inverse

[4] S. L. Campbell, C. D. Meyer, Generalized Inverse of Linear Transfor-
mations, Pitman, London, 1979; Dover, New York, 1991.

[5] X. Chen, R.E. Hartwig, The group inverse of a triangular matrix, Linear
Algebra Appl., 237/238 (1996) 97–108.
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and the inequality (see Section 3.6.6 of [22]):

ex ≤ 1 + x+
x2

2
+

x3

2(3− x)
, (0 ≤ x < 3),

it follows that
N∑
j=1

1

j!n�j
<

3

n�
,

N∑
j=1

2(j+1)

j!
≤ 16.

Therefore,

|Ξ2| ≤
(

3

n�
+

16

n
e−n(n1−α− 3

2 )

)
∥f∥N .

To estimate Ξ3, we use the result (see P. 72-73 of [23]):∣∣∣∣∣
∫ k

n

x

(
f (N)(t)− f (N)(x)

) ( kn − t)N−1

(N − 1)!
dt

∣∣∣∣∣ ≤
{

ω
(
f (N), 1

nα

)
1

nαNN !
, | kn − x| ≤ 1

nα ,

∥f (N)∥ 2(N+1)

N ! , | kn − x| > 1
nα

and deduce that

|Ξ3| ≤ ω

(
f (N),

1

n�

)
1

n�NN !

∑
k:| kn−x|≤ 1

nα

Φ(nx− k) + ∥f (N)∥2
(N+1)

N !

∑
k:| kn−x|> 1

nα

Φ(nx− k)

≤ ω

(
f (N),

1

n�

)
1

n�NN !
+

2(N+2)∥f (N)∥
nN !

e−n(n1−α− 3
2 ).

Combining the estimates of Ξ1,Ξ2 and Ξ3 leads to

|Fn(f, x)− f(x)| ≤ 4e−
n
2 ∥f∥+

(
3

n�
+

16

n
e−n(n1−α− 3

2 )

)
∥f∥N

+ ω

(
f (N),

1

n�

)
1

n�NN !
+

2(N+2)∥f (N)∥
nN !

e−n(n1−α− 3
2 ).

This finishes the proof of Theorem 8. �
Remark 2. For f ∈ C([−1, 1]2), we can establish the same result as Theorem 6.
Remark 3. For f ∈ CN ([−1, 1]2), a similar result to Theorem 8 can be established.
Remark 4. In fact, we can establish corresponding results in C([−1, 1]d) and CN ([−1, 1]d)(d >

2, d ∈ N).
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ORTHOGONAL STABILITY OF AN ADDITIVE FUNCTIONAL

EQUATION IN BANACH MODULES OVER A C∗-ALGEBRA

HASSAN AZADI KENARY, CHOONKIL PARK, AND DONG YUN SHIN∗

Abstract. Using fixed point method, we prove the Hyers-Ulam stability of the following
additive functional equation

m∑
i=1

f

(
mai +

m∑
j=1,j ̸=i

aj

)
+ f

(
m∑
i=1

ai

)
= 2f

(
m∑
i=1

ai

)
in Banach modules over a unital C∗-algebra and in non-Archimedean Banach modules over
a unital C∗-algebra.

1. Introduction and preliminaries

Assume that X is a real inner product space and f : X → ℝ is a solution of the orthogonal
Cauchy functional equation f(x+ y) = f(x) + f(y), ⟨x, y⟩ = 0. By the Pythagorean theorem
f(x) = ∥x∥2 is a solution of the conditional equation. Of course, this function does not satisfy
the additivity equation everywhere. Thus orthogonal Cauchy equation is not equivalent to
the classic Cauchy equation on the whole inner product space.

G. Pinsker [53] characterized orthogonally additive functionals on an inner product space
when the orthogonality is the ordinary one in such spaces. K. Sundaresan [65] generalized
this result to arbitrary Banach spaces equipped with the Birkhoff-James orthogonality. The
orthogonal Cauchy functional equation f(x+y) = f(x)+f(y), x ⊥ y, in which ⊥ is an abstract
orthogonality relation, was first investigated by S. Gudder and D. Strawther [30]. They defined
⊥ by a system consisting of five axioms and described the general semi-continuous real-
valued solution of conditional Cauchy functional equation. In 1985, J. Rätz [60] introduced
a new definition of orthogonality by using more restrictive axioms than of S. Gudder and D.
Strawther. Moreover, he investigated the structure of orthogonally additive mappings. J.
Rätz and Gy. Szabó [61] investigated the problem in a rather more general framework.

Let us recall the orthogonality in the sense of J. Rätz; cf. [60].
Suppose X is a real vector space (algebraic module) with dimX ≥ 2 and ⊥ is a binary

relation on X with the following properties:
(O1) totality of ⊥ for zero: x ⊥ 0, 0 ⊥ x for all x ∈ X;
(O2) independence: if x, y ∈ X − {0}, x ⊥ y, then x, y are linearly independent;
(O3) homogeneity: if x, y ∈ X,x ⊥ y, then αx ⊥ βy for all α, β ∈ ℝ;
(O4) the Thalesian property: if P is a 2-dimensional subspace of X,x ∈ P and λ ∈ ℝ+,
which is the set of nonnegative real numbers, then there exists y0 ∈ P such that x ⊥ y0 and
x+ y0 ⊥ λx− y0.

The pair (X,⊥) is called an orthogonality space (module). By an orthogonality normed
space (normed module) we mean an orthogonality space (module) having a normed (normed

2010 Mathematics Subject Classification. Primary 39B55, 46S10, 47H10, 39B52, 47S10, 30G06, 46H25,
46L05, 12J25.

Key words and phrases. Hyers-Ulam stability, orthogonally Cauchy-Jensen additive functional equation,
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module) structure. Assume that if A is a C∗-algebra and X is a module over A and if
x, y ∈ X,x ⊥ y, then ax ⊥ by for all a, b ∈ A.

Some interesting examples are
(i) The trivial orthogonality on a vector space X defined by (O1), and for non-zero elements
x, y ∈ X, x ⊥ y if and only if x, y are linearly independent.
(ii) The ordinary orthogonality on an inner product space (X, ⟨., .⟩) given by x ⊥ y if and
only if ⟨x, y⟩ = 0.
(iii) The Birkhoff-James orthogonality on a normed space (X, ∥.∥) defined by x ⊥ y if and
only if ∥x+ λy∥ ≥ ∥x∥ for all λ ∈ ℝ.

The relation ⊥ is called symmetric if x ⊥ y implies that y ⊥ x for all x, y ∈ X. Clearly
examples (i) and (ii) are symmetric but example (iii) is not. It is remarkable to note, however,
that a real normed space of dimension greater than 2 is an inner product space if and only
if the Birkhoff-James orthogonality is symmetric. There are several orthogonality notions on
a real normed space such as Birkhoff-James, Boussouis, Singer, Carlsson, unitary-Boussouis,
Roberts, Phythagorean, isosceles and Diminnie (see [1]–[3], [5, 14, 35, 36, 44]).

The stability problem of functional equations originated from the following question of Ulam
[67]: Under what condition does there is an additive mapping near an approximately additive
mapping? In 1941, Hyers [32] gave a partial affirmative answer to the question of Ulam in
the context of Banach spaces. In 1978, Th.M. Rassias [55] extended the theorem of Hyers by
considering the unbounded Cauchy difference ∥f(x+y)−f(x)−f(y)∥ ≤ ε(∥x∥p+∥y∥p), (ε >
0, p ∈ [0, 1)). During the last decades several stability problems of functional equations have
been investigated in the spirit of Hyers-Ulam-Rassias. The reader is referred to [11, 33, 37, 59]
and references therein for detailed information on stability of functional equations.

R. Ger and J. Sikorska [29] investigated the orthogonal stability of the Cauchy functional
equation f(x + y) = f(x) + f(y), namely, they showed that if f is a mapping from an
orthogonality space X into a real Banach space Y and ∥f(x + y) − f(x) − f(y)∥ ≤ ε for all
x, y ∈ X with x ⊥ y and some ε > 0, then there exists exactly one orthogonally additive
mapping g : X → Y such that ∥f(x)− g(x)∥ ≤ 16

3 ε for all x ∈ X.
The first author treating the stability of the quadratic equation was F. Skof [64] by proving

that if f is a mapping from a normed space X into a Banach space Y satisfying ∥f(x+ y) +
f(x − y) − 2f(x) − 2f(y)∥ ≤ ε for some ε > 0, then there is a unique quadratic mapping
g : X → Y such that ∥f(x) − g(x)∥ ≤ ε

2 . P.W. Cholewa [8] extended the Skof’s theorem by
replacing X by an abelian group G. The Skof’s result was later generalized by S. Czerwik [9]
in the spirit of Hyers-Ulam-Rassias. The stability problem of functional equations has been
extensively investigated by some mathematicians (see [6, 7, 10, 51], [16]–[18], [40], [56]–[58],
[63]).

The orthogonally quadratic equation

f(x+ y) + f(x− y) = 2f(x) + 2f(y), x ⊥ y

was first investigated by F. Vajzović [68] when X is a Hilbert space, Y is the scalar field, f
is continuous and ⊥ means the Hilbert space orthogonality. Later, H. Drljević [15], M. Fochi
[28], and Gy. Szabó [66] generalized this result.

In 1897, Hensel [31] introduced a normed space which does not have the Archimedean
property. It turned out that non-Archimedean spaces have many nice applications (see [12,
39, 41, 43]).

Definition 1.1. By a non-Archimedean field we mean a field K equipped with a function
(valuation) | · | : K → [0,∞) such that for all r, s ∈ K, the following conditions hold:

(1) |r| = 0 if and only if r = 0; (2) |rs| = |r||s|; (3) |r + s| ≤ max{|r|, |s|}.
Definition 1.2. Let X be a vector space over a scalar field K with a non-Archimedean non-
trivial valuation | · | . A function || · || : X → R is a non-Archimedean norm (valuation) if it
satisfies the following conditions:
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(1) ||x|| = 0 if and only if x = 0; (2) ||rx|| = |r|||x|| (r ∈ K, x ∈ X); (3) The strong triangle
inequality (ultrametric); namely, ||x + y|| ≤ max{||x||, ||y||}, x, y ∈ X. Then (X, ||.||) is
called a non-Archimedean space.

Assume that if A is a C∗-algebra and X is a module over A, which is a non-Archimedean
space, and if x, y ∈ X,x ⊥ y, then ax ⊥ by for all a, b ∈ A. Then (X, ||.||) is called an
orthogonality non-Archimedean module.

Due to the fact that

||xn − xm|| ≤ max{||xj+1 − xj || : m ≤ j ≤ n− 1} (n > m).

Definition 1.3. A sequence {xn} is Cauchy if and only if {xn+1−xn} converges to zero in a
non-Archimedean space. By a complete non-Archimedean space we mean one in which every
Cauchy sequence is convergent.

Let X be a set. A function d : X × X → [0,∞] is called a generalized metric on X if d
satisfies

(1) d(x, y) = 0 if and only if x = y; (2) d(x, y) = d(y, x) for all x, y ∈ X; (3) d(x, z) ≤
d(x, y) + d(y, z) for all x, y, z ∈ X.

We recall a fundamental result in fixed point theory.

Theorem 1.4. [13] Let (X, d) be a complete generalized metric space and let J : X → X be
a strictly contractive mapping with Lipschitz constant α < 1. Then for each given element
x ∈ X, either d(Jnx, Jn+1x) = ∞ for all nonnegative integers n or there exists a positive
integer n0 such that

(1) d(Jnx, Jn+1x) < ∞, ∀n ≥ n0; (2) the sequence {Jnx} converges to a fixed point
y∗ of J ; (3) y∗ is the unique fixed point of J in the set Y = {y ∈ X | d(Jn0x, y) < ∞}; (4)
d(y, y∗) ≤ 1

1−αd(y, Jy) for all y ∈ Y .

In 1996, G. Isac and Th.M. Rassias [34] were the first to provide applications of stability
theory of functional equations for the proof of new fixed point theorems with applications. By
using fixed point methods, the stability problems of several functional equations have been
extensively investigated by a number of authors (see [4],[19]–[27],[45]–[52], [54]).

This paper is organized as follows: In Section 2, we prove the Hyers-Ulam stability of the
orthogonally additive functional equation in Banach modules over a unital C∗-algebra. In
Section 3, we prove the Hyers-Ulam stability of the orthogonally additive functional equation
in non-Archimedean Banach modules over a unital C∗-algebra.

2. Stability of the orthogonally additive functional equation in Banach modules
over a C∗-algebra

Throughout this section, assume that A is a unital C∗-algebra with unit e and unitary
group U(A) := {u ∈ A | u∗u = uu∗ = e}, (X,⊥) is an orthogonality normed module over A
and (Y, ∥.∥Y ) is a Banach module over A.

In this section, applying some ideas from [29, 33], we deal with the stability problem for
the orthogonally additive functional equation

m∑
i=1

f

mxi + m∑
j=1,j ̸=i

xj

+ f

(
m∑
i=1

xi

)
= 2f

(
m∑
i=1

xi

)
for all x1, · · · , xm ∈ X with xi ⊥ xj for all i ̸= j.

Theorem 2.1. Let φ : Xm → [0,∞) be a function such that there exists an α < 1 with

φ(x1, x2, · · · , xm) ≤ mαφ

(
x

m
,
x2
m
, · · · , xm

m

)
(2.1)
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for all x1, · · · , xm ∈ X with xi ⊥ xj for all i ̸= j. Let f : X → Y be a mapping satisfying∥∥∥∥∥∥
m∑
i=1

f

muxi + m∑
j=1,j ̸=i

uxj

+ f

(
m∑
i=1

uxi

)
− 2uf

(
m∑
i=1

xi

)∥∥∥∥∥∥
Y

≤ φ(x1, · · · , xn) (2.2)

for all u ∈ U(A) and all x1, · · · , xm ∈ X with xi ⊥ xj for all i ̸= j. If for each x ∈ X the
mapping f(tx) is continuous in t ∈ ℝ, then there exists a unique orthogonally additive and
A-linear mapping L : X → Y such that

∥f(x)− L(x)∥Y ≤ 1

m−mα
ψ (x) (2.3)

for all x ∈ X, where ψ(x) = φ(x, 0, · · · , 0).

Proof. Putting x1 = x and x2 = · · · = xm = 0 and u = e in (2.2), since x ⊥ 0, we get∥∥∥∥f(x)− f(mx)

m

∥∥∥∥
Y
≤ ψ(x)

m
(2.4)

for all x ∈ X. Consider the set S := {h : X → Y } and introduce the generalized metric on S:

d(g, h) = inf {µ ∈ ℝ+ : ∥g(x)− h(x)∥Y ≤ µψ (x) , ∀x ∈ X} ,

where, as usual, inf ϕ = +∞. It is easy to show that (S, d) is complete (see [42]). Now we
consider the linear mapping J : S → S such that

Jg(x) :=
1

m
g (mx)

for all x ∈ X. Let g, h ∈ S be given such that d(g, h) = ε. Then ∥g(x)− h(x)∥Y ≤ εψ (x) for
all x ∈ X. Hence

∥Jg(x)− Jh(x)∥Y =

∥∥∥∥g (mx)m
− h (mx)

m

∥∥∥∥
Y
≤ ψ (mx)

m
≤ mαψ (x)

m
≤ αψ (x)

for all x ∈ X. So d(g, h) = ε implies that d(Jg, Jh) ≤ αε. This means that d(Jg, Jh) ≤
αd(g, h) for all g, h ∈ S. It follows from (2.4) that

d(f, Jf) ≤ 1

m
.

By Theorem 1.4, there exists a mapping L : X → Y satisfying the following:
(1) L is a fixed point of J , i.e.,

L (mx) = mL(x) (2.5)

for all x ∈ X. The mapping L is a unique fixed point of J in the set M = {g ∈ S : d(h, g) <
∞}. This implies that L is a unique mapping satisfying (2.5) such that there exists a µ ∈ (0,∞)
satisfying ∥f(x)− L(x)∥Y ≤ µψ (x) for all x ∈ X;

(2) d(Jkf, L) → 0 as k → ∞. This implies the equality

lim
k→∞

1

mk
f
(
mkx

)
= L(x)

for all x ∈ X;
(3) d(f, L) ≤ 1

1−αd(f, Jf), which implies the inequality

d(f, L) ≤ 1

m−mα
.
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This implies that (2.3) holds true. Let u = e in (2.2). It follows from (2.1) and (2.2) that∥∥∥∥∥∥
m∑
i=1

L

mxi + m∑
j=1,j ̸=i

xj

+ L

(
m∑
i=1

xi

)
− 2L

(
m∑
i=1

xi

)∥∥∥∥∥∥
Y

= lim
k→∞

1

mk

∥∥∥∥∥∥
m∑
i=1

f

mk

mxi + m∑
j=1,j ̸=i

xj

+ f

(
m∑
i=1

mkxi

)
− 2f

(
m∑
i=1

mkxi

)∥∥∥∥∥∥
Y

≤ lim
k→∞

φ(mkx1,m
kx2, · · · ,mkxm)

mk

≤ lim
k→∞

mkαnφ(x1, · · · , xm)

mk
= 0

for all x1, · · · , xm ∈ X with xi ⊥ xj for all i ̸= j. So

m∑
i=1

L

mxi + m∑
j=1,j ̸=i

xj

+ L

(
m∑
i=1

xi

)
− 2L

(
m∑
i=1

xi

)
= 0

for all x1, · · · , xn ∈ X with x1 ⊥ xj for all i ̸= j. Hence L : X → Y is an orthogonally
additive mapping. Let x2 = · · · = xn = 0 in (2.2). It follows from (2.1) and (2.2) that

∥L(mux)−muL(x)∥Y = lim
k→∞

∥f(mk+1ux)−mf(mkux)∥Y
mk

= m lim
k→∞

∥∥∥∥∥f(mk+1ux)

mk+1
− f(mkux)

mk

∥∥∥∥∥
Y

≤ lim
k→∞

ψ(mkx)

mk
≤ lim

k→∞

mkαnψ(x)

mk

= lim
k→∞

αnψ(x) = 0

for all x ∈ X and all u ∈ U(A). So

muL

(
x

m

)
− L(ux) = 0

for all x ∈ X and all u ∈ U(A). Hence

L(ux) = muL

(
x

m

)
= uL(x) (2.6)

for all u ∈ U(A) and all x ∈ X.
By the same reasoning as in the proof of [55, Theorem], we can show that L : X → Y is

ℝ-linear, since the mapping f(tx) is continuous in t ∈ ℝ for each x ∈ X and L : X → Y is
additive.

Since L is ℝ-linear and each a ∈ A is a finite linear combination of unitary elements (see
[38, Theorem 4.1.7]), i.e., a =

∑m
j=1 λjuj (λj ∈ C, uj ∈ U(A)), it follows from (2.6) that

L(ax) = L

 m∑
j=1

λjujx

 = L

 m∑
j=1

|λj | ·
λj
|λj |

ujx

 =
m∑
j=1

|λj |L
(
λj
|λj |

ujx

)

=
m∑
j=1

|λj | ·
λj
|λj |

ujL(x) =
m∑
j=1

λjujL(x) = aL(x)
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for all x ∈ X. It is obvious that
λj

|λj |uj ∈ U(A). Thus L : X → Y is a unique orthogonally

additive and A-linear mapping satisfying (2.3). �
Corollary 2.2. Let θ be a positive real number and p a real number with 0 < p < 1. Let
f : X → Y be a mapping satisfying∥∥∥∥∥∥

m∑
i=1

f

muxi + m∑
j=1,j ̸=i

uxj

+ f

(
m∑
i=1

uxi

)
− 2uf

(
m∑
i=1

xi

)∥∥∥∥∥∥
Y

≤ θ

(
m∑
i=1

∥xi∥p
)

(2.7)

for all u ∈ U(A) and all x1, · · · , xm ∈ X with xi ⊥ xj for all i ̸= j. If for each x ∈ X the
mapping f(tx) is continuous in t ∈ ℝ, then there exists a unique orthogonally additive and
A-linear mapping L : X → Y such that

∥f(x)− L(x)∥Y ≤ θ∥x∥p

m−mp

for all x ∈ X.

Proof. The proof follows from Theorem 2.1 by taking

φ(x1, x2, · · · , xn) = θ

(
n∑

i=1

∥xi∥p
)

for all x1, · · · , xm ∈ X with xi ⊥ xj for all i ̸= j. Then we can choose α = mp−1 and we get
the desired result. �
Theorem 2.3. Let f : X → Y be a mapping satisfying (2.2) for which there exists a function
φ : Xm → [0,∞) such that

φ

(
x1
m
,
x2
m
, · · · , xm

m

)
≤ αφ (x1, x2, · · · , xm)

m

for all x1, · · · , xm ∈ X with xi ⊥ xj for all i ̸= j. If for each x ∈ X the mapping f(tx) is
continuous in t ∈ ℝ, then there exists a unique orthogonally additive and A-linear mapping
L : X → Y such that

∥f(x)− L(x)∥Y ≤ αψ(x)

m−mα
(2.8)

for all x ∈ X.

Proof. Let (S, d) be the generalized metric space defined in the proof of Theorem 2.1. Now
we consider the linear mapping J : S → S such that

Jg(x) := mg

(
x

m

)
for all x ∈ X. Let g, h ∈ S be given such that d(g, h) = ε. Then ∥g(x)− h(x)∥Y ≤ εψ (x) for
all x ∈ X. Hence

∥Jg(x)− Jh(x)∥Y =

∥∥∥∥mg ( xm
)
−mh

(
x

m

)∥∥∥∥
Y
≤ mψ

(
x

m

)
≤ mαψ (x)

m
≤ αψ (x)

for all x ∈ X. So d(g, h) = ε implies that d(Jg, Jh) ≤ αε. This means that d(Jg, Jh) ≤
αd(g, h) for all g, h ∈ S. It follows from (2.4) that∥∥∥∥mf ( xm

)
− f(x)

∥∥∥∥
Y
≤ ψ

(
x

m

)
≤ α

m
ψ(x).

Therefore
d(f, Jf) ≤ α

m
.
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By Theorem 1.4, there exists a mapping L : X → Y satisfying the following:
(1) L is a fixed point of J , i.e.,

L

(
x

m

)
=

1

m
L(x) (2.9)

for all x ∈ X. The mapping L is a unique fixed point of J in the set M = {g ∈ S : d(h, g) <
∞}. This implies that L is a unique mapping satisfying (2.9) such that there exists a µ ∈ (0,∞)
satisfying ∥f(x)− L(x)∥Y ≤ µψ (x) for all x ∈ X;

(2) d(Jkf, L) → 0 as k → ∞. This implies the equality

lim
k→∞

mkf

(
x

mk

)
= L(x)

for all x ∈ X;
(3) d(f, L) ≤ 1

1−αd(f, Jf), which implies the inequality

d(f, L) ≤ α

m−mα
.

This implies that (2.8) holds true.
The rest of the proof is similar to the proof of Theorem 2.1. �

Corollary 2.4. Let θ be a positive real number and p a real number with p > 1. Let f : X → Y
be a mapping satisfying (2.7). If for each x ∈ X the mapping f(tx) is continuous in t ∈ ℝ,
then there exists a unique orthogonally additive and A-linear mapping L : X → Y such that

∥f(x)− L(x)∥Y ≤ θ∥x∥p

mp −m

for all x ∈ X.

Proof. The proof follows from Theorem 2.3 by taking

φ(x1, x2, · · · , xn) = θ

(
m∑
i=1

∥xi∥p
)

for all x1, · · · , xm ∈ X with xi ⊥ xj for all i ̸= j. Then we can choose α = m1−p and we get
the desired result. �

3. Stability of the orthogonally additive functional equation in non-Archimedean
Banach modules over a C∗-algebra

Throughout this section, assume that A is a unital C∗-algebra with unit e and unitary
group U(A) := {u ∈ A | u∗u = uu∗ = e}, (X,⊥) is an orthogonality non-Archimedean
normed module over A and (Y, ∥.∥Y ) is a non-Archimedean Banach module over A. Assume
that |m| ̸= 1.

In this section, applying some ideas from [29, 33], we deal with the stability problem for
the orthogonally Jensen functional equation.

Theorem 3.1. Let φ : Xm → [0,∞) be a function such that there exists an α < 1 with

φ(x1, x2, · · · , xm) ≤ |m|αφ
(
x

m
,
x2
m
, · · · , xm

m

)
(3.1)

for all x1, · · · , xm ∈ X with xi ⊥ xj for all i ̸= j. Let f : X → Y be a mapping satisfying
(2.2). If for each x ∈ X the mapping f(tx) is continuous in t ∈ ℝ, then there exists a unique
orthogonally additive and A-linear mapping L : X → Y such that

∥f(x)− L(x)∥Y ≤ ψ (x)

|m| − |m|α
(3.2)
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for all x ∈ X.

Proof. It follows from (2.4) that∥∥∥∥f(x)− f(mx)

m

∥∥∥∥
Y
≤ ψ(x)

|m|
(3.3)

for all x ∈ X. Let (S, d) be the generalized metric space defined in the proof of Theorem 2.1.
Now we consider the linear mapping J : S → S such that

Jg(x) :=
g(mx)

m

for all x ∈ X. It follows from (3.3) that d(f, Jf) ≤ |m|. By Theorem 1.4, there exists a
mapping L : X → Y satisfying the following:

(1) d(Jkf, L) → 0 as k → ∞. This implies the equality

lim
k→∞

1

mk
f
(
mkx

)
= L(x)

for all x ∈ X;
(2) d(f, L) ≤ 1

1−αd(f, Jf), which implies the inequality

d(f, L) ≤ 1

|m| − |m|α
.

This implies that (3.2) holds true. It follows from (3.1) and (2.2) that∥∥∥∥∥∥
m∑
i=1

L

muxi + m∑
j=1,j ̸=i

uxj

+ L

(
m∑
i=1

uxi

)
− 2uL

(
m∑
i=1

xi

)∥∥∥∥∥∥
Y

= lim
k→∞

1

|m|k

∥∥∥∥∥∥
m∑
i=1

f

mk

muxi + m∑
j=1,j ̸=i

uxj


+f

(
m∑
i=1

mkuxi

)
− 2uf

(
m∑
i=1

mkxi

)∥∥∥∥∥
Y

≤ lim
k→∞

φ(mkx1,m
kx2, · · · ,mkxm)

|m|k

≤ lim
k→∞

|m|kαnφ(x1, · · · , xm)

|m|k
= 0

for all u ∈ U(A) and all x1, · · · , xm ∈ X with xi ⊥ xj for all i ̸= j. So

m∑
i=1

L

muxi + m∑
j=1,j ̸=i

uxj

+ L

(
m∑
i=1

uxi

)
= 2uL

(
m∑
i=1

xi

)

for all u ∈ U(A) and all x1, · · · , xn ∈ X with xi ⊥ xj for all i ̸= j. Hence L : X → Y is an
orthogonally additive mapping.

The rest of the proof is similar to the proof of Theorem 2.1. �
Corollary 3.2. Let θ be a positive real number and p a real number with p > 1. Let f : X → Y
be a mapping satisfying (2.7). If for each x ∈ X the mapping f(tx) is continuous in t ∈ ℝ,
then there exists a unique orthogonally additive and A-linear mapping L : X → Y such that

∥f(x)− L(x)∥Y ≤ θ∥x∥p

|m| − |m|p+1
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for all x ∈ X.

Proof. The proof follows from Theorem 3.1 by taking

φ(x1, x2, · · · , xn) = θ

(
n∑

i=1

∥xi∥p
)

for all x1, · · · , xm ∈ X with xi ⊥ xj for all i ̸= j. Then we can choose α = |m|p−1 and we get
the desired result. �
Theorem 3.3. Let f : X → Y be a mapping satisfying (2.2) and for which there exists a
function φ : Xm → [0,∞) such that

φ

(
x1
m
,
x2
m
, · · · , xm

m

)
≤ αφ (x1, x2, · · · , xm)

|m|
for all x1, · · · , xm ∈ X with xi ⊥ xj for all i ̸= j. If for each x ∈ X the mapping f(tx) is
continuous in t ∈ ℝ, then there exists a unique orthogonally additive and A-linear mapping
L : X → Y such that

∥f(x)− L(x)∥Y ≤ αψ(x)

|m| − |m|α
(3.4)

for all x ∈ X.

Proof. Let (S, d) be the generalized metric space defined in the proof of Theorem 2.1.
Now we consider the linear mapping J : S → S such that

Jg(x) := mg

(
x

m

)
for all x ∈ X. It follows from (2.4) that d(f, Jf) ≤ α

|m| . The rest of the proof is similar to the

proofs of Theorems 2.1 and 3.1. �
Corollary 3.4. Let θ be a positive real number and p a real number with 0 < p < 1. Let
f : X → Y be a mapping satisfying (2.7). If for each x ∈ X the mapping f(tx) is continuous
in t ∈ ℝ, then there exists a unique orthogonally Jensen and A-linear mapping L : X → Y
such that

∥f(x)− L(x)∥Y ≤ |m|θ∥x∥p

|m|p+1 − |m|
for all x ∈ X.

Proof. The proof follows from Theorem 3.3 by taking

φ(x1, x2, · · · , xn) = θ

(
n∑

i=1

∥xi∥p
)

for all x1, · · · , xm ∈ X with xi ⊥ xj for all i ̸= j. Then we can choose α = |m|1−p and we get
the desired result. �
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[4] L. Cădariu and V. Radu, Fixed point methods for the generalized stability of functional equations in a

single variable, Fixed Point Theory and Applications 2008, Art. ID 749392 (2008).
[5] S.O. Carlsson, Orthogonality in normed linear spaces, Ark. Mat. 4 (1962), 297–318.
[6] I. Chang, Stability of higher ring derivations in fuzzy Banach algebras, J. Computat. Anal. Appl. 14

(2012), 1059–1066.
[7] I. Cho, D. Kang and H. Koh, Stability problems of cubic mappings with the fixed point alternative, J.

Computat. Anal. Appl. 14 (2012), 132–142.
[8] P.W. Cholewa, Remarks on the stability of functional equations, Aequationes Math. 27 (1984), 76–86.
[9] S. Czerwik, On the stability of the quadratic mapping in normed spaces, Abh. Math. Sem. Univ. Hamburg

62 (1992), 59–64.
[10] S. Czerwik, Functional Equations and Inequalities in Several Variables, World Scientific Publishing Com-

pany, New Jersey, London, Singapore and Hong Kong, 2002.
[11] S. Czerwik, Stability of Functional Equations of Ulam-Hyers-Rassias Type, Hadronic Press, Palm Harbor,

Florida, 2003.
[12] D. Deses, On the representation of non-Archimedean objects, Topology Appl. 153 (2005), 774–785.
[13] J. Diaz and B. Margolis, A fixed point theorem of the alternative for contractions on a generalized complete

metric space, Bull. Amer. Math. Soc. 74 (1968), 305–309.
[14] C.R. Diminnie, A new orthogonality relation for normed linear spaces, Math. Nachr. 114 (1983), 197–203.
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Abstract. In this paper, we consider Choquet integrals with respect to a fuzzy mea-
sure and fuzzy complex valued functions. We define the Choquet integral with respect
to a fuzzy measure of a fuzzy complex valued functions and investigate their character-

izations. Furthermore, we discuss some convergence properties of the Choquet integral
with respect to a fuzzy measure of an integrably bounded fuzzy complex valued mea-
surable function.

§1. Introduction

Choquet integrals, introduced in [8,9,10], has emerged as an interesting extension of
the Lebesgue integral. Puri and Ralescu [11] have been studied Lebesgue integral with
respect to a classical measure of closed set-valued measurable functions. In the papers
[4-7], we defined interval-valued Choquet integrals and have studied some convergence
theorems for Choquet integrals with respect to a fuzzy measure of interval-valued
measurable functions under some sufficient conditions. Zhang, Guo and Liu [14]
restudied Choquet integrals with respect to a fuzzy measure of closed set-valued
measurable functions.

Burkley [1-3] introduced the concept of fuzzy complex numbers, the differentiability
and integrability of fuzzy complex valued functions on a complex plane C. Wang and
Li [11] have researched generalized Lebesgue integrals with respect to a complex
valued fuzzy measure of fuzzy complex valued functions.
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In this paper, we define the Choquet integral with respect to a fuzzy measure of a
fuzzy complex valued function and discuss their properties. In particular, we prove
some convergence theorems for the Choquet integrals of a fuzzy complex valued func-
tion. In section 2, we list the definitions and various properties of fuzzy measures and
Choquet integrals. In section 3, we introduce fuzzy complex numbers and fuzzy com-
plex valued functions. We define Choquet integrals with respect to a fuzzy measure
of a fuzzy complex valued functions and discuss some of their some characterizations.
In section 4, we discuss some convergence properties of the Choquet integrals of inte-
grably bounded fuzzy complex valued functions. In section 5, we give a brief summery
results and some conclusions.

§2. Definitions and Preliminaries

Throughout this paper, we assume that (X,ℑ(X)) is a measurable space and denote
ℝ+ = [0,∞) and ℝ̄+ = [0,∞]. We list the definitions of fuzzy measures and Choquet
integrals(see [4-12]).

Definition 2.1. (1) A set function µ : ℑ(X) −→ ℝ̄+ is called a fuzzy measure if (i)
µ(∅) = 0 and (ii) µ(A) ≤ µ(B) whenever A,B ∈ ℑ(X) and A ⊂ B.

(2) If µ(X) <∞, µ is said to be finite.
(3) A set function µ is said to be lower semi-continuous if for each increasing

sequence {An} in ℑ(X),
µ(∪∞

n=1An) = lim
n→∞

µ(An).

(4) A set function µ is said to be lower semi-continuous if for each decreasing
sequence{An} in ℑ(X) with µ(A1) <∞,

µ(∩∞
n=1An) = lim

n→∞
µ(An).

(5) If µ is both lower semi-continuous and upper semi-continuous, it is said to be
semi-continuous.

We remark that fuzzy measures are known to be the generalization of classical mea-
sures where additivity is replaced by the weaker condition of monotonicity and that
fuzzy measures are not assumed to be semi-continuous. We introduce the Choquet
integral proposed by M. Sugeno(see [8]) as follows.

Definition 2.2. (1) The Choquet integral with respect to a fuzzy measure µ of a
measurable function f : X −→ ℝ+ on A ∈ ℑ(X) is defined by

(C)

∫
A

fdµ =

∫ ∞

0

µ({x|f(x) > r} ∩A)dr

where the integral on the right-hand side is the Lebesgue integral.
2
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(2) A measurable function f is said to be C-integrable if the Choquet integral of f
on X can be defined and its value is finite.

Instead of (C)
∫
X
fdµ, we will write (C)

∫
fdµ. We consider the (decreasing) dis-

tribution function Gf (r) = µ({x|f(x) > r}) of a measurable function f for any
r ∈ ℝ+ = [0,∞).

Definition 2.3. Let µ be a fuzzy measure on ℑ(X) and f a measurable function. We
say that f and g are comonotonic, in symbol, f ∼ g if f(x) < f(x′) =⇒ g(x) ≤ g(x′)
for all x, x′ ∈ X.

Now we introduce the following basic properties of the comonotonicity and the
Choquet integral.

Theorem 2.4. [8-10, 12]) Let f, g, and ℎ be measurable functions. Then we have
(1) f ∼ f ,
(2) f ∼ g =⇒ g ∼ f ,
(3) f ∼ a for all a ∈ ℝ+,
(4) f ∼ g and g ∼ ℎ =⇒ f ∼ g + ℎ.

Theorem 2.5. [8-10, 12]) Let f and g be C-integrable functions. Then we have
(1) if f ≤ g, then (C)

∫
fdµ ≤ (C)

∫
gdµ,

(2) if E1 ⊂ E2 and E1, E2 ∈ ℑ(X), then (C)
∫
E1
fdµ ≤ (C)

∫
E2
fdµ,

(3) if f ∼ g and a, b ∈ ℝ+, then

(C)

∫
(af + bg)dµ = a(C)

∫
fdµ+ b(C)

∫
gdµ,

(4) if we define (f ∨g)(x) = f(x)∨g(x) and (f ∧g)(x) = f(x)∧g(x) for all x ∈ X,
then

(C)

∫
f ∨ gdµ ≥ (C)

∫
fdµ ∨ (C)

∫
gdµ

and

(C)

∫
f ∧ gdµ ≤ (C)

∫
fdµ ∧ (C)

∫
gdµ

Throughout this paper, I(ℝ+) is the class of all closed intervals in ℝ+, that is,

I(ℝ+) = {[a−, a+]|a−, a+ ∈ ℝ+ and a− ≤ a+}.

For any a ∈ ℝ+, we define a = [a, a]. Obviously, a ∈ I(ℝ+)(see[4-7]).

3
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Definition 2.6. If ā = [a−, a+], b̄ = [b−, b+] ∈ I(ℝ+) and c ∈ ℝ+, then we define the
following operations:

(1) ā+ b̄ = [a− + b−, a+ + b+].
(2) kā = [ca−, ca+].
(3) āb̄ = [a−b−, a+b+].
(4) ā ∧ b̄ = [a− ∧ b−, a+ ∧ b+].
(5) ā ∨ b̄ = [a− ∨ b−, a+ ∨ b+].
(6) ā ≤ b̄ if and only if a− ≤ b− and a+ ≤ b+.
(7) ā < b̄ if and only if ā ≤ b̄ and ā ̸= b̄.
(8) ā ⊂ b̄ if and only if b− ≤ a− and a+ ≤ b+.

Definition 2.7. If ā = [a−k , a
+
k ] ∈ I(ℝ+) for k = 1, 2, · · · , then we define the

following operations:
(1) ∧∞

k=1āk = [∧∞
k=1a

−
k ,∧∞

k=1a
+
k ].

(2) ∨∞
k=1āk = [∨∞

k=1a
−
k ,∨∞

k=1a
+
k ].

Theorem 2.8. For ā, b̄, c̄ ∈ I(ℝ+), we have
(1) idempotent law: ā ∧ ā = ā, ā ∨ ā = ā,
(2) commutative law: ā ∧ b̄ = b̄ ∧ ā, ā ∨ b̄ = b̄ ∨ ā,
(3) associative law: (ā ∧ b̄) ∧ c̄ = ā ∧ (b̄ ∧ c̄),
(4) absorption law: ā ∧ (ā ∨ b̄) = ā ∨ (ā ∧ b̄) = ā,
(5) distributive law: ā ∧ (b̄ ∨ c̄) = (ā ∧ b̄) ∨ (ā ∧ c̄), ā ∨ (b̄ ∧ c̄) = (ā ∨ b̄) ∧ (ā ∨ c̄).

W note that (I(ℝ+), dH) is a metric space, where a mapping dH : I(ℝ+) ×
I(ℝ+) −→ ℝ̄+ is the Hausdorff metric defined by

dH(A,B) = max{sup
x∈A

inf
y∈B

|x− y|, sup
y∈B

inf
x∈A

|x− y|}

for all A,B ∈ I(ℝ+). By the definition of the Hausdorff metric, it is easy to see that
for any ā = [a−, a+], b̄ = [b−, b+] ∈ I(ℝ+), we have

dH(ā, b̄) = max{|a− − b−|, |a+ − b+|}.

Note that for a sequence of closed intervals {ān} converges to ā, in symbols dH −
limn→∞ ān = ā if limn→∞ dH(ān, ā) = 0 and that dH − limn→∞ ān = ā if and only
if limn→∞ a−n = a− and limn→∞ a+n = a+. In the following definition, we introduce
fuzzy numbers and some operations on them which are used in the next sections.

Definition 2.9. A fuzzy set ũ on ℝ+ is called a fuzzy number if it satisfies the
following conditions;

(i) (normality) ũ(x) = 1 for some x ∈ ℝ+,
4
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(ii) (fuzzy convexity) for every � ∈ (0, 1],

ũλ = {x ∈ ℝ+| ũ(x) ≥ �} ∈ I(ℝ+),

where ũλ is the level set of ũ.

Let FN(ℝ+) denote the class of all fuzzy numbers. We define the following basic
operations on FN(ℝ+)(see[8,9,12]); for every ũ, ṽ ∈ FN(ℝ+) and k ∈ ℝ+,

(ũ+ ṽ)λ = ũλ + ṽλ,
(kũ)λ = kũλ,
(ũṽ)λ = ũλṽλ,
ũ ≤ ṽ if and only if ũλ ≤ ṽλ, for all � ∈ (0, 1],
ũ < ṽ if and only if ũ ≤ ṽ and ũ ̸= ṽ,
ũ ⊂ ṽ if and only if ũλ ⊂ ṽλ, for all � ∈ (0, 1].

§3. Choquet integrals of fuzzy complex fuzzy functions

In this section, we consider a fuzzy number and fuzzy complex numbers(see[1-3,13]).

Definition 3.1. Let ã, b̃ ∈ FN(ℝ+). We define a double ordered fuzzy numbers (ã, b̃)
as follows:

(ã, b̃) : C+ −→ [0, 1]

z = x+ yi 7−→ (ã, b̃)(z) = ã(x) ∧ ỹ(y),

where C+ = {x+ yi|x, y ∈ ℝ+}. Then the mapping (ã, b̃) determines a fuzzy complex

number, where ã and b̃ is called a real part and an imaginary part of (ã, b̃), respectively.

We note that if we put C = (ã, b̃), then ã = ReC and b̃ = ImC. Let FCN(C+)
be the class of all fuzzy complex numbers on C+, writing

C ≡ ã+ b̃i.

Note that if c = a+bi is a nonnegative complex number, then its membership function
is

c(z) =

{
1 if x = a, y = b

0 otherwise

where z = x+yi ∈ C+. Clearly, c ∈ FCN(C+), that is, a fuzzy complex number is also
a generalization of an ordinary complex number. We recall that if C1, C2 ∈ FCN(C+)
and we define

C1 ∗ C2 = (ReC1 ∗ReC2, ImC1 ∗ ImC2)

for an operation ∗ ∈ {+,−,×,∧,∨}, then clearly we have C1 ∗ C2 ∈ FCN(C+).

5
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Definition 3.2. Let C1, C2 ∈ FCN(C+). Then we define the following order and
equality operations:

(1) C1 ≤ C2 if and only if ReC1 ≤ ReC2 and ImC1 ≤ ImC2.
(2) C1 < C2 if and only if C1 ≤ C2 and C1 ̸= C2.
(3) C1 = C2 if and only if C1 ≤ C2 and C2 ≤ C1.
(4) C1 ⊂ C2 if and only if ReC1 ⊂ ReC2 and ImC1 ⊂ ImC2.

From Definition 3.2, it is easy to see that if we define �-cut set Cλ = {z = x+ yi ∈
C+|(ReC)(x) ≥ � and (ImC)(y) ≥ �}, then it is a closed rectangle region in C+.
Now, we consider fuzzy complex valued functions as follows(see [13]).

Definition 3.3. If a mapping f̃ : C+ −→ FCN(C+) is defined by

z = x+ yi 7−→ f̃(z) = (Ref̃ , Imf̃)(z) = Ref̃(x) ∧ Imf̃(y),

then f̃ is called a fuzzy complex valued function on C+.

We note that for any � ∈ (0, 1], let

f̃λ(z) ≡ (f̃(z))λ = ((Ref̃(x))λ, (Imf̃(y))λ), for all z = x+ yi ∈ C+,

where (Ref̃)λ ≡ [(Ref̃)−λ , (Ref̃)
+
λ ] and (Imf̃)λ ≡ [(Imf̃)−λ , (Imf̃)

+
λ ] for all � ∈ (0, 1]

and that f̃ is said to be measurable if for any � ∈ (0, 1], (Ref̃)λ and (Imf̃)λ are
measurable. We introduce Choqeut integral of interval-valued measurable functions
as follows(see [4-7,14]).

Definition 3.4. ([4-7, 14]) Let (ℝ+,ℑ(ℝ+)) be a measurable space. A closed set-
valued function F : X −→ I(ℝ+) is said to be measurable if for any open set O ⊂ ℝ+,

F−1(O) = {x ∈ ℝ+|F (x) ∩O ̸= ∅} ∈ ℑ(ℝ+).

Definition 3.5. ([4-7, 14]) (1) Let F be a closed set-valued function and A ∈ ℑ(ℝ+).
The Choquet integral of F on A is defined by

(C)

∫
A

Fdµ =

{
(C)

∫
A

fdµ | f ∈ Sc(F )

}
,

where Sc(F ) is the family of measurable selections of F .
(2) A closed set-valued functions F is said to be integrable if (C)

∫
Fdµ ̸= ∅.

(3) A closed set-valued function F is said to be integrably bounded if there exists a
integrable function g such that

∥ F (x) ∥= supr∈F (x)|r| ≤ g(x) for all x ∈ ℝ+.

6
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Theorem 3.6. ([14 Theorem 3.16(iii)]) Let µ be a semi-continuous fuzzy measure.
If F = [f−, f+] : ℝ+ −→ I(ℝ+) is an integrably bounded interval-valued measurable
function, then

(C)

∫
Fdµ =

[
(C)

∫
f−dµ, (C)

∫
f+dµ

]
.

Theorem 3.7. ([13])If f̃1 and f̃2 are fuzzy complex valued measurable functions, then

f̃1 ± f̃2 and f̃1 · f̃2 are fuzzy complex valued measurable functions, where f̃1 ± f̃2 =

(Ref̃1 ±Ref̃2, Imf̃1 ± Imf̃2) and f̃1 · f̃2 = (Ref̃1 ·Ref̃2, Imf̃1 · Imf̃2).

Now, we define the Choquet integral with respect to a fuzzy measure of a fuzzy
complex valued function as follows.

Definition 3.8. Let µ be a semi-continuous fuzzy measure on (ℝ+,ℑ(ℝ+)) and f̃ =

(Ref̃ , Imf̃) a fuzzy complex valued measurable function.

(1) For every A,B ∈ ℑ(ℝ+), the Choquet integral with respect to µ to f̃ on A×B
is defined by(

(C)

∫
A×B

f̃dµ

)
λ

=

(
(C)

∫
A

(Ref̃)λdµ, (C)

∫
B

(Imf̃)λdµ

)
for all � ∈ (0, 1].

(2) If there exists ũ ∈ FCN(C+) such that (ũ)λ =
(
(C)

∫
A×B

f̃dµ
)
λ
for all � ∈

(0, 1], then f̃ is said to be integrable on A×B.

(3) f̃ is said to be integrably bounded if for any � ∈ (0, 1], (Ref̃)λ and (Imf̃)λ are
integrably bounded.

Instead of (C)
∫

R+×R+ f̃dµ, we will write (C)
∫
f̃dµ. If we set A× B = ℝ+ × ℝ+,

then we denote(
(C)

∫
f̃dµ

)
λ

=

(
(C)

∫
(Ref̃)λdµ, (C)

∫
(Imf̃)λdµ

)
.

In order to prove the existence of the Choquet integral of f̃ , we need the Choquet
integral of a fuzzy complex valued measurable function to satisfy the following lemma.

Lemma 3.9 ([7,10]). Let {[aλ, bλ]|� ∈ (0, 1]} be a family of nonempty closed in-
tervals in I(ℝ+). If (i) for all 0 < �1 ≤ �2, [aλ1 , bλ1 ] ⊃ [aλ2 , bλ2 ] and (ii) for any
increasing sequence {�k} in (0, 1] converging to �, [aλ, bλ] = ∩∞

k=1[aλk
, bλk

]. Then
there exists a unique fuzzy number ũ ∈ FN(ℝ+) such that the family [aλ, bλ] repre-
sents the �-level sets of a fuzzy number ũ.

7
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Conversely, if [aλ, bλ] are the �-level sets of a fuzzy number ũ ∈ FN(ℝ+), then the
conditions (i) and (ii) are satisfied.

From Theorem 3.6 and Definition 3.8, we obtain the following theorem.

Theorem 3.10. Let µ be a semi-continuous fuzzy measure on ℑ(ℝ+). If an integrably

bounded fuzzy complex valued measurable function f̃ = (Ref̃ , Imf̃) is measurable, then
for any � ∈ (0, 1],

(C)

∫
(Ref̃)λdµ =

[
(C)

∫
(Ref̃)−λ dµ, (C)

∫
(Ref̃)+λ dµ

]
and

(C)

∫
(Imf̃)λdµ =

[
(C)

∫
(Imf̃)−λ dµ, (C)

∫
(Imf̃)+λ dµ

]
.

Lemma 3.11. If {�k} is an increasing sequence in (0, 1] converging to � and µ is
lower semi-continuous, then we have

lim
n→∞

µ({x|(Ref̃)−λn
(x) > �}) = µ({x|(Ref̃)−λ (x) > �}),

lim
n→∞

µ({x|(Ref̃)+λn
(x) > �}) = µ({x|(Ref̃)+λ (x) > �}),

lim
n→∞

µ({x|(Imf̃)−λn
(x) > �}) = µ({x|(Imf̃)−λ (x) > �}),

and
lim
n→∞

µ({x|(Imf̃)+λn
(x) > �}) = µ({x|(Imf̃)+λ (x) > �}.

Under same condition for {�k} in Lemma 3.11, we have

lim
n→∞

µ({x|(Ref̃)−λn
(x) > �}) = µ(∩∞

n=1{x|(Ref̃)−λn
(x) > �}),

lim
n→∞

µ({x|(Ref̃)+λn
(x) > �}) = µ(∩∞

n=1{x|(Ref̃)+λn
(x) > �}),

lim
n→∞

µ({x|(Imf̃)−λn
(x) > �}) = µ(∩∞

n=1{x|(Imf̃)−λn
(x) > �}),

and
lim

n→∞
µ({x|(Imf̃)+λn

(x) > �}) = µ(∩∞
n=1{x|(Imf̃)+λn

(x) > �}.

Thus, by Lemma 3.11, we can obtain the following theorem.

8
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Theorem 3.12. Let µ be a semi-continuous fuzzy measure. If a fuzzy complex valued

function f̃ is integrably bounded and {�k} is an increasing sequence in (0, 1] converging
to �, then we have

(i) for any 0 < �1 ≤ �2 ≤ 1,(
(C)

∫
f̃dµ

)
λ1

⊃
(
(C)

∫
f̃dµ

)
λ2

,

and (ii) for any increasing sequence {�k} in (0, 1] converging to �,(
(C)

∫
Ref̃dµ

)
λ

= ∩∞
k=1

(
(C)

∫
Ref̃dµ

)
λk

and (
(C)

∫
Imf̃dµ

)
λ

= ∩∞
k=1

(
(C)

∫
Imf̃dµ

)
λk

.

Proof. (i) Note that (Ref̃)λ1 = [(Ref̃)−λ1
, (Ref̃)+λ1

] ⊂ (Ref̃)λ2 = [(Ref̃)−λ2
, (Ref̃)+λ2

]
implies

(Ref̃)−λ1
≤ (Ref̃)−λ2

and (Ref̃)+λ1
≤ (Ref̃)+λ2

and that (Imf̃)λ1 = [(Imf̃)−λ1
, (Imf̃)+λ1

] ⊂ (Imf̃)λ2 = [(Imf̃)−λ2
, (Imf̃)+λ2

] implies

(Imf̃)−λ1
≤ (Imf̃)−λ2

and (Imf̃)+λ1
≤ (Imf̃)+λ2

.

Thus, by Theorem 2.4(1) and Definition 2.5 (8) and Theorem 3.10, we obtain the
followings: (

(C)

∫
Ref̃dµ

)
λ1

= (C)

∫
(Ref̃)λ1dµ

=

[
(C)

∫
(Ref̃)−λ1

dµ, (C)

∫
(Ref̃)+λ1

dµ

]
⊃
[
(C)

∫
(Ref̃)−λ2

dµ, (C)

∫
(Ref̃)+λ2

dµ

]
= (C)

∫
(Ref̃)λ2dµ =

(
(C)

∫
Ref̃dµ

)
λ2

.

Similarly, we obtain the followings.(
(C)

∫
Imf̃dµ

)
λ1

⊃
(
(C)

∫
Imf̃dµ

)
λ2

.
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(ii) Let {�k} be an increasing sequence in (0, 1] converging to �. Then, by Definition
2.5 (4) and the monotone convergence theorem for Lebesgue integral, we can obtain
the followings.

(C)

∫
(Ref̃)−λ dµ =

∫ ∞

0

µ({x|(Ref̃)−λ (x) > �})d�

=

∫ ∞

0

lim
n→∞

µ({x|(Ref̃)−λn
(x) > �})d�

= lim
n→∞

∫ ∞

0

µ({x|(Ref̃)−λn
(x) > �})d�

= lim
n→∞

(C)

∫
(Ref̃)λndµ = ∩∞

n=1(C)

∫
(Ref̃)−λn

dµ.

Similarly, we obtain the following three equalities.

(C)

∫
(Ref̃)+λ dµ = ∩∞

n=1(C)

∫
(Ref̃)+λn

dµ,

(C)

∫
(Imf̃)−λ dµ = ∩∞

n=1(C)

∫
(Imf̃)−λn

dµ,

and

(C)

∫
(Imf̃)+λ dµ = ∩∞

n=1(C)

∫
(Imf̃)+λn

dµ.

Thus we have(
(C)

∫
Ref̃dµ

)
λ

=

[
(C)

∫
(Ref̃)−λ dµ, (C)

∫
(Ref̃)+λ dµ

]
=

[
∩∞
n=1(C)

∫
(Ref̃)−λn

dµ,∩∞
n=1(C)

∫
(Ref̃)+λn

dµ

]
= ∩∞

n=1

[
(C)

∫
(Ref̃)−λn

dµ,

∫
(Ref̃)+λn

dµ

]
= ∩∞

n=1(C)

∫
(Ref̃)λndµ = ∩∞

n=1

(
(C)

∫
Ref̃dµ

)
λn

.

By the same method of the above equality’s proof for Ref̃ , we can obtain(
(C)

∫
Imf̃dµ

)
λ

= ∩∞
n=1

(
(C)

∫
Ref̃dµ

)
λn

.

From Theorem 3.12, we can obtain the following Remark which is the existence of
the Choquet integral with respect to a fuzzy measure of an integrably bounded fuzzy
complex valued measurable function.
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Remark 3.13. By Theorem 3.12 and Lemma 3.11, there exists a fuzzy number ũ, ṽ ∈
FN(C+) such that

(ũ)λ =

(
(C)

∫
Ref̃dµ̃

)
λ

and (ṽ)λ =

(
(C)

∫
Imf̃dµ̃

)
λ

.

for all � ∈ (0, 1]. If we put C = (ũ, ṽ), then C ∈ FCN(C+) and

Cλ = (ũλ, ṽλ) =

((
(C)

∫
Ref̃dµ̃

)
λ

,

(
(C)

∫
Imf̃dµ̃

)
λ

)
=

(
(C)

∫
f̃dµ̃

)
λ

.

That is, if a fuzzy complex valued function f̃ is integrably bounded, then f̃ is integrable.

Thus, we have the following basic properties of Choquet integrals of fuzzy complex
valued measurable functions.

Theorem 3.14. Let µ be a semi-continuous fuzzy measure. The Choquet of integrably
bounded fuzzy complex valued measurable functions has the following properties: for
any two fuzzy complex valued measurable functions widetildef and widetildeg, then

(1) if f̃ ≤ g̃, then (C)
∫
f̃dµ ≤ (C)

∫
g̃dµ,

(2) if we define (f̃ ∨ g̃)(z) = f̃(z)∨ g̃(z) and (f̃ ∧ g̃)(z) = f̃(z)∧ g̃(z) for all z ∈ C+,
then

(C)

∫
f̃ ∨ g̃dµ ≥ (C)

∫
f̃dµ ∨ (C)

∫
g̃dµ

and

(C)

∫
f̃ ∧ g̃dµ ≤ (C)

∫
f̃dµ ∧ (C)

∫
g̃dµ

§4. Some convergence properties of the fuzzy complex valued Choquet integral

In this section, we introduce some convergence properties of the Choquet integral,
for examples, Denneberg’s convergence theorem and monotone convergence theorem
for Choquet integrals with respect to a fuzzy measure of real-valued measurable func-
tions(see [11,12]).

Definition 4.1 ([10]). A sequence {fn} of measurable functions is said to converge
to f in distribution, in symbols G− limn→∞ fn = f , if

lim
n→∞

Gfn(r) = Gf (r), e.c.,

where ”e.c.” stands for ”except at most countably many values of r”.
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Theorem 4.2 ([10]). If {fn} is a sequence of measurable functions that converges
to f in distribution and if g and ℎ are integrable functions such that

Gh ≤ Gfn ≤ Gg e.c., n = 1, 2, · · · ,

then f is integrable and

lim
n→∞

(C)

∫
fndµ = (C)

∫
fdµ.

Theorem 4.3 ([9]). (1) If a fuzzy measure µ is semi-continuous and {fn} is an
increasing sequence of measurable functions which converges to f , µ − a.e., then we
have

lim
n→∞

(C)

∫
fndµ = (C)

∫
fdµ,

where ”P is µ− a.e.” means µ({x ∈ ℝ+|P (x) is not true }) = 0.
(2) If a fuzzy measure µ is upper semi-continuous and {fn} is an decreasing se-

quence of measurable functions which converges to f , µ− a.e., and if there exists an
integrable function g such that f1 ≤ g, then we have

lim
n→∞

(C)

∫
fndµ = (C)

∫
fdµ.

We discuss some convergence theorems for Choquet integrals with respect to a fuzzy
measure of fuzzy complex valued measurable functions and define the new metric on
FCN(C+).

Definition 4.4. A mapping D : FCN(C+)× FCN(C+) −→ ℝ̄+ is defined by

D(C1, C2) = max{△(ReC1, ReC2),△(ImC1, ImC2)},

where △(ũ, ṽ) = supλ∈(0,1] dH(ũλ, ṽλ) for all ũ, ṽ ∈ FN(ℝ+).

Note that (FCN(C+, D) is a metric space. By using this metric D, we define the
concept of convergence of a sequence in (FCN(C+, D).

Definition 4.5. A sequence {Cn} of fuzzy complex numbers in FCN(C+) is said to
converge to a fuzzy complex number C in the metric D, in symbols D− limn→∞ Cn =
C, if

limn→∞D(Cn, C) = 0.

From the definition of metric D on FCN(C+), we can define the following defini-
tions.

12

JANG: CHOQUET INTEGRAL

1080



Definition 4.6. A sequence {f̃n} of integrably bounded fuzzy complex valued mea-

surable functions on FCN(C+) is said to converges to f̃ in distribution, in sym-

bols G − limn→∞ f̃n = f̃ if four sequences {(Ref̃n)−λ }, {(Ref̃n)
+
λ }, {(Imf̃n)

−
λ }, and

{(Imf̃n)+λ } converge to {(Ref̃)−λ }, {(Ref̃)
+
λ }, {(Imf̃)

−
λ }, and {(Imf̃)+λ } in distribu-

tion, respectively.

By using Definition 4.6 and Theorem 2.5 and the definition of the metric D, we can
obtain the following theorem under some sufficient conditions which is Denneberg-
type convergence theorem for Choquet integral with respect to a fuzzy measure of
integrably bounded fuzzy complex valued functions.

Theorem 4.7. Assume that a fuzzy complex valued function f̃ is integrably bounded

and µ is a semi-continuous fuzzy measure. If {f̃n} is a sequence of fuzzy complex

valued measurable functions that converges to f̃ in distribution, and if g and ℎ are
integrable functions such that

ℎ ≤ (Ref̃n)
−
λ ≤ (Ref̃n)

+
λ ≤ g and ℎ ≤ (Imf̃n)

−
λ ≤ (Imf̃n)

+
λ ≤ g

for all � ∈ (0, 1] and a.c. for n = 1, 2, · · · , then f̃ is integrably bounded and

D − lim
n→∞

(C)

∫
f̃ndµ = (C)

∫
f̃dµ.

Proof. Clearly, if we take z = x+ iy ∈ C+, then we have

∥(Ref̃)λ(x)∥ ≤ (Ref̃)+λ ≤ g(x) and ∥(Imf̃)λ(x)∥ ≤ (Imf̃)+λ ≤ g(x),

for all � ∈ (0, 1]. Thus, f̃ is integrably bounded. Since ℎ ≤ (Ref̃n)
−
λ ≤ (Ref̃n)

+
λ ≤ g

and ℎ ≤ (Imf̃n)
−
λ ≤ (Imf̃n)

+
λ ≤ g, Gh ≤ G(Ref̃n)

−
λ

≤ G(Ref̃n)
+
λ

≤ Gg and Gh ≤
G(Imf̃n)

−
λ
≤ G(Imf̃n)

+
λ
≤ Gg. Then, by Definition 4.6 and Theorem 4.2, we obtain

lim
n→∞

(C)

∫
(Ref̃n)

−
λ dµ = (C)

∫
(Ref̃)−λ dµ,

lim
n→∞

(C)

∫
(Ref̃n)

+
λ dµ = (C)

∫
(Ref̃)+λ dµ,

lim
n→∞

(C)

∫
(Imf̃n)

−
λ dµ = (C)

∫
(Imf̃)−λ dµ,

and

lim
n→∞

(C)

∫
(Imf̃n)

+
λ dµ = (C)

∫
(Imf̃)+λ dµ,

13
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for all � ∈ (0, 1]. Thus, by the definition of the metric ∆, we have

∆

(
(C)

∫
Ref̃ndµ, (C)

∫
Ref̃dµ

)
= sup

λ∈(0,1]

dH

(
(C)

∫
(Ref̃n)λdµ, (C)

∫
(Ref̃)λdµ

)
= sup

λ∈(0,1]

max

{
|(C)

∫
(Ref̃n)

−
λ dµ− (C)

∫
(Ref̃)−λ dµ|,

|(C)
∫
(Ref̃n)

+
λ dµ− (C)

∫
(Ref̃)+λ dµ|

}
−→ 0,

for all � ∈ (0, 1] as n→ ∞ and

∆

(
(C)

∫
Imf̃ndµ, (C)

∫
Imf̃dµ

)
= sup

λ∈(0,1]

dH

(
(C)

∫
(Imf̃n)λdµ, (C)

∫
(Imf̃)λdµ

)
= sup

λ∈(0,1]

max

{
|(C)

∫
(Imf̃n)

−
λ dµ− (C)

∫
(Imf̃)−λ dµ|,

|(C)
∫
(Imf̃n)

+
λ dµ− (C)

∫
(Imf̃)+λ dµ|

}
−→ 0.

Therefore, by Definition 4.4, we obtain

D − lim
n→∞

(C)

∫
f̃ndµ = (C)

∫
f̃dµ

= lim
n→∞

max

{
∆

(
(C)

∫
Ref̃ndµ, (C)

∫
Ref̃dµ

)
,

∆

(
(C)

∫
Ref̃ndµ, (C)

∫
Ref̃dµ

)}
= 0.

Finally, we can obtain monotone convergence theorems for Choquet integrals with
respect to a fuzzy measure of integrably bounded fuzzy complex valued functions as
follows.
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Theorem 4.8. Assume that f̃ is integrably bounded and that a fuzzy measure µ is
semi-continuous.

(1) If {f̃n} is an increasing sequence of integrably bounded fuzzy complex valued

measurable functions that converges to f̃ in the metric D,then we have

D − lim
n→∞

(C)

∫
f̃ndµ = (C)

∫
f̃dµ.

(2) If {f̃n} is a decreasing sequence of integrably bounded fuzzy complex valued mea-

surable functions that converges to f̃ in the metric D and if there exists an integrabe
function g such that

(Ref̃n)
−
λ ≤ (Ref̃n)

+
λ ≤ g and (Imf̃n)

−
λ ≤ (Imf̃n)

+
λ ≤ g, µ− a.e.,

for all � ∈ (0, 1] and for all n = 1, 2, · · · ,, then we have

D − lim
n→∞

(C)

∫
f̃ndµ = (C)

∫
f̃dµ.

Proof. Note that if {f̃n} is an increasing sequence of fuzzy complex valued

measurable functions that converges to f̃ in the metric D, then four increasing se-

quences {(Ref̃n)−λ }, {(Ref̃n)
+
λ }, {(Imf̃n)

−
λ }, and {(Imf̃n)+λ } converge to {(Ref̃)−λ },

{(Ref̃)+λ }, {(Imf̃)
−
λ }, and {(Imf̃)+λ }, µ − a.e., respectively for all � ∈ (0, 1]. By

Theorem 4.3 (1), we have

lim
n→∞

(C)

∫
(Ref̃n)

−
λ dµ = (C)

∫
(Ref̃)−λ dµ,

lim
n→∞

(C)

∫
(Ref̃n)

+
λ dµ = (C)

∫
(Ref̃)+λ dµ,

lim
n→∞

(C)

∫
(Imf̃n)

−
λ dµ = (C)

∫
(Imf̃)−λ dµ,

and

lim
n→∞

(C)

∫
(Imf̃n)

+
λ dµ = (C)

∫
(Imf̃)+λ dµ,

for all � ∈ (0, 1]. Thus, by Definition 4.4 and the same method of the proof of Theorem
4.7, we have

lim
n→∞

D

(
(C)

∫
f̃ndµ, (C)

∫
f̃dµ

)
= 0.

(2) The proof is similar to the proof of (1).

§5. Conclusions
15
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In this paper, by using, we use the Choquet integral with respect to a fuzzy mea-
sure instead of the Lebesgue integral with respect to a classical measure, we define
the new concept of the Choquet integral with respect to a fuzzy measure of fuzzy
complex valued functions in Definition 3.8 and Theorems 3.10, 3.12. In Definitions
4.4, 4.5, 4.6, and Theorems 4.7, 4.8, we investigate the existence of the fuzzy complex
valued Choquet integral and some convergence properties of the Choquet integrals of
integrably bounded fuzzy complex valued functions.

In the future, we will study a probability measure approach to rank fuzzy complex
numbers and the theoretical fundamentals of leaning theory based on fuzzy complex
random samples, etc.
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INTUITIONISTIC FUZZY STABILITY OF EULER-LAGRANGE
TYPE QUARTIC MAPPINGS

HEEJEONG KOH1, DONGSEUNG KANG1 AND IN GOO CHO2∗

Abstract. We investigate some stability results and intuitionistic fuzzy con-

tinuities concerning the following Euler-Lagrange type quartic functional equa-

tion

f(ax + y) + f(x + ay) +
1

2
a(a− 1)2f(x− y)

=
1

2
a(a + 1)2f(x + y) + (a2 − 1)2(f(x) + f(y))

in intuitionistic fuzzy normed spaces.

1. Introduction

In 1965, Zadeh [19] introduced the theory of fuzzy sets. After the pioneering
work of Zadeh, there has been a great effort to obtain fuzzy analogues of classical
theories. It has useful applications in various fields such as population dynam-
ics, chaos control, computer programming, nonlinear dynamical systems, nonlinear
operators, etc. Also, many mathematicians considered the fuzzy metric spaces in
different view. In particular, In 1984, Katsaras [8] defined a fuzzy norm on a linear
space to construct a fuzzy vector topological structure on the space.

Stability problem of a functional equation was first originated by S.M. Ulam [18]
concerning the stability of group homomorphisms. It was answered by Hyers [5] on
the assumption that the spaces are Banach spaces and generalized by T. Aoki [1]
for the stability of the additive mapping involving a sum of powers of p-norms and
Th.M. Rassias [16] for the stability of the linear mapping by considering the Cauchy
difference to be unbounded.

During the last three decades, several stability problems of a large variety of
functional equations have been extensively studied and generalized by a number
of authors [3], [4], [6], [16], and [2] and various fuzzy stability results have been
studied in [9], [10], [11], and [12].

In particular, J. M. Rassias [15] introduced the Euler-Lagrange type quadratic
functional equation

(1.1) f(rx + sy) + f(sx− ry) = (r2 + s2)[f(x) + f(y)] ,

for fixed reals r, s with r 6= 0 , s 6= 0 . Also, K-W. Jun and H-M. Kim [7] proved the
Hyers-Ulam-Rassias stability of a Euler-Lagrange type cubic mapping as follows:

f(ax + y) + f(x + ay)(1.2)

= (a + 1)(a− 1)2[f(x) + f(y)] + a(a + 1)f(x + y) ,

2000 Mathematics Subject Classification. 39B52.
Key words and phrases. stability problem, Euler-Lagrange functional equation, quartic func-

tional equation, intuitionistic fuzzy stability, intuitionistic fuzzy continuity.
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2 HEEJEONG KOH, DONGSEUNG KANG, IN GOO CHO

where a 6= 0 ,±1 , for all x, y ∈ X .
In this paper, we investigate the stability problem for the Euler-Lagrange type

quartic functional equation as follows:

(1.3) f(ax + y) + f(x + ay) +
1
2
a(a− 1)2f(x− y)

=
1
2
a(a + 1)2f(x + y) + (a2 − 1)2(f(x) + f(y)) ,

for fixed integer a with a 6= 0, ±1 .
In fact, f(x) = x4 is a solution of (1.3) by virtue of the identity

(ax + y)4 + (x + ay)4 +
1
2
a(a− 1)2(x− y)4

=
1
2
a(a + 1)2(x + y)4 + (a2 − 1)2(x4 + y4) .

In this paper, we investigate some stability results and intuitionistic fuzzy con-
tinuities concerning the equation (1.3) in intuitionistic fuzzy normed spaces.

Definition 1.1. A binary operation ∗ : [0, 1]× [0, 1] → [0, 1] is said to be a contin-
uous t-norm if it satisfies the following conditions:

(1) * is associative and commutative, (2) * is continuous, (3) a ∗ 1 = a for all
a ∈ [0, 1] , (4) a ∗ b ≤ c ∗ d whenever a ≤ c and b ≤ d , for each a, b, c, d ∈ [0, 1] .

Definition 1.2. A binary operation ♦ : [0, 1] × [0, 1] → [0, 1] is said to be a
continuous t-conorm if it satisfies the following conditions:

(1) ♦ is associative and commutative, (2) ♦ is continuous, (3) a♦0 = a for all
a ∈ [0, 1] , (4) a♦b ≤ c♦d whenever a ≤ c and b ≤ d , for each a, b, c, d ∈ [0, 1] .

Saadati and Park introduced the concept of intuitionistic fuzzy normed
space; [17].

Definition 1.3. The five-tuple (X, µ, ν, ∗,♦) is called an intuitionistic fuzzy
normed space(for short, IFNS) if X is a vector space, ∗ is a continuous t-norm,
♦ is continuous t-conorm, and µ and ν are fuzzy sets on X × (0, 1) satisfying the
following conditions. For all x, y ∈ X and s, t > 0 ,

(1) µ(x, t) + ν(x, y) ≤ 1 ,
(2) µ(x, t) > 0 ,
(3) µ(x, t) = 1 if and only if x = 0 ,
(4) µ(αx, t) = µ(x, t

|α| ) for each α 6= 0 ,

(5) µ(x, t) ∗ µ(y, s) ≤ µ(x + y, t + s) ,
(6) µ(x, ·) : (0,∞) → [0.1] is continuous,
(7) limt→∞ µ(x, t) = 1 and limt→0 µ(x, t) = 0 ,
(8) ν(x, t) < 1 ,
(9) ν(x, t) = 0 if and only if x = 0 ,

(10) ν(αx, t) = ν(x, t
|α| ) for each α 6= 0 ,

(11) ν(x, t)♦ν(y, s) ≥ ν(x + y, t + s) ,
(12) ν(x, ·) : (0,∞) → [0.1] is continuous,
(13) limt→∞ ν(x, t) = 0 and limt→0 ν(x, t) = 1 .

In this case (µ, ν) is said to be an intuitionistic fuzzy norm.

Also, they investigated the concepts of convergence and Cauchy sequences in an
intuittionistic fuzzy normed space as follows:
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Let (X, µ, ν, ∗,♦) be an IFNS. A sequence (xk) is said to be intuittionistic fuzzy
convergent to L ∈ X if limk→∞ µ(xk − L, t) = 1 and limk→∞ ν(xk − L, t) = 0 ,
for all t > 0 . A sequence (xk) is said to be intuittionistic fuzzy Cauchy sequence
if limk→∞ µ(xk+p − xk, t) = 1 and limk→∞ ν(xk+p − xk, t) = 0 , for all t > 0 and
p = 1, 2, · · · . Also, (X, µ, ν, ∗,♦) is said to be complete if every intuitionistic fuzzy
Cauchy sequence in (X, µ, ν, ∗,♦) is intuitionistic fuzzy convergent in (X, µ, ν, ∗,♦) .

2. Intuitionistic Fuzzy Stability

Throughout this section, let X be a linear space and let Y be a intuitionistic
fuzzy Banach space. Let a be a fixed integer with a 6= 0, ±1 , For convenience, we
use the following abbreviation:

(2.1) Daf(x, y) := f(ax + y) + f(x + ay) +
1
2
a(a− 1)2f(x− y)

−1
2
a(a + 1)2f(x + y)− (a2 − 1)2(f(x) + f(y)) ,

for all x, y ∈ X .

Theorem 2.1. Let a be an integer with a 6= 0, ±1 , and let X be a linear space and
let (Z, µ′, ν′) be an intuitionistic fuzzy normed space(IFNS). Let φ : X ×X → Z be
a function such that for some 0 < α < a4

(2.2) µ′(φ(ax, 0), t) ≥ µ′(αφ(x, 0), t) and ν′(φ(ax, 0), t) ≤ ν′(αφ(x, 0), t) ,

and limn→∞ µ′(φ(anx, any), a4nt) = 1 and limn→∞ ν′(φ(anx, any), a4nt) = 0 , for
all x, y ∈ X and t > 0 . Suppose (Y, µ, ν) is an intuitionistic fuzzy Banach space
and f : X → Y is a φ-approximately mapping such that f(0) = 0 and

(2.3) µ
(
Daf(x, y), t

)
≥ µ′(φ(x, y), t)

and

(2.4) ν
(
Daf(x, y), t

)
≤ ν′(φ(x, y), t)

for all t > 0 and all x, y ∈ X . Then there exists a unique Euler-Lagrange type
quartic mapping Q : X → Y such that

(2.5) µ(Q(x)− f(x), t) ≥ µ′(φ(x, 0),
1
2
(a4 − α)t) ,

and

(2.6) ν(Q(x)− f(x), t) ≤ ν′(φ(x, 0),
1
2
(a4 − α)t) ,

for all x ∈ X and all t > 0 .

Proof. By letting y = 0 in inequalities (2.3) and (2.4), we have

(2.7) µ(f(ax)−a4f(x), t) ≥ µ′(φ(x, 0), t) and ν(f(ax)−a4f(x), t) ≤ ν′(φ(x, 0), t) ,

that is,

(2.8) µ(
f(ax)

a4
− f(x),

t

a4
) ≥ µ′(φ(x, 0), t) ,

and

(2.9) ν(
f(ax)

a4
− f(x),

t

a4
) ≤ ν′(φ(x, 0), t) ,
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for all x ∈ X and t > 0 . For each n ∈ N , letting x = anx in inequalities (2.8) and
(2.9), we get

µ
(
a4n(

f(an+1x)
a4(n+1)

− f(anx)
a4n

),
t

a4

)
≥ µ′(φ(anx, 0), t)

ν
(
a4n(

f(an+1x)
a4(n+1)

− f(anx)
a4n

),
t

a4

)
≤ ν′(φ(anx, 0), t) .

By using the inequality (2.2), these previous inequalities imply that

µ
(f(an+1x)

a4(n+1)
− f(anx)

a4n
,

t

a4(n+1)

)
≥ µ′(φ(anx, 0), t) = µ′(φ(x, 0),

t

αn
)

ν
(f(an+1x)

a4(n+1)
− f(anx)

a4n
,

t

a4(n+1)

)
≤ ν′(φ(x, 0),

t

αn
) ,

for all x ∈ X , t > 0 , and n ≥ 0 . Now, switching t by αnt in the previous inequali-
ties, we have

µ
(f(an+1x)

a4(n+1)
− f(anx)

a4n
,

1
a4

(
α

a4
)nt

)
≥ µ′(φ(x, 0), t) ,

ν
(f(an+1x)

a4(n+1)
− f(anx)

a4n
,

1
a4

(
α

a4
)nt

)
≤ ν′(φ(x, 0), t) ,

for all x ∈ X , t > 0 , and n ≥ 0 . Then

µ
(f(anx)

a4n
− f(x),

n−1∑
k=0

1
a4

(
α

a4
)kt

)
= µ

( n−1∑
k=0

(
f(ak+1x)
a4(k+1)

− f(akx)
a4k

),
n−1∑
k=0

1
a4

(
α

a4
)kt

)
≥

n−1∏
k=0

µ
(f(ak+1x)

a4(k+1)
− f(akx)

a4k
,

1
a4

(
α

a4
)kt

)
≥ µ′(φ(x, 0), t) ,

and

ν
(f(anx)

a4n
− f(x),

n−1∑
k=0

1
a4

(
α

a4
)kt

)
= ν

( n−1∑
k=0

(
f(ak+1x)
a4(k+1)

− f(akx)
a4k

),
n−1∑
k=0

1
a4

(
α

a4
)kt

)
≤

n−1∐
k=0

ν
(f(ak+1x)

a4(k+1)
− f(akx)

a4k
,

1
a4

(
α

a4
)kt

)
≤ ν′(φ(x, 0), t) ,

for all x ∈ X , t > 0 , and n ≥ 1 , where
∏n

j=1 aj = a1 ∗ · · · ∗ an and
∐n

j=1 aj =
a1♦ · · ·♦an . For any integer s ≥ 0 , replacing x with asx in the previous inequali-
ties, we have

µ
(
a4s[

f(an+sx)
a4(n+s)

− f(asx)
a4s

],
n−1∑
k=0

1
a4

(
α

a4
)kt

)
≥ µ′(φ(asx, 0), t) ,

and

ν
(
a4s[

f(an+sx)
a4(n+s)

− f(asx)
a4s

],
n−1∑
k=0

1
a4

(
α

a4
)kt

)
≤ ν′(φ(asx, 0), t) ,

that is,

µ
(f(an+sx)

a4(n+s)
− f(asx)

a4s
,

1
a4s

n−1∑
k=0

1
a4

(
α

a4
)kt

)
≥ µ′(φ(x, 0),

t

αs
) ,
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and

µ
(f(an+sx)

a4(n+s)
− f(asx)

a4s
,

1
a4s

n−1∑
k=0

1
a4

(
α

a4
)kt

)
≥ µ′(φ(x, 0),

t

αs
) ,

for all x ∈ X , t > 0 , n ≥ 0 , and s ≥ 0 . Now, switching t by αst , we get

µ
(f(an+sx)

a4(n+s)
− f(asx)

a4s
,

1
a4s

n−1∑
k=0

αs

a4
(

α

a4
)kt

)
= µ

(f(an+sx)
a4(n+s)

− f(asx)
a4s

,
n+s−1∑

k=s

1
a4

(
α

a4
)kt

)
≥ µ′(φ(x, 0), t) ,

and

ν
(f(an+sx)

a4(n+s)
− f(asx)

a4s
,

1
a4s

n−1∑
k=0

αs

a4
(

α

a4
)kt

)
= ν

(f(an+sx)
a4(n+s)

− f(asx)
a4s

,
n+s−1∑

k=s

1
a4

(
α

a4
)kt

)
≤ ν′(φ(x, 0), t) ,

for all x ∈ X , t > 0 , n ≥ 0 , and s ≥ 0 . By putting t with tPn+s−1
k=s

1
a4 ( α

a4 )k
, we have

(2.10) µ
(f(an+sx)

a4(n+s)
− f(asx)

a4s
, t

)
≥ µ′(φ(x, 0),

t∑n+s−1
k=s

1
a4 ( α

a4 )k
) ,

and

(2.11) ν
(f(an+sx)

a4(n+s)
− f(asx)

a4s
, t

)
≤ ν′(φ(x, 0),

t∑n+s−1
k=s

1
a4 ( α

a4 )k
) ,

for all x ∈ X , t > 0 , n ≥ 0 , and s ≥ 0 . Since 0 < α < a4 ,
∑∞

k=0

(
α
a4

)k

< ∞ . Hence

limt→∞ µ′(φ(x, 0), tPn+s−1
k=s

1
a4 ( α

a4 )k
) = 1 , and limt→∞ ν′(φ(x, 0), tPn+s−1

k=s
1

a4 ( α
a4 )k

) =

0 . Let ε > 0 and δ > 0 . Then there exists a t0 > 0 such that
µ′(φ(x, 0), t0Pn+s−1

k=s
1

a4 ( α
a4 )k

) ≥ 1 − ε , and ν′(φ(x, 0), t0Pn+s−1
k=s

1
a4 ( α

a4 )k
) ≤ ε . Since∑∞

k=0
t0
a4

(
α
a4

)k

< ∞ , there exists a n0 ∈ N such that
∑n+s−1

k=s
t0
a4

(
α
a4

)k

< δ , for

all n + s > s ≥ n0 . Hence the sequence
(

f(anx)
a4n

)
is a Cauchy sequence in (Y, µ, ν) .

Since (Y, µ, ν) is a Banach space, the sequence
(

f(anx)
a4n

)
converges. Hence we can

define a function Q : X → Y by

Q(x) = lim
n→∞

f(anx)
a4n

,

for all x ∈ X . Letting s = 0 in the inequalities (2.10) and (2.11), we have

µ
(f(anx)

a4n
− f(x), t

)
≥ µ′(φ(x, 0),

t∑n−1
k=0

1
a4 ( α

a4 )k
) ,

and

ν
(f(anx)

a4n
− f(x), t

)
≤ ν′(φ(x, 0),

t∑n−1
k=0

1
a4 ( α

a4 )k
) ,
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for all t > 0 and n > 0 . Hence we have

µ(Q(x)− f(x), t) = µ(Q(x)− f(anx)
a4n

+
f(anx)

a4n
− f(x),

t

2
+

t

2
)

≥ µ
(
Q(x)− f(anx)

a4n
,
t

2

)
∗ µ

(f(anx)
a4n

− f(x),
t

2

)
≥ µ′

(
φ(x, 0),

1
2

t∑n−1
k=0

1
a4

(
α
a4

)k

)
,

and

ν(Q(x)− f(x), t) = ν(Q(x)− f(anx)
a4n

+
f(anx)

a4n
− f(x),

t

2
+

t

2
)

≤ ν
(
Q(x)− f(anx)

a4n
,
t

2

)
∗ ν

(f(anx)
a4n

− f(x),
t

2

)
≤ ν′

(
φ(x, 0),

1
2

t∑n−1
k=0

1
a4

(
α
a4

)k

)
,

that is,

µ(Q(x)− f(x), t) ≥ µ′(φ(x, 0),
1
2
(a4 − α)t) ,

and

ν(Q(x)− f(x), t) ≤ ν′(φ(x, 0),
1
2
(a4 − α)t) ,

as n →∞ . Respectively, replacing x , y , and t by anx , any , and a4nt in inequalities
(2.3) and (2.4), we have

µ
(Daf(anx, any)

a4n
, t

)
≥ µ′(φ(anx, any), a4nt) ,

and

ν
(Daf(anx, any)

a4n
, t

)
≤ ν′(φ(anx, any), a4nt) ,

for all x ∈ X , t > 0 , and n ∈ N . Since limn→∞ µ′(φ(anx, any), a4nt) = 1 and
limn→∞ ν′(φ(anx, any), a4nt) = 0 , the mapping Q : X → Y satisfies the equation
(1.3), that is, it is the Euler-Lagrange type quartic mapping. It only remains to
show that the mapping Q : X → Y is unique. Assume Q′ : X → Y is another
Euler-Lagrange type quartic mapping satisfying the inequalities (2.5) and (2.6). It
is easy to show that Q(anx) = a4nQ(x) and Q′(anx) = a4nQ′(x) , for all n ∈ N .

µ
(
Q(x)−Q′(x), t

)
= µ

(Q(anx)
a4n

− Q′(anx)
a4n

, t
)

≥ µ
(Q(anx)

a4n
− f(anx)

a4n
,
t

2

)
∗ µ

(f(anx)
a4n

− Q′(anx)
a4n

,
t

2

)
≥ µ′

(
φ(anx, 0),

a4n(a4 − α)
4

t
)
≥ µ′

(
φ(x, 0),

a4 − α

4

(a4

α

)n

t
)

,

and

ν
(
Q(x)−Q′(x), t

)
≤ ν′

(
φ(x, 0),

a4 − α

4

(a4

α

)n

t
)

,
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for all x ∈ X and all t > 0 . Since limn→∞

(
a4

α

)n

= ∞ ,

lim
n→∞

µ′
(
φ(x, 0),

a4 − α

4

(a4

α

)n

t
)

= 1 and lim
n→∞

ν′
(
φ(x, 0),

a4 − α

4

(a4

α

)n

t
)

= 0 .

Hence
µ
(
Q(x)−Q′(x), t

)
= 1 and ν

(
Q(x)−Q′(x), t

)
= 0 ,

for all x ∈ X and all t > 0 . We may conclude that Q(x) = Q′(x) , for all x ∈ X ,
that is, the mapping Q : X → Y is unique, as desired. �

Theorem 2.2. Let a be an integer with a 6= 0, ±1 , and let X be a linear space and
let (Z, µ′, ν′) be an intuitionistic fuzzy normed space(IFNS). Let φ : X ×X → Z be
a function such that for some α > a4

(2.12) µ′(φ(
x

a
, 0), t) ≥ µ′(φ(x, 0), αt) and ν′(φ(

x

a
, 0), t) ≤ ν′(φ(x, 0), αt) ,

and limn→∞ µ′(φ(a−nx, a−ny), a−4nt) = 1 and limn→∞ ν′(φ(a−nx, a−ny), a−4nt) =
0 , for all x, y ∈ X and t > 0 . Suppose (Y, µ, ν) is an intuitionistic fuzzy Banach
space and f : X → Y is a φ-approximately mapping with f(0) = 0 satisfying the
inequalities (2.3) and (2.4). Then there exists a unique Euler-Lagrange type quartic
mapping Q : X → Y such that

(2.13) µ(Q(x)− f(x), t) ≥ µ′(φ(x, 0),
(α− a4)

2
t) ,

and

(2.14) ν(Q(x)− f(x), t) ≤ ν′(φ(x, 0),
(α− a4)

2
t) ,

for all x ∈ X and all t > 0 .

Proof. Letting x = x
a in inequalities (2.7) of proof of Theorem 2.1, we have

(2.15)
µ(f(x)− a4f(

x

a
), t) ≥ µ′(φ(x, 0), αt) and ν(f(x)− a4f(

x

a
), t) ≤ ν′(φ(x, 0), αt) ,

for all x ∈ X and t > 0 . Similar to the proof of Theorem 2.1, we can deduce

(2.16) µ
(
a4(n+s)f(a−(n+s)x)− a4sf(a−sx), t

)
≥ µ′(φ(x, 0),

t∑n+s−1
k=s

a4k

αk+1

) ,

and

(2.17) ν
(
a4(n+s)f(a−(n+s)x)− a4sf(a−sx), t

)
≤ ν′(φ(x, 0),

t∑n+s−1
k=s

a4k

αk+1

) ,

for all x ∈ X , t > 0 , and s ≥ 0 and n ≥ 0 . Since α > a4 and
∑∞

k=0

(
a4

α

)k

< ∞ ,

the Cauchy criterion for convergence in IFNS implies that
(
a4nf( x

an )
)

is a Cauchy
sequence in the Banach space (Y, µ, ν) . A function Q : X → Y by

Q(x) = lim
n→∞

a4nf(
x

an
) ,

for all x ∈ X . Also, letting s = 0 and taking n →∞ in the inequalities (2.16) and
(2.17), we have the inequalities (2.13) and (2.14). The remains follows from the
proof of Theorem 2.1. �
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3. Intutionistic fuzzy continuity

Throughout this section, let (X, || · ||) be a normed space. In [13], they defined
and studied the intuitionistic fuzzy continuity. In this section, we will investigate
interesting results of continuous approximately Euler-Lagrange type quartic map-
pings. Before proceeding the proof, we will state the definition of intuitionistic
fuzzy continuity as follows.

Definition 3.1. [ [14, Definition 3.1]] Let f : R → X be a function, where R is
endowed with the Euclidean topology and X is an intuitionistic fuzzy normed space
equipped with intuitionistic fuzzy norm (µ , ν) . Them f is called intuitionistic fuzzy
continuous at a point s0 ∈ R if for all ε > 0 and all 0 < α < 1 there exists δ > 0
such that for each s with 0 < |s− s0| < δ

µ(f(sx)− f(s0x), ε) ≥ α and ν(f(sx)− f(s0x), ε) ≤ 1− α .

Theorem 3.2. Let a be an integer with a 6= 0, ±1 ,and let X be a normed space
and (Z, µ′, ν′) be an IFNS. Let (Y, µ, ν) be an intuitionistic fuzzy Banach space and
f : X → Y be a (p, q)-approximately mapping with f(0) = 0 in the sense that for
some p, q and some z0 ∈ Z

(3.1) µ
(
Daf(x, y), t

)
≥ µ′((||x||p + ||y||q)z0, t)

and

(3.2) ν
(
Daf(x, y), t

)
≤ ν′((||x||p + ||y||q)z0, t)

for all t > 0 and all x, y ∈ X . If p, q < 4 , then there exists a unique Euler-Lagrange
type quartic mapping Q : X → Y such that

(3.3) µ(C(x)− f(x), t) ≥ µ′(||x||pz0,
1
2
(a4 − |a|p)t) ,

and

(3.4) ν(C(x)− f(x), t) ≤ ν′(||x||pz0,
m2

2
(a4 − |a|p)t) ,

for all x ∈ X and all t > 0 . Furthermore, if for some x ∈ X and all n ∈ N , the
mapping g : R → Y defined by g(s) = f(ansx) is intuitionistic fuzzy continuous,
then the mappings s 7→ Q(sx) from R to Y is intuitionistic fuzzy continuous.

Proof. For x, y ∈ X and for some z0 ∈ Z , we define the function φ : X ×X → Z
by φ(x, y) = (||x||p + ||y||q)z0 in Theorem 2.1. Since p < 4 , we have α = |a|p < a4 .
Hence Theorem 2.1 implies the existence and uniqueness of the Euler-Lagrange
type quartic mapping Q : X → Y satisfying inequalities (3.3) and (3.4). Now, we
will show the intuitionistic fuzzy continuity. For each x ∈ X , t ∈ R and n ∈ N , we
have

µ(Q(x)− f(anx)
a4n

, t) = µ(
Q(anx)

a4n
− f(anx)

a4n
, t) = µ(Q(anx)− f(anx), a4nt)

≥ µ′(|a|np||x||pz0,
a4n

2
(a4 − |a|p)t) = µ′(||x||pz0,

a4n(a4 − |a|p)
2 · |a|np

t) ,

and

ν(Q(x)− f(anx)
a4n

, t) ≤ ν′(||x||pz0,
a4n(a4 − |a|p)

2 · |a|np
t) .

1092



EULER-LAGRANGE TYPE QUARTIC MAPPINGS 9

Let x ∈ X and s0 ∈ R be fixed and ε > 0 and 0 < β < 1 be given. For all s ∈ R
with |s− s0| < 1 , by replacing x with sx in the previous inequalities,

µ(Q(sx)− f(ansx)
a4n

, t) ≥ µ′(||sx||pz0,
a4n(a4 − |a|p)

2 · |a|np
t)

≥ µ′(||x||pz0,
a4n(a4 − |a|p)

2 · |a|np(1 + |s0|)p
t) ,

and

ν(Q(sx)− f(ansx)
a4n

, t) ≤ ν′(||x||pz0,
a4n(a4 − |a|p)

2 · |a|np(1 + |s0|)p
t) .

Since ap < a4 , we have

lim
n→∞

a4n(a4 − |a|p)
2 · |a|np(1 + |s0|)p

= ∞ .

Hence there exists n0 ∈ N such that

µ
(
Q(sx)− f(an0sx)

a4n0
,
ε

3

)
≥ β and ν

(
Q(sx)− f(an0sx)

a4n0
,
ε

3

)
≤ 1− β ,

for all |s − s0| < 1 and s ∈ R . The intuitionistic fuzzy continuity of the mapping
t 7→ f(an0tx) implies that there exists δ < 1 such that for each s with 0 < |s−s0| <
δ , we get

µ(
f(an0sx)

a4n0
− f(an0s0x)

a4n0
,
ε

3
) ≥ β and ν(

f(an0sx)
a4n0

− f(an0s0x)
a4n0

,
ε

3
) ≤ 1− β .

Thus

µ(Q(sx)−Q(s0x), ε) ≥ µ(Q(sx)− f(an0sx)
a4n0

,
ε

3
) ∗

µ(
f(an0sx)

a4n0
− f(an0s0x)

a4n0
,
ε

3
) ∗ µ(Q(s0x)− f(an0s0x)

a4n0
,
ε

3
) ≥ β

and
ν(Q(sx)−Q(s0x), ε) ≤ 1− β ,

for all s ∈ R with 0 < |s− s0| < δ , that is, the mapping s 7→ Q(sx) is intuitionistic
fuzzy continuous. �

Theorem 3.3. Let a be an integer with a 6= 0, ±1 , and let X be a normed space
and (Z, µ′, ν′) be an IFNS. Let (Y, µ, ν) be an intuitionistic fuzzy Banach space
and f : X → Y be a (p, q)-approximately mapping with f(0) = 0 satisfying (3.1)
and (3.2) for some p, q and some z0 ∈ Z . If p, q > 4 , then there exists a unique
Euler-Lagrange type quartic mapping Q : X → Y such that

(3.5) µ(Q(x)− f(x), t) ≥ µ′(||x||pz0,
1
2
(|a|p − a4)t) ,

and

(3.6) ν(Q(x)− f(x), t) ≤ ν′(||x||pz0,
1
2
(|a|p − a4)t) ,

for all x ∈ X and all t > 0 . Furthermore, if for some x ∈ X and all n ∈ N , the
mapping g : R → Y defined by g(s) = f(ansx) is intuitionistic fuzzy continuous,
then the mappings s 7→ Q(sx) from R to Y is intuitionistic fuzzy continuous.
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Proof. Similar to the proof of Theorem 3.2, we may define the function φ : X×X →
Z by φ(x, y) = (||x||p + ||y||q)z0 . Then we have

µ′(φ(
x

2
, 0), t) = µ′(||x||pz0, |a|pt) and ν′(φ(

x

2
, 0), t) = ν′(||x||pz0, |a|pt) ,

for all x ∈ X and all t > 0 . Since p > 4 , we have α = |a|p > a4 . Hence Theorem 2.2
implies the existence and uniqueness of the Euler-Lagrange type quartic mapping
Q : X → Y satisfying inequalities (3.5) and (3.6). The remains follow from the
proof of Theorem 3.2. �
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STABILITY FOR AN n-DIMENSIONAL FUNCTIONAL EQUATION OF

QUADRATIC-ADDITIVE TYPE WITH THE FIXED POINT APPROACH

ICK-SOON CHANG AND YANG-HI LEE

Abstract. In this paper, we investigate the stability of a functional equation∑
1≤i,j≤n,i̸=j

[f(xi + xj) + f(xi − xj)] − (n − 1)

n∑
j=1

f(2xj) = 0

by using the fixed point methd in the sense of Cădariu and Radu.

1. Introduction and peliminaries

It is of interest to consider the concept of stability for a functional equation arising when we replace
the functional equation by an inequality which acts as a perturbation of the equation. The study of
stability problems had been formulated by Ulam [17] during a talk : under what condition does there exists
a homomorphism near an approximate homomorphism ? In the following year, Hyers [6] was answered
affirmatively the question of Ulam for Banach spaces, which states that if ε ≥ 0 and f : X → Y is a
mapping with X a normed space, Y a Banach space such that

||f(x+ y)− f(x)− f(y)|| ≤ ε (1.1)

for all x, y ∈ X , then there exists a unique additive mapping T : X → Y such that

||f(x)− T (x)|| ≤ ε

for all x ∈ X . A generalized version of the theorem of Hyers for approximately additive mappings was given
by Aoki [1] and for the theorem of Hyers for approximately linear mappings it was presented by Rassias
[15] by considering the case when the inequality (1.1) is unbounded. Since then, more generalizations and
applications of the stability to a number of functional equations and mappings have been investigated (for
example, [5], [7], [8]-[14]).

In this very active area, almost all subsequent proofs have used the method of Hyers [6]. On the other
hand, Cădariu and Radu [2] observed that the existence of the solution for a functional equation and the
estimation of the difference with the given mapping can be obtained from the fixed point alternative. This
method is called a fixed point method. In particular, they [3, 4] applied this method to prove the stability
theorems of the additive functional equation

f(x+ y)− f(x)− f(y) = 0. (1.2)

and the quadratic functional equation

f(x+ y) + f(x− y)− 2f(x)− 2f(y) = 0. (1.3)

Note that the additive mapping f1(x) = ax and quadratic mapping f2(x) = ax2 are solution of the functional
equations (1.2) and (1.3).

We now take account of the functional equation :∑
1≤i,j≤n,i ̸=j

[f(xi + xj) + f(xi − xj)]− (n− 1)

n∑
j=1

f(2xj) = 0. (1.4)
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Keywords and phrases : stability : fixed point method : n-dimensional quadratic-additive type functional equation. The

first author was supported by Basic Science Research Program through the National Research Foundation of Korea (NRF)
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2 I.-S. CHANG AND Y.-H. LEE

Hence, throughout this paper, we promise that the equation (1.4) is said to be an quadratic-additive type
functional equation and every solution of the equation (1.4) is called a quadratic-additive mapping.

In this paper, we will deal with the stability of the functional equation (1.4) by using the fixed point
method : The stability of (1.4) can be obtained by handling the odd part and the even part of the given
mapping. But, in violation of this processing, we can take the desired solution at once instead of splitting
the given mapping into two parts.

Here and now, we recall the following result of the fixed point theory by Margolis and Diaz :

Theorem 1.1. (The alternative of fixed point) ([14] or [16]) Suppose that a complete generalized metric
space (X, d), which means that the metric d may assume infinite values, and a strictly contractive mapping
J : X → X with the Lipschitz constant 0 < L < 1 are given. Then, for each given element x ∈ X, either

d(Jnx, Jn+1x) = +∞, ∀n ∈ N ∪ {0},
or there exists a nonnegative integer k such that :

(1) d(Jnx, Jn+1x) < +∞ for all n ≥ k ;
(2) the sequence {Jnx} is convergent to a fixed point y∗ of J ;
(3) y∗ is the unique fixed point of J in Y := {y ∈ X, d(Jkx, y) < +∞} ;
(4) d(y, y∗) ≤ (1/(1− L))d(y, Jy) for all y ∈ Y.

2. A general fixed point method

Throughout this paper, let V be a real or complex linear space and Y a Banach space. For a given
mapping f : V → Y, we use the following abbreviation

f(x1, x2, · · · , xn) :=
∑

1≤i,j≤n,i̸=j

[f(xi + xj) + f(xi − xj)]− (n− 1)

n∑
j=1

f(2xj)

for all x1, x2, · · · , xn ∈ V. Now we can prove some stability results of the functional equation (1.4).

Theorem 2.1. Let φ : V n → [0,∞) be a given function with φ(x, 0, · · · , 0) = φ(−x, 0, · · · , 0) for all x ∈ V.
Suppose that the mapping f : V → Y satisfies

∥Df(x1, x2, · · · , xn)∥ ≤ φ(x1, x2, · · · , xn) (2.1)

for all x1, x2, · · · , xn ∈ V with f(0) = 0. If there exists a constant 0 < L < 1 such that φ has the property

φ(2x1, 2x2, · · · , 2xn) ≤ 2Lφ(x1, x2, · · · , xn) (2.2)

for all x1, x2, · · · , xn ∈ V, then there exists a unique quadratic-additive mapping F : V → Y such that

∥f(x)− F (x)∥ ≤ φ(x, 0, · · · , 0)
2(n− 1)(1− L)

(2.3)

for all x ∈ V. In particular, F is given by

F (x) = lim
m→∞

(
f(2mx) + f(−2mx)

2 · 22m +
f(2mx)− f(−2mx)

2 · 2m

)
(2.4)

for all x ∈ V.

Proof. Consider the set
S := {g : g : V → Y, g(0) = 0}

and introduce a generalized metric on S by

d(g, h) = inf
{
K ∈ ℝ

∣∣∥g(x)− h(x)∥ ≤ Kφ(x, 0, · · · , 0) for all x ∈ V
}
.

It is easy to see that (S, d) is a generalized complete metric space.
Now we define a mapping J : S → S by

Jg(x) :=
g(2x)− g(−2x)

4
+
g(2x) + g(−2x)

8
for all x ∈ V. Note that

Jmg(x) =
g(2mx)− g(−2nx)

2m+1
+
g(2mx) + g(−2mx)

2 · 4m
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STABILITY FOR AN n-DIMENSIONAL FUNCTIONAL EQUATION OF QUADRATIC-ADDITIVE TYPE 3

for all m ∈ N and x ∈ V. Let g, h ∈ S and let K ∈ [0,∞] be an arbitrary constant with d(g, h) ≤ K. From
the definition of d, we have

∥Jg(x)− Jh(x)∥ ≤
∥∥∥∥3(g(2x)− h(2x))

8

∥∥∥∥+

∥∥∥∥g(−2x)− h(−2x)

8

∥∥∥∥
≤Kφ(2x, 0, · · · , 0)

2
≤KLφ(x, 0, · · · , 0)

for all x ∈ V, which implies that d(Jg, Jh) ≤ Ld(g, h) for any g, h ∈ S. That is, J is a strictly contractive
self-mapping of S with the Lipschitz constant L. Moreover, by (2.1), we see that

∥f(x)− Jf(x)∥ =
1

n− 1

∥∥∥3
8
Df(x, 0, · · · , 0)− 1

8
Df(−x, 0, · · · , 0)

∥∥∥ ≤ φ(x, 0, · · · , 0)
2(n− 1)

for all x ∈ V. It means that d(f, Jf) ≤ 1
2(n−1)

< ∞ by the definition of d. Therefore, according to

Theorem 1.1, the sequence {Jmf} converges to the unique fixed point F : V → Y of J in the set
T = {g ∈ S : d(f, g) <∞}, which is given by (2.4) for all x ∈ V.

Observe that

d(f, F ) ≤ 1

1− L
d(f, Jf) ≤ 1

2(n− 1)(1− L)
,

which implies (2.3).
By the definition of F, together with (2.1) and (2.4) that

∥DF (x1, x2, · · · , xn)∥

= lim
m→∞

∥∥∥Df(2mx1, 2mx2, · · · , 2mxn)−Df(−2mx1,−2mx2, · · · ,−2mxn)

2m+1

+
Df(2mx1, 2

mx2, · · · , 2mxn) +Df(−2mx1,−2mx2, · · · ,−2mxn)

2 · 4m
∥∥∥

≤ lim
m→∞

2m + 1

2 · 4m (φ(2mx1, · · · , 2mxn) + φ(−2mx1, · · · ,−2mxn))

=0

for all x1, x2, · · · , xn ∈ V, which completes the proof. �
We continue our investigation with the following result.

Theorem 2.2. Let φ : V n → [0,∞) with φ(x, 0, · · · , 0) = φ(−x, 0, · · · , 0) for all x, y ∈ V. Suppose that
f : V → Y satisfies the inequality (2.1) for all x1, x2, · · · , xn ∈ V with f(0) = 0. If there exists 0 < L < 1
such that the mapping φ has the property

φ(2x1, 2x2, · · · , 2xn) ≥ 4φ(x1, x2, · · · , xn) (2.5)

for all x1, x2, · · · , xn ∈ V, then there exists a unique quadratic-additive mapping F : V → Y such that

∥f(x)− F (x)∥ ≤ Lφ (x, 0, · · · , 0)
4(n− 1)(1− L)

(2.6)

for all x ∈ V. In particular, F is represented by

F (x) = lim
m→∞

(
2m−1

(
f
( x

2m

)
− f

(
− x

2m

))
+

4m

2

(
f
( x

2m

)
+ f

(
− x

2m

)))
(2.7)

for all x ∈ V.

Proof. Let the set (S, d) be as in the proof of Theorem 2.1. Now we consider the mapping J : S → S
defined by

Jg(x) := g
(x
2

)
− g

(
−x
2

)
+ 2

(
g
(x
2

)
+ g

(
−x
2

))
for all g ∈ S and x ∈ V. We remark that

Jmg(x) = 2m−1
(
g
( x

2m

)
− g

(
− x

2m

))
+

4m

2

(
g
( x

2m

)
+ g

(
− x

2m

))
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and J0g(x) = g(x) for all x ∈ V. Let g, h ∈ S and let K ∈ [0,∞] be an arbitrary constant with d(g, h) ≤ K.
From the definition of d, we have

∥Jg(x)− Jh(x)∥ ≤ 3
∥∥∥g (x

2

)
− h

(x
2

)∥∥∥+
∥∥∥g (−x

2

)
− h

(
−x
2

)∥∥∥
≤ 4Kφ

(x
2
, 0, · · · , 0

)
≤ LKφ (x, 0, · · · , 0)

for all x ∈ V. So we find that J is a strictly contractive self-mapping of S with the Lipschitz constant L.
Also, we see that

∥f(x)− Jf(x)∥ =
1

n− 1

∥∥∥−Df (x
2
, 0, · · · , 0

)∥∥∥
≤ 1

n− 1
φ
(x
2
, 0, · · · , 0

)
≤ L

4(n− 1)
φ (x, 0, · · · , 0)

for all x ∈ V, which implies that d(f, Jf) ≤ L
4(n−1)

< ∞. Therefore, according to Theorem 1.1, the

sequence {Jmf} converges to the unique fixed point F of J in the set T := {g ∈ S : d(f, g) < ∞}, which
is represented by (2.7).

Since

d(f, F ) ≤ 1

1− L
d(f, Jf) ≤ L

4(n− 1)(1− L)

the inequality (2.6) holds.
From the definition of F, (2.1), and (2.5), we have

∥DF (x1, x2, · · · , xn)∥

= lim
m→∞

∥∥∥2m−1
(
Df

( x1
2m

,
x2
2m

, · · · , xn
2m

)
−Df

(
− x1
2m

,− x2
2m

, · · · ,− xn
2m

))
+

4m

2

(
Df

( x1
2m

,
x2
2m

, · · · , xn
2m

)
+Df

(
− x1
2m

,− x2
2m

, · · · ,− xn
2m

))∥∥∥
≤ lim

m→∞

(
2m−1 +

4m

2

)(
φ
( x1
2m

,
x2
2m

, · · · , xn
2m

)
+ φ

(
− x1
2m

,− x2
2m

, · · · ,− xn
2m

))
=0

for all x1, x2, · · · , xn ∈ V. This completes the proof. �

3. Applications

For the sake of convenience, given a mapping f : V → Y, we set

Af(x, y) := f(x+ y)− f(x)− f(y)

for all x, y ∈ V.

Corollary 3.1. Let fk : V → Y, k = 1, 2, be mappings for which there exist functions ϕk : V 2 → [0,∞), k =
1, 2, such that

∥Afk(x, y)∥ ≤ ϕk(x, y) (3.1)

for all x, y ∈ V. If fk(0) = 0, ϕk(0) = 0, ϕk(x, y) = ϕk(−x,−y), k = 1, 2, for all x, y ∈ V and there exists
0 < L < 1 such that

ϕ1(2x, 2y) ≤ 2Lϕ1(x, y), (3.2)

4ϕ2(x, y) ≤ Lϕ2(2x, 2y) (3.3)

for all x, y ∈ V, then there exist unique additive mappings Fk : V → Y, k = 1, 2, such that

∥f1(x)− F1(x)∥ ≤ ϕ1(x, x) + ϕ1(x,−x)
2(1− L)

, (3.4)

∥f2(x)− F2(x)∥ ≤ L(ϕk(x, x) + ϕk(x,−x))
4(1− L)

(3.5)
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for all x ∈ V. In particular, the mappings F1, F2 are represented by

F1(x) = lim
m→∞

f1(2
mx)

2m
, (3.6)

F2(x) = lim
m→∞

2mf2
( x

2m

)
(3.7)

for all x ∈ V.

Proof. Now we note that

Dfk(x1, x2, · · · , xn) =
∑

1≤i,j≤n,i̸=j

Ak(xi + xj , xi − xj)

for all x1, x2, · · · , xn ∈ V and k = 1, 2. Put

φk(x1, x2, · · · , xn) :=
∑

1≤i,j≤n,i̸=j

ϕk(xi + xj , xi − xj)

for all x1, x2, · · · , xn ∈ V and k = 1, 2, then

∥Dfk(x1, x2, · · · , xn)∥ ≤ φk(x1, x2, · · · , xn)
and φ1 and φ2 satisfies (2.2) and (2.5), respectively. According to Theorem 2.1, there exists a unique
mapping F1 : V → Y satisfying (3.4), which is represented by (2.4).

Observe that, by (3.1) and (3.2),

lim
m→∞

∥∥∥∥f1(2mx) + f1(−2mx)

2m+1

∥∥∥∥ = lim
m→∞

1

2m+1
∥Af1(2mx,−2mx)∥

≤ lim
m→∞

1

2m+1
ϕ1(2

mx,−2mx)

≤ lim
m→∞

Lm

2
ϕ1(x,−x) = 0

as well as

lim
m→∞

∥∥∥∥f1(2mx) + f1(−2mx)

2 · 4m

∥∥∥∥ ≤ lim
m→∞

2mLm

2 · 4m ϕ1(x,−x) = 0

for all x ∈ V. From these and (2.4), we get (3.6).
Moreover, we have ∥∥∥∥Af1(2mx, 2my)2m

∥∥∥∥ ≤ ϕ1(2
mx, 2my)

2m
≤ Lmϕ1(x, y)

for all x, y ∈ V. Taking the limit as m → ∞ in the above inequality, we get AF1(x, y) = 0 for all x, y ∈ V.
On the other hand, according to Theorem 2.4, there exists a unique mapping F2 : V → Y satisfying (3.5),
which is represented by (2.7).

Observe that, by (3.1) and (3.3),

lim
m→∞

22m−1
∥∥∥f2 ( x

2m

)
+ f2

(−x
2m

)∥∥∥ = lim
m→∞

22m−1
∥∥∥Af2 ( x

2m
,− x

2m

)∥∥∥
≤ lim

m→∞
22m−1ϕ2

( x

2m
,− x

2m

)
≤ lim

m→∞

Lm

2
ϕ2(x,−x) = 0

as well as

lim
m→∞

2m−1
∥∥∥f2 ( x

2m

)
+ f2

(−x
2m

)∥∥∥ ≤ lim
m→∞

Lm

2m+1
ϕ2(x,−x) = 0

for all x ∈ V. From these and (2.5), we get (3.10). Moreover, we have∥∥∥2mAf2 ( x

2m
,
y

2m

)∥∥∥ ≤ 2mϕ2

( x

2m
,
y

2m

)
≤ Lm

2m
ϕ2(x, y)

for all x, y ∈ V. Taking the limit as m→ ∞ in the above inequality, we get

AF2(x, y) = 0

for all x, y ∈ V. This completes the proof. �
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Corollary 3.2. Let fk : V → Y, k = 1, 2, be mappings for which there exist functions ϕk : V 2 → [0,∞), k =
1, 2, such that

∥Qfk(x, y)∥ ≤ ϕk(x, y)

for all x, y ∈ V. If fk(0) = 0, ϕk(0) = 0, ϕk(x, y) = ϕi(−x,−y), k = 1, 2, for all x, y ∈ V, and there exists
0 < L < 1 such that the mapping ϕ1 satisfies (3.2) and ϕ2 satisfies (3.3) for all x, y ∈ V, then there exist
unique quadratic mappings Fk : V → Y, k = 1, 2, such that

∥f1(x)− F1(x)∥ ≤ ϕ1(x, x) + ϕ1(x,−x) + 3ϕ1(x, 0) + ϕ1(0,−x)
4(1− L)

, (3.8)

∥f2(x)− F2(x)∥ ≤ L(ϕ2(x, x) + ϕ2(x,−x) + 3ϕ2(x, 0) + ϕ2(0,−x))
8(1− L)

(3.9)

for all x ∈ V. In particular, the mappings Fk, k = 1, 2, are represented by

F1(x) = lim
m→∞

f1(2
mx)

4m
, (3.10)

F2(x) = lim
m→∞

4mf2
( x

2m

)
(3.11)

for all x ∈ V.

Proof. Notice that

Dfk(x1, · · · , xn) =
1

2

∑
1≤i,j≤n,i ̸=j

(Qk(xi, xj) +Qk(xi,−xj))

− n− 1

2

n∑
i=1

(Qk(xi, xi) +Qk(xi,−xi))

for all x1, x2, · · · , xn ∈ V and k = 1, 2. Put

φk(x1, · · · , xn) =
1

2

∑
1≤i,j≤n,i ̸=j

(ϕk(xi, xj) + ϕk(xi,−xj))

+
n− 1

2

n∑
i=1

(ϕk(xi, xi) + ϕk(xi,−xi))

for all x1, x2, · · · , xn ∈ V and k = 1, 2, then φ1 satisfies (2.2) and φ2 satisfies (2.5). Moreover,

∥Dfk(x1, x2, · · · , xn)∥ ≤ φk(x1, x2, · · · , xn)

for all x1, x2, · · · , xn ∈ V and k = 1, 2. According to Theorem 2.1, there exists a unique mapping F1 : V →
Y satisfying (3.8) which is represented by (2.4).

Observe that

lim
m→∞

∥∥∥f1(2mx)− f1(−2mx)

2m+1

∥∥∥ = lim
m→∞

1

2m+1

∥∥Qf1(0,−2m−1x)
∥∥

≤ lim
m→∞

1

2m+1
ϕ1(0,−2m−1x)

≤ lim
m→∞

Lm

2

(
ϕ10,−

x

2

)
=0

as well as

lim
m→∞

∥∥∥∥f1(2mx)− f1(−2mx)

2 · 4m

∥∥∥∥ ≤ lim
m→∞

Lm

2m+1
ϕ1

(
0,−x

2

)
= 0

for all x ∈ V. From these and (2.4), we get (3.10) for all x ∈ V.
Moreover, we have ∥∥∥∥Qf1(2mx, 2my)4m

∥∥∥∥ ≤ ϕ1(2
mx, 2my)

4m
≤ Lm

2m
ϕ1(x, y)

for all x, y ∈ V. Taking the limit as m→ ∞ in the above inequality, we get QF1(x, y) = 0 for all x, y ∈ V.
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On the other hand, according to Theorem 2.2, there exists a unique mapping F2 : V → Y satisfying
(3.9) which is represented by (2.7).

Observe that

4m
∥∥∥f2 ( x

2m

)
− f2

(
− x

2m

)∥∥∥ =4m
∥∥∥Qf2 (0,− x

2m+1

)∥∥∥
≤4mϕ2

(
0,− x

2m+1

)
≤Lmϕ2

(
0,−x

2

)
for all x ∈ V. It leads us to get

lim
m→∞

4m
(
f2

( x

2m

)
− f2

(
− x

2m

))
= 0, lim

m→∞
2m

(
f2

( x

2m

)
− f2

(
− x

2m

))
= 0

for all x ∈ V. From these and (2.7), we obtain (3.11).
Moreover, we have ∥∥∥4mQf2 ( x

2m
,
y

2m

)∥∥∥ ≤ 4mϕ2

( x

2m
,
y

2m

)
≤ Lmϕ2(x, y)

for all x, y ∈ V. Taking the limit as m→ ∞ in the above inequality, we get QF2(x, y) = 0 for all x, y ∈ V,
which completes the proof. �

Corollary 3.3. Let X be a normed space and Y a Banach space. Suppose that the mapping f : X → Y
satisfies the inequality

∥Df(x1, x2, · · · , xn)∥ ≤ ∥x1∥p + ∥x2∥p + · · ·+ ∥xn∥p

for all x1, x2, · · · , xn ∈ X, where p ∈ (0, 1)∪ (2,∞). Then there exists a unique quadratic-additive mapping
F : X → Y such that

∥f(x)− F (x)∥ ≤

{
∥x∥p

(n−1)(2p−4)
if p > 2,

∥x∥p
(n−1)(2−2p)

if p < 1

for all x ∈ X.

Proof. This follows from Theorem 2.1 and Theorem 2.2, by putting

φ(x1, x2, · · · , xn) := ∥x1∥p + ∥x2∥p + · · ·+ ∥xn∥p

for all x1, x2, · · · , xn ∈ X with L = 2p−1 < 1 if 0 < p < 1 and L = 22−p < 1 if p > 2. �

Corollary 3.4. Let X be a normd space and Y a Banach space. Suppose that the mapping f : X → Y
satisfies the inequality

∥Df(x1, x2, · · · , xn)∥ ≤ θ∥x1∥p1∥x2∥p2 · · · ∥xn∥pn

for all x1, x2, · · · , xn ∈ X, where θ ≥ 0 and p1, p2, · · · , pn, p1 + p2 + · · · + pn ∈ (0, 1) ∪ (2,∞). Then f is
itself a quadratic additive mapping.

Proof. This follows from Theorem 2.1 and Theorem 2.2, by letting

φ(x1, x2, · · · , xn) := ∥x1∥p1∥x2∥p2 · · · ∥xn∥pn

for all x1, x2, · · · , xn ∈ X with L = 2p−1 < 1 if 0 < p < 1 and L = 22−p < 1 if p > 2. �
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Abstract : We introduce the q-Euler numbers and polynomials. By using these numbers and
polynomials, we investigate the alternating sums of powers of consecutive integers. By applying
the symmetry of the fermionic p-adic q-integral on Zp, we give recurrence identities the q-Euler
polynomials and q-analogue of alternating sums of powers of consecutive integers.
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1. Introduction

Throughout this paper, we always make use of the following notations: C denotes the set of
complex numbers, Zp denotes the ring of p-adic rational integers, Qp denotes the field of p-adic
rational numbers, and Cp denotes the completion of algebraic closure of Qp.

Let νp be the normalized exponential valuation of Cp with |p|p = p−νp(p) = p−1. When one
talks of q-extension, q is considered in many ways such as an indeterminate, a complex number
q ∈ C, or p-adic number q ∈ Cp. If q ∈ C one normally assume that |q| < 1. If q ∈ Cp, we normally
assume that |q − 1|p < p−

1
p−1 so that qx = exp(x log q) for |x|p ≤ 1. For

g ∈ UD(Zp) = {g|g : Zp → Cp is uniformly differentiable function},

the fermionic p-adic q-integral on Zp is defined by Kim as follows:

I−q(g) =
∫

Zp

g(x)dμ−q(x) = lim
N→∞

[2]q
1 + qpN

pN−1
∑

x=0

g(x)(−q)x, see [1-10] . (1.1)

If we take g1(x) = g(x + 1) in (1.1), then we easily see that

qI−q(g1) + I−q(g) = [2]qg(0). (1.2)

For q ∈ Cp with |1 − q|p ≤ 1, the q-Euler polynomials ˜En,q(x) are defined by

˜Fq(x, t) =
∞
∑

n=0

˜En,q(x)
tn

n!
=

[2]q
qet + 1

ext. (1.3)

The q-Euler numbers ˜En,q are defined by the generating function:

˜Fq(t) =
∞
∑

n=0

˜En,q
tn

n!
=

[2]q
qet + 1

. (1.4)

The following elementary properties of the q-Euler numbers ˜En,q and polynomials ˜En,q(x) are readily
derived form (1.1), (1.2), (1.3) and (1.4). We, therefore, choose to omit details involved.
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Theorem 1(Witt formula). For q ∈ Cp with |1 − q|p < 1, we have

˜En,q =
∫

Zp

xndμ−q(x),

˜En,q(x) =
∫

Zp

(x + y)n
dμ−q(y).

Theorem 2. For any positive integer n, we have

˜En,q(x) =
n
∑

k=0

(

n

k

)

˜Ek,qx
n−k.

2. The alternating sums of powers of consecutive q-integers

Let q be a complex number with |q| < 1. By using (1.3), we give the alternating sums of powers
of consecutive q-integers as follows:

∞
∑

n=0

˜En,q
tn

n!
=

[2]q
qet + 1

= [2]q
∞
∑

n=0

(−1)nqnent.

From the above, we obtain

−
∞
∑

n=0

(−1)nqne(n+k)t +
∞
∑

n=0

(−1)n−kqn−kent =
k−1
∑

n=0

(−1)n−kqn−kent.

Thus, we have

− [2]q
∞
∑

n=0

(−1)nqne(n+k)t + [2]q(−1)−kq−k
∞
∑

n=0

(−1)nqnent

= [2]q(−1)−kq−k
k−1
∑

n=0

(−1)nqnent.

(2.1)

By using (1.3)and (1.4), and (2.1), we obtain

−
∞
∑

j=0

˜Ej,q(k)
tj

j!
+ (−1)−kq−k

∞
∑

j=0

˜Ej,q
tj

j!
= [2]q

∞
∑

j=0

(

(−1)−kq−k
k−1
∑

n=0

(−1)nqnnj

)

tj

j!
.

By comparing coefficients of
tj

j!
in the above equation, we obtain

k−1
∑

n=0

(−1)nqnnj =
(−1)k+1qk

˜Ej,q(k) + ˜Ej,q

[2]q
.

By using the above equation we arrive at the following theorem:

Theorem 3. Let k be a positive integer and q ∈ C with |q| < 1. Then we obtain

˜Tj,q(k − 1) =
k−1
∑

n=0

(−1)nqnnj =
(−1)k+1qk

˜Ej,q(k) + ˜Ej,q

[2]q
.

Remark 4. Let k be a positive integer and q ∈ C with |q| < 1. Then we have

lim
q→1

˜Tj,q(k − 1) =
k−1
∑

n=0

(−1)nnj =
(−1)k+1Ej(k) + Ej

2
,

RYOO: q-EULER POLYNOMIALS
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where Ej(x) and Ej denote the Euler polynomials and Euler numbers, respectively.

Next, we assume that q ∈ Cp. We obtain recurrence identities the q-Euler polynomials and the
q-analogue of alternating sums of powers of consecutive integers.

By using (1.1), we have

qnI−q(gn) + (−1)n−1I−q(g) = [2]q
n−1
∑

l=0

(−1)n−1−lqlg(l),

where gn(x) = g(x + n). If n is odd from the above, we obtain

qnI−q(gn) + I−q(g) = [2]q
n−1
∑

l=0

(−1)n−1−lqlg(l) (cf. [1-5]). (2.2)

It will be more convenient to write (2.2) as the equivalent integral form

qn

∫

Zp

g(x + n)dμ−q(x) +
∫

Zp

g(x)dμ−q(x) = [2]q
n−1
∑

k=0

(−1)kqkg(k). (2.3)

Substituting g(x) = ext into the above, we obtain

qn

∫

Zp

e(x+n)tdμ−q(x) +
∫

Zp

extdμ−q(x) = [2]q
n−1
∑

j=0

(−1)jqjejt. (2.4)

After some elementary calculations, we have
∫

Zp

extdμ−q(x) =
[2]q

qet + 1
,

∫

Zp

e(x+n)tdμ−q(x) = ent [2]q
qet + 1

.

(2.5)

By using (2.4) and (2.5), we have

qn

∫

Zp

e(x+n)tdμ−q(x) +
∫

Zp

extdμ−q(x) =
[2]q(1 + qnent)

qet + 1
.

From the above, we get
[2]q(1 + qnent)

qet + 1
=

[2]q
∫

Zp
extdμ−q(x)

∫

Zp
q(n−1)xentxdμ−q(x)

. (2.6)

By substituting Taylor series of ext into (2.4), we obtain

∞
∑

m=0

(

qn

∫

Zp

(x + n)mdμ−q(x) +
∫

Zp

xmdμ−q(x)

)

tm

m!

=
∞
∑

m=0

⎛

⎝[2]q
n−1
∑

j=0

(−1)jqjjm

⎞

⎠

tm

m!
.

By comparing coefficients
tm

m!
in the above equation, we obtain

qn
m
∑

k=0

(

m

k

)

nm−k

∫

Zp

xkdμ−q(x) +
∫

Zp

xmdμ−q(x) = [2]q
n−1
∑

j=0

(−1)jqjjm.

By using Theorem 3, we have

qn
m
∑

k=0

(

m

k

)

nm−k

∫

Zp

xkdμ−q(x) +
∫

Zp

xmdμ−q(x) = [2]q ˜Tm,q(n − 1). (2.7)

RYOO: q-EULER POLYNOMIALS
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By using (2.6) and (2.7), we arrive at the following theorem:

Theorem 5. Let n be odd positive integer. Then we have
∫

Zp
extdμ−q(x)

∫

Zp
q(n−1)xentxdμ−q(x)

=
∞
∑

m=0

(

˜Tm,q(n − 1)
) tm

m!
.

Let w1 and w2 be odd positive integers. By (2.5), Theorem 5, and after some elementary
calculations, we obtain the following theorem.

Theorem 6. Let w1 and w2 be odd positive integers. Then we have
∫

Zp
ew2xtdμ−qw2 (x)

∫

Zp
q(w1w2−1)xew1w2txdμ−q(x)

=
[2]qw2

[2]q

∞
∑

m=0

(

˜Tm,qw2 (w − 1)wm
2

) tm

m!
. (2.8)

By (1.1), we obtain
∫

Zp

∫

Zp
e(w1x1+w2x2+w1w2x)tdμ−qw1 (x1)dμ−qw2 (x2)

∫

Zp
q(w1w2−1)xew1w2xtdμ−q(x)

=
ew1w2xt

∫

Zp
ew1x1tdμ−qw1 (x1)

∫

Zp
ew2x2tdμ−qw2 (x2)

∫

Zp
q(w1w2−1)xew1w2xtdμ−q(x)

.

(2.9)

By using (2.8) and (2.9), after elementary calculations, we obtain

a =

(

∫

Zp

e(w1x1+w1w2x)tdμ−qw1 (x1)

)( ∫

Zp
ex2w2tdμ−qw2 (x2)

∫

Zp
q(w1w2−1)xew1w2xtdμ−q(x)

)

=

( ∞
∑

m=0

˜Em,qw1 (w2x)wm
1

tm

m!

)(

[2]qw2

[2]q

∞
∑

m=0

˜Tm,qw2 (w1 − 1)wm
2

tm

m!

)

.

(2.10)

By using Cauchy product in the above, we have

a =
∞
∑

m=0

⎛

⎝

[2]qw2

[2]q

m
∑

j=0

(

m

j

)

˜Ej,qw1 (w2x)wj
1
˜Tm−j,qw2 (w1 − 1)wm−j

2

⎞

⎠

tm

m!
. (2.11)

By using the symmetry in (2.10), we obtain

a =

(

∫

Zp

e(w2x2+w1w2x)tdμ−qw2 (x2)

)( ∫

Zp
ex1w1tdμ−qw1 (x1)

∫

Zp
q(w1w2−1)xew1w2xtdμ−q(x)

)

=

( ∞
∑

m=0

˜Em,qw1 (w1x)wm
2

tm

m!

)(

[2]qw1

[2]q

∞
∑

m=0

˜Tm,qw1 (w2 − 1)wm
1

tm

m!

)

.

Thus we obtain

a =
∞
∑

m=0

⎛

⎝

[2]qw1

[2]q

m
∑

j=0

(

m

j

)

˜Ej,qw2 ,(w1x)wj
2
˜Tm−j,qw1 (w2 − 1)wm−j

1

⎞

⎠

tm

m!
. (2.12)

By comparing coefficients
tm

m!
in the both sides of (2.11) and (2.12), we arrive at the following

theorem.

RYOO: q-EULER POLYNOMIALS
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Theorem 7. Let w1 and w2 be odd positive integers. Then we obtain

[2]qw2

m
∑

j=0

(

m

j

)

˜Ej,qw1 (w2x)wj
1
˜Tm−j,qw2 (w1 − 1)wm−j

2

= [2]qw1

m
∑

j=0

(

m

j

)

˜Ej,qw2 (w1x)wj
2
˜Tm−j,qw1 (w2 − 1)wm−j

1 ,

where ˜Ek,q(x) and ˜Tm,q(k) denote the q-Euler polynomials and the q-analogue of alternating sums
of powers of consecutive integers, respectively.

By using Theorem 2, we have the following corollary.

Corollary 8. Let w1 and w2 be odd positive integers. Then we obtain

[2]qw1

m
∑

j=0

j
∑

k=0

(

m

j

)(

j

k

)

wm−k
1 wj

2x
j−k

˜Ek,qw2
˜Tm−j,qw1 (w2 − 1)

= [2]qw2

m
∑

j=0

j
∑

k=0

(

m

j

)(

j

k

)

wj
1w

m−k
2 xj−k

˜Ek,qw1
˜Tm−j,qw2 (w1 − 1).

By using (2.9), we have

a =

(

ew1w2xt

∫

Zp

ex1w1tdμ−qw1 (x1)

)( ∫

Zp
ex2w2tdμ−qw2 (x2)

∫

Zp
q(w1w2−1)xew1w2xtdμ−q(x)

)

=
[2]qw2

[2]q

w1−1
∑

j=0

(−1)jqw2j

∫

Zp

e

(

x1+w2x+j
w2

w1

)

(w1t)

dμ−qw1 (x1)

=
∞
∑

n=0

⎛

⎝

[2]qw2

[2]q

w1−1
∑

j=0

(−1)jqw2j
˜En,qw1

(

w2x + j
w2

w1

)

wn
1

⎞

⎠

tn

n!
.

(2.13)

By using the symmetry property in (2.13), we also have

a =

(

ew1w2xt

∫

Zp

ex2w2tdμ−qw2 (x2)

)( ∫

Zp
ex1w1tdμ−qw1 (x1)

∫

Zp
q(w1w2−1)xew1w2xtdμ−q(x)

)

=
[2]qw1

[2]q

w2−1
∑

j=0

(−1)jqw1j

∫

Zp

e

(

x2+w1x+j
w1

w2

)

(w2t)

dμ−qw2 (x2)

=
∞
∑

n=0

⎛

⎝

[2]qw1

[2]q

w2−1
∑

j=0

(−1)jqw1j
˜En,qw2

(

w1x + j
w1

w2

)

wn
2

⎞

⎠

tn

n!
.

(2.14)

By comparing coefficients
tn

n!
in the both sides of (2.13) and (2.14), we have the following theorem.

Theorem 9. Let w1 and w2 be odd positive integers. Then we have

[2]qw2

w1−1
∑

j=0

(−1)jqw2j
˜En,qw1

(

w2x + j
w2

w1

)

wn
1

=[2]qw1

w2−1
∑

j=0

(−1)jqw1j
˜En,qw2

(

w1x + j
w1

w2

)

wn
2 .

(2.15)

RYOO: q-EULER POLYNOMIALS
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Remark 10. Let w1 and w2 be odd positive integers. If q → 1, we have

w1−1
∑

j=0

(−1)jEn

(

w2x + j
w2

w1

)

wn
1 =

w2−1
∑

j=0

(−1)jEn

(

w1x + j
w1

w2

)

wn
2 .

Substituting w1 = 1 into (2.15), we arrive at the following corollary.

Corollary 11. Let w2 be odd positive integer. Then we obtain

˜En,q(x) =
[2]q

[2]qw2

w2−1
∑

j=0

(−1)jqj
˜En,qw2

(

x + j

w2

)

wn
2 .
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1. Introduction and preliminaries

The concept of stability for a functional equation arises when one replaces a functional equation by an inequali-

ty which acts as a perturbation of the equation. The first stability problem concerning group homomorphisms was

raised by Ulam [1] in 1940 and affirmatively solved by Hyers [2]. The result of Hyers was generalized by Rassias [3]

for approximate linear mappings by allowing the Cauchy difference operator CDf(x, y) = f(x+y)− [f(x)+f(y)]

to be controlled by ϵ(∥x∥p + ∥y∥p). In 1994, a generalization of Rassias’ theorem was obtained by Găvruţa [4],

who replaced ϵ(∥x∥p + ∥y∥p) by a general control function φ(x, y) in the spirit of Rassias’ approach. The reader

is referred to [5–20] and references therein for more information on stability of functional equations.

In this paper, we achieve the general solutions of the septic functional equation

f(x+4y)−7f(x+3y)+21f(x+2y)−35f(x+y)+35f(x)−21f(x−y)+7f(x−2y)−f(x−3y) = 5040f(y) (1.1)

and the octic functional equation

f(x+ 4y)− 8f(x+ 3y) + 28f(x+ 2y)− 56f(x+ y) + 70f(x)− 56f(x− y) + 28f(x− 2y)

−8f(x− 3y) + f(x− 4y) = 40320f(y).
(1.2)

Moreover, we prove the stability of the septic and octic functional equations in quasi-β-normed spaces. Since

f(x) = x7 is a solutions of (1.1), we say it quintic functional equation. Similarly, f(x) = x8 is a solutions of

(1.2), we say it septic functional equation. Every solution of the septic or octic functional equation is said to be

a septic or an octic mapping, respectively.

Let us recall some basic concepts concerning quasi-β-normed spaces (see [9, 16]). Let β be a fix real number

with 0 < β ≤ 1 and let K denote either ℝ or C. Let X be a linear space over K. A quasi-β-norm ∥ · ∥ is a

real-valued function on X satisfying the following:

(1) ∥x∥ ≥ 0 for all x ∈ X and ∥x∥ = 0 if and only if x = 0.

(2) ∥λx∥ = |λ|β∥x∥ for all λ ∈ K and all x ∈ X.

(3) There is a constant K ≥ 1 such that ∥x+ y∥ ≤ K(∥x∥+ ∥y∥) for all x, y ∈ X.

A quasi-β-normed space is a pair (X, ∥ · ∥), where ∥ · ∥ is a quasi-β-norm on X. The smallest possible K is

called the modulus of concavity of ∥ · ∥. A quasi-β-Banach space is a complete quasi-β-normed space.

A quasi-β-norm ∥ · ∥ is called a (β, p)-norm (0 < p ≤ 1) if ∥x + y∥p ≤ ∥x∥p + ∥y∥p for all x, y ∈ X. In this

case, a quasi-β-Banach space is called a (β, p)-Banach space. We can refer to [13] for the concept of quasi-normed

spaces and p-Banach spaces.

Given a p-norm, the formula d(x, y) := ∥x− y∥p gives us a translation invariant metric on X. By the Aoki-

Rolewicz theorem, each quasi-norm is equivalent to some p-norm. Since it is much easier to work with p-norms

than quasi-norms, henceforth we restrict our attention mainly to p-norms.

*Corresponding author.
The first author was supported by the National Natural Science Foundation of China (NNSFC)(Grant No. 11171022).
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2. General solutions to the septic and octic functional equations

In this section, let X and Y be vector spaces. Some basic facts on n-additive symmetric mappings can be

found in [11, 17, 20].

Theorem 2.1. A function f : X → Y is a solution of the functional equation (1.1) if and only if f is of the

form f(x) = A7(x) for all x ∈ X, where A7(x) is the diagonal of the 7-additive symmetric map A7 : X7 → Y .

Proof. Assume that f satisfies the functional equation (1.1). Replacing x = y = 0 in equation (1.1), one finds

f(0) = 0. Replacing (x, y) with (0, x) and (x,−x) in (1.1), respectively, and adding the two resulting equations,

we obtain f(−x) = −f(x). Replacing (x, y) with (4x, x) and (0, 2x) in (1.1), respectively, and subtracting the

two resulting equations, we get

7f(7x)− 27f(6x) + 35f(5x)− 21f(4x) + 21f(3x)− 5061f(2x) + 5041f(x) = 0 (2.1)

Replacing (x, y) with (3x, x) in (1.1), and multiplying the resulting equation by 7, one obtains

7f(7x)− 49f(6x) + 147f(5x)− 245f(4x) + 245f(3x)− 147f(2x)− 35231f(x) = 0 (2.2)

for all x ∈ X. Subtracting equations (2.1) and (2.1), we get

22f(6x)− 112f(5x) + 224f(4x)− 224f(3x)− 4914f(2x) + 40272f(x) = 0 (2.3)

Replacing (x, y) with (2x, x) in (1.1), and multiplying the resulting equation by 22, one finds

22f(6x)− 154f(5x) + 462f(4x)− 770f(3x) + 770f(2x)− 111320f(x) = 0 (2.4)

for all x ∈ X. Subtracting equations (2.3) and (2.4), we arrive at

42f(5x)− 238f(4x) + 546f(3x)− 5684f(2x) + 151592f(x) = 0 (2.5)

for all x ∈ X. Replacing (x, y) with (x, x) in (1.1), and multiplying the resulting equation by 42, one finds

42f(5x)− 294f(4x) + 882f(3x)− 1428f(2x)− 210504f(x) = 0 (2.6)

for all x ∈ X. Subtracting equations (2.5) and (2.6), one gets

56f(4x)− 336f(3x)− 4256f(2x) + 362096f(x) = 0 (2.7)

for all x ∈ X. Replacing (x, y) with (0, x) in (1.1), and multiplying the resulting equation by 56, one finds

56f(4x)− 336f(3x) + 784f(2x)− 283024f(x) = 0 (2.8)

for all x ∈ X. Subtracting equations (2.7) and (2.8), we arrive at

f(2x) = 27f(x) (2.9)

for all x ∈ X.

On the other hand, one can rewrite the functional equation (1.1) in the form

f(x) + 1
35f(x+ 4y)− 1

5f(x+ 3y) + 3
5f(x+ 2y)− f(x+ y)− 3

5f(x− y) + 1
5f(x− 2y)

= 1
35f(x− 3y) + 144f(y)

(2.10)

for all x ∈ X. By Theorems 3.5 and 3.6 in [11], f is a generalized polynomial function of degree at most 6, that

is, f is of the form

f(x) = A7(x) +A6(x) +A5(x) +A4(x) +A3(x) +A2(x) +A1(x) +A0(x), ∀x ∈ X, (2.11)

where A0(x) = A0 is an arbitrary element of Y , and Ai(x) is the diagonal of the i-additive symmetric map

Ai : X
i → Y for i = 1, 2, 3, 4, 5. By f(0) = 0 and f(−x) = −f(x) for all x ∈ X, we get A0(x) = A0 = 0 and the

function f is odd. Thus we haveA6(x) = A4(x) = A2(x) = 0. It follows that f(x) = A7(x)+A5(x)+A3(x)+A1(x).

By (2.9) and An(rx) = rnAn(x) whenever x ∈ X and r ∈ Q, we obtain 27(A7(x) + A5(x) + A3(x) + A1(x)) =

27A7(x) + 25A5(x) + 23A3(x) + 2A1(x). It follows that A5(x) = A3(x) = A1(x) = 0 for all x ∈ X. Hence

f(x) = A7(x).
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Conversely, assume that f(x) = A7(x) for all x ∈ X, where A7(x) is the diagonal of the 7-additive symmetric

map A7 : X7 → Y . From A7(x+ y) = A7(x) +A7(y) + 7A6,1(x, y) + 21A5,2(x, y) + 35A4,3(x, y) + 35A3,4(x, y) +

21A2,5(x, y) + 7A1,6(x, y), A7(rx) = r7A5(x), A6,1(x, ry) = rA6,1(x, y), A5,2(x, ry) = r2A5,2(x, y), A4,3(x, ry) =

r3A4,3(x, y), A3,4(x, ry) = r4A3,4(x, y), A2,5(x, ry) = r5A2,5(x, y), and A1,6(x, ry) = r6A1,6(x, y) (x, y ∈ X, r ∈
Q), we see that f satisfies (1.1), which completes the proof of Theorem 2.1. �

Theorem 2.2. A function f : X → Y is a solution of the functional equation (1.2) if and only if f is of the

form f(x) = A8(x) for all x ∈ X, where A8(x) is the diagonal of the 8-additive symmetric map A8 : X8 → Y .

Proof. Assume that f satisfies the functional equation (1.2). Replacing x = y = 0 in equation (1.2), one gets

f(0) = 0. Substituting y by −y in (1.2) and subtracting the resulting equation from equation (1.2) and then y

by x, we obtain f(−x) = f(x). Replacing (x, y) with (0, 2x) and (4x, x) in (1.2), respectively, we get

f(8x)− 8f(6x) + 28f(4x)− 20216f(x) = 0 (2.12)

and

f(8x)− 8f(7x) + 28f(6x)− 56f(5x) + 70f(4x)− 56f(3x) + 28f(2x)− 40328f(x) = 0 (2.13)

for all x ∈ X. Subtracting equations (2.12) and (2.13), we find

8f(7x)− 36f(6x) + 56f(5x)− 42f(4x) + 56f(3x)− 20244f(2x) + 40328f(x) = 0 (2.14)

for all x ∈ X. Replacing (x, y) with (3x, x) in (1.2), and multiplying the resulting equation by 8, one obtains

8f(7x)− 64f(6x) + 224f(5x)− 448f(4x) + 560f(3x)− 448f(2x)− 322328f(x) = 0 (2.15)

for all x ∈ X. Subtracting equations (2.14) and (2.15), one gets

28f(6x)− 168f(5x) + 406f(4x)− 504f(3x)− 19796f(2x) + 362656f(x) = 0 (2.16)

for all x ∈ X. Replacing (x, y) with (2x, x) in (1.2), and multiplying the resulting equation by 28, one finds

28f(6x)− 224f(5x) + 784f(4x)− 1568f(3x) + 1988f(2x)− 1130752f(x) = 0 (2.17)

for all x ∈ X. Subtracting equations (2.16) and (2.17), one gets

56f(5x)− 378f(4x) + 1064f(3x)− 21784f(2x) + 1493408f(x) = 0 (2.18)

for all x ∈ X. Replacing (x, y) with (x, x), and multiplying the resulting equation by 56, one finds

56f(5x)− 448f(4x) + 1624f(3x)− 3584f(2x)− 2252432f(x) = 0 (2.19)

for all x ∈ X. Subtracting equations (2.18) and (2.19), we arrive at

70f(4x)− 560f(3x)− 18200f(2x) + 3745840f(x) = 0 (2.20)

for all x ∈ X. Replacing (x, y) with (0, x), and multiplying the resulting equation by 70, one finds

70f(4x)− 560f(3x) + 1960f(2x)− 1415120f(x) = 0 (2.21)

for all x ∈ X. Subtracting equations (2.20) and (2.21), we arrive at

f(2x) = 28f(x) (2.22)

for all x ∈ X.

On the other hand, one can rewrite the functional equation (1.2) in the form

f(x) + 1
70f(x+ 4y)− 4

35f(x+ 3y) + 2
5f(x+ 2y)− 4

5f(x+ y)− 4
5f(x− y) + 2

5f(x− 2y)

= 4
35f(x− 3y)− 1

70f(x− 4y) + 1
576f(y)

(2.23)

for all x ∈ X. By Theorems 3.5 and 3.6 in [11], f is a generalized polynomial function of degree at most 6, that

is f is of the form

f(x) = A8(x) +A7(x) + · · ·+A1(x) +A0(x), ∀x ∈ X, (2.24)

where A0(x) = A0 is an arbitrary element of Y , and Ai(x) is the diagonal of the i-additive symmetric map

Ai : Xi → Y for i = 1, 2, . . . , 8. By f(0) = 0 and f(−x) = f(x) for all x ∈ X, we get A0(x) = A0 = 0
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and the function f is even. Thus we have A7(x) = A5(x) = A3(x) = A1(x) = 0. It follows that f(x) =

A8(x) + A6(x) + A4(x) + A2(x). By (2.22) and An(rx) = rnAn(x) whenever x ∈ X and r ∈ Q, we obtain

28(A8(x) +A6(x) +A4(x) +A2(x)) = 28A8(x) + 26A6(x) + 24A4(x) + 22A2(x). It follows that A6(x) = A4(x) =

A2(x) = 0, x ∈ X. Therefore, f(x) = A8(x). The rest of the proof is similar to the proof of Theorem 2.1. �

3. Stability of the septic and octic functional equations

Throughout this section, we assume that X is a linear space and Y is a (β, p)-Banach space with (β, p)-norm

∥ · ∥Y . For a given mapping f : X → Y , we define the difference operators

Dsf(x, y) := f(x+4y)−7f(x+3y)+21f(x+2y)−35f(x+y)+35f(x)−21f(x−y)+7f(x−2y)−f(x−3y)−5040f(y)

and
Dof(x, y) := f(x+ 4y)− 8f(x+ 3y) + 28f(x+ 2y)− 56f(x+ y) + 70f(x)− 56f(x− y)

+28f(x− 2y)− 8f(x− 3y) + f(x− 4y)− 40320f(y)

for all x, y ∈ X.

Lemma 3.1(see [16]). Let j ∈ {−1, 1} be fixed, s, a ∈ N with a ≥ 2, and ψ : X → [0,∞) be a function such

that there exists an L < 1 with ψ(ajx) ≤ ajsβLψ(x) for all x ∈ X. Let f : X → Y be a mapping satisfying

∥f(ax)− asf(x)∥Y ≤ ψ(x) (3.1)

for all x ∈ X, then there exists a uniquely determined mapping F : X → Y such that F (ax) = asF (x) and

∥f(x)− F (x)∥Y ≤ 1

asβ |1− Lj |
ψ(x) (3.2)

for all x ∈ X.

Theorem 3.2. Let j ∈ {−1, 1} be fixed, φ : X ×X → [0,∞) be a function such that there exists an L < 1 with

φ(2jx, 2jy) ≤ 128jβLφ(x, y) for all x, y ∈ X. Let f : X → Y be a mapping satisfying

∥Dsf(x, y)∥Y ≤ φ(x, y) (3.3)

for all x, y ∈ X. Then there exists a unique septic mapping S : X → Y such that

∥f(x)− S(x)∥Y ≤ 1

128β |1− Lj |
φs(x) (3.4)

for all x ∈ X, where

φs(x) = 1
5040β

[K5φ(4x, x) +K6φ(0, 2x) + 7βK5φ(3x, x) + 22βK4φ(2x, x) + 42βK3φ(x, x)

+( K7

144β
+ 11βK5

360β
+ K5

720β
+ 7βK4

40β
+ 7βK3

36β
)φ(0, 0) + K10

5040β
(φ(0, 6x) + φ(6x,−6x))

+ K10

720β
(φ(0, 4x) + φ(4x,−4x)) + ( K9

240β
+ K6

120β
+ 7βK6

90β
)(φ(0, 2x) + φ(2x,−2x))

+56βK2φ(0, x) + ( 11
βK6

2520β
+ 7βK6

120β
+ 7βK5

30β
)(φ(0, x) + φ(x,−x)) + K6

5040β
(φ(0, 3x) + φ(3x,−3x))].

Proof. Replacing x = y = 0 in (3.3), we get

∥f(0)∥Y ≤ 1

5040β
φ(0, 0). (3.5)

Replacing x and y by 0 and x in (3.3), respectively, we get

∥f(4x)− 7f(3x) + 21f(2x)− 5075f(x) + 35f(0)− 21f(−x) + 7f(−2x)− f(−3x)∥Y ≤ φ(0, x) (3.6)

for all x ∈ X. Replacing x and y by x and −x in (3.3), respectively, we have

∥f(−3x)− 7f(−2x)− 35f(0) + 35f(x)− 21f(2x) + 7f(3x)− f(4x)− 5019f(−x)∥Y ≤ φ(x,−x) (3.7)

for all x ∈ X. By (3.6) and (3.7), we obtain

∥f(x) + f(−x)∥Y ≤ K

5040β
(φ(0, x) + φ(x,−x)) (3.8)
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for all x ∈ X. Replacing x and y by 0 and 2x in (3.3), respectively, we find

∥f(8x)− 7f(6x) + 21f(4x)− 5075f(2x) + 35f(0)− 21f(−2x) + 7f(−4x)− f(−6x)∥Y ≤ φ(0, 2x) (3.9)

for all x ∈ X. By (3.5), (3.8) and (3.9), one obtains

∥f(8x)− 6f(6x) + 14f(4x)− 5054f(2x)∥Y
≤ Kφ(0, 2x) + K2

144β
φ(0, 0) + K4

240β
(φ(0, 2x) + φ(2x,−2x))

+ K5

720β
(φ(0, 4x) + φ(4x,−4x)) + K5

5040β
(φ(0, 6x) + φ(6x,−6x))

(3.10)

for all x ∈ X. Replacing x and y by 4x and x in (3.3), respectively, we get

∥f(8x)− 7f(7x) + 21f(6x)− 35f(5x) + 35f(4x)− 21f(3x) + 7f(2x)− 5041f(x)∥Y ≤ φ(4x, x) (3.11)

for all x ∈ X. By (3.10) and (3.11), we obtain

∥7f(7x)− 27f(6x) + 35f(5x)− 21f(4x) + 21f(3x)− 5061f(2x) + 5041f(x)∥Y
≤ Kφ(4x, x) +K2φ(0, 2x) + K3

144β
φ(0, 0) + K5

240β
(φ(0, 2x) + φ(2x,−2x))

+ K6

720β
(φ(0, 4x) + φ(4x,−4x)) + K6

5040β
(φ(0, 6x) + φ(6x,−6x))

(3.12)

for all x ∈ X. Replacing x and y by 3x and x in (3.3), respectively, we get

∥f(7x)− 7f(6x) + 21f(5x)− 35f(4x) + 35f(3x)− 21f(2x)− f(0)− 5033f(x)∥Y ≤ φ(3x, x) (3.13)

for all x ∈ X. Using (3.5), we have

∥7f(7x)− 49f(6x) + 147f(5x)− 245f(4x) + 245f(3x) + 147f(2x)− 35231f(x)∥Y
≤ 7βKφ(3x, x) + K

720β
φ(0, 0)

(3.14)

for all x ∈ X. By (3.12) and (3.14), one obtains

∥22f(6x)− 112f(5x) + 224f(4x)− 224f(3x)− 4914f(2x) + 40272f(x)∥Y
≤ K2φ(4x, x) +K3φ(0, 2x) + K4

144β
φ(0, 0) + K6

240β
(φ(0, 2x) + φ(2x,−2x))

+ K7

720β
(φ(0, 4x) + φ(4x,−4x)) + K7

5040β
(φ(0, 6x) + φ(6x,−6x)) + 7βK2φ(3x, x) + K2

720β
φ(0, 0)

(3.15)

for all x ∈ X. Replacing x and y by 2x and x in (3.3), respectively, we get

∥f(6x)− 7f(5x) + 21f(4x)− 35f(3x) + 35f(2x)− 5061f(x) + 7f(0)− f(−x)∥Y ≤ φ(2x, x) (3.16)

for all x ∈ X. Using (3.5), (3.8) and (3.16), we have

∥f(6x)− 7f(5x) + 21f(4x)− 35f(3x) + 35f(2x)− 5060f(x)∥Y
≤ Kφ(2x, x) + K2

720β
φ(0, 0) + K3

5040β
(φ(0, x) + φ(x,−x))

(3.17)

for all x ∈ X. Hence

∥22f(6x)− 154f(5x) + 462f(4x)− 770f(3x) + 770f(2x)− 111320f(x)∥Y
≤ 22βKφ(2x, x) + 11βK2

360β
φ(0, 0) + 11βK3

2520β
(φ(0, x) + φ(x,−x))

(3.18)

for all x ∈ X. By (3.15) and (3.18), one obtains

∥42f(5x)− 238f(4x) + 546f(3x)− 5684f(2x) + 151592f(x)∥Y
≤ K3φ(4x, x) +K4φ(0, 2x) + K5

144β
φ(0, 0) + K7

240β
(φ(0, 2x) + φ(2x,−2x))

+ K8

720β
(φ(0, 4x) + φ(4x,−4x)) + K8

5040β
(φ(0, 6x) + φ(6x,−6x)) + 7βK3φ(3x, x) + K3

720β
φ(0, 0)

+22βK2φ(2x, x) + 11βK3

360β
φ(0, 0) + 11βK4

2520β
(φ(0, x) + φ(x,−x))

(3.19)

for all x ∈ X. Replacing x and y by x and x in (3.3), respectively, we have

∥f(5x)− 7f(4x) + 21f(3x)− 35f(2x)− 5005f(x)− 21f(0) + 7f(−x)− f(−2x)∥Y ≤ φ(x, x) (3.20)
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for all x ∈ X. By (3.5), (3.8), and (3.20), we have

∥f(5x)− 7f(4x) + 21f(3x)− 34f(2x)− 5012f(x)∥Y
≤ Kφ(x, x) + K2

240β
φ(0, 0) + K4

720β
(φ(0, x) + φ(x,−x)) + K4

5040β
(φ(0, 2x) + φ(2x,−2x))

(3.21)

for all x ∈ X. Hence

∥42f(5x)− 294f(4x) + 882f(3x)− 1428f(2x)− 210504f(x)∥Y
≤ 42βKφ(x, x) + 7βK2

40β
φ(0, 0) + 7βK4

120β
(φ(0, x) + φ(x,−x)) + K4

120β
(φ(0, 2x) + φ(2x,−2x))

(3.22)

for all x ∈ X. By (3.19) and (3.22), we obtain

∥56f(4x)− 336f(3x)− 4256f(2x) + 362096f(x)∥Y
≤ K4φ(4x, x) +K5φ(0, 2x) + K6

144β
φ(0, 0) + K8

240β
(φ(0, 2x) + φ(2x,−2x))

+ K9

720β
(φ(0, 4x) + φ(4x,−4x)) + K9

5040β
(φ(0, 6x) + φ(6x,−6x)) + 7βK4φ(3x, x)

+ K4

720β
φ(0, 0) + 22βK3φ(2x, x) + 11βK4

360β
φ(0, 0) + 11βK5

2520β
(φ(0, x) + φ(x,−x))

+42βK2φ(x, x) + 7βK3

40β
φ(0, 0) + 7βK5

120β
(φ(0, x) + φ(x,−x)) + K5

120β
(φ(0, 2x) + φ(2x,−2x))

(3.23)

for all x ∈ X. Replacing x and y by 0 and x in (3.3), respectively, one gets

∥f(4x)− 7f(3x) + 21f(2x)− 5075f(x) + 35f(0)− 21f(−x) + 7f(−2x)− f(−3x)∥Y ≤ φ(0, x) (3.24)

for all x ∈ X. By (3.5), (3.8) and (3.24), we obtain

∥f(4x)− 6f(3x) + 14f(2x)− 5054f(x)∥Y
≤ Kφ(0, x) + K2

144β
φ(0, 0) + K4

240β
(φ(0, x) + φ(x,−x)) + K5

720β
(φ(0, 2x) + φ(2x,−2x))

+ K5

5040β
(φ(0, 3x) + φ(3x,−3x))

(3.25)

for all x ∈ X. Thus

∥56f(4x)− 336f(3x) + 784f(2x)− 283024f(x)∥Y
≤ 56βKφ(0, x) + 7βK2

36β
φ(0, 0) + 7βK4

30β
(φ(0, x) + φ(x,−x)) + 7βK5

90β
(φ(0, 2x) + φ(2x,−2x))

+ K5

5040β
(φ(0, 3x) + φ(3x,−3x))

(3.26)

for all x ∈ X. By (3.23) and (3.26), we obtain ∥f(2x) − 27f(x)∥Y ≤ φs(x) for all x ∈ X. By Lemma 3.1, there

exists a unique mapping S : X → Y such that S(2x) = 27S(x) and

∥f(x)− S(x)∥Y ≤ 1

128β |1− Lj |
φs(x)

for all x ∈ X. It remains to show that S is a septic map. By (3.3), we have

∥Dsf(2
jnx, 2jny)/128jn∥Y ≤ 128−jnβφ(2jnx, 2jny) ≤ 128−jnβ(128jβL)nφ(x, y) = Lnφ(x, y)

for all x, y ∈ X and n ∈ N. So ∥DsS(x, y)∥Y = 0 for all x, y ∈ X. Thus the mapping S : X → Y is septic. �

Corollary 3.3. Let X be a quasi-α-normed space with quasi-α-norm ∥ · ∥X , Y be a (β, p)-Banach space with

(β, p)-norm ∥ · ∥Y . Let δ, λ be positive numbers with λ ̸= 7β
� , and f : X → Y be a mapping satisfying

∥Dsf(x, y)∥Y ≤ δ(∥x∥λX + ∥y∥λX)

for all x, y ∈ X. Then there exists a unique septic mapping S : X → Y such that

∥f(x)− S(x)∥Y ≤

{
δελ

128β−2αλ ∥x∥λX , λ ∈ (0, 7β� );
2λαδελ

128β(2λα−128β)
∥x∥λX , λ ∈ ( 7β� ,∞);

for all x ∈ X, where

ελ = 1
5040β

[K5(4�λ + 1) +K62�λ + 7βK5(3�λ + 1) + 22βK4(2�λ + 1) + 2 · 42βK3 + 3⋅K106αλ

5040β

+ 3⋅K104αλ

720β
+ 3 · 2�λ( K9

240β
+ K6

120β
+ 7βK6

90β
) + 56βK2 + 3( 11

βK6

2520β
+ 7βK6

120β
+ 7βK5

30β
) + 3K63αλ

5040β
].
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The following example shows that the assumption λ ̸= 7β
� cannot be omitted in Corollary 3.3. This example

is a modification of the example of Gajda [21] for the additive functional inequality (see also [12] and [16]).

Example 3.4. Let ϕ : ℝ → ℝ be defined by

ϕ(x) =

{
x7, for |x| < 1,

1, for |x| ≥ 1.

Consider the function f : ℝ → ℝ be defined by

f(x) =
∞∑

n=0

4−7nϕ(4nx)

for all x ∈ ℝ. Then f satisfies the functional inequality

|Dsf(x, y)| ≤
5168 · 163843

16383
(|x|7 + |y|7) (3.27)

for all x, y ∈ ℝ, but there do not exist a septic mapping S : ℝ → ℝ and a constant d > 0 such that |f(x)−S(x)| ≤
d |x|7 for all x ∈ ℝ.

Proof. It is clear that f is bounded by 16384/16383 on ℝ. If |x|7 + |y|7 = 0 or |x|7 + |y|7 ≥ 1/16384, then

|Dsf(x, y)| ≤
5168 · 16384

16383
≤ 5168 · 163842

16383
(|x|7 + |y|7).

Now suppose that 0 < |x|5 + |y|5 < 1/1024. Then there exists a non-negative integer k such that

1

16384k+2
≤ |x|7 + |y|7 < 1

16384k+1
. (3.28)

Hence 16384k|x|7 < 1/16384, 16384k|y|7 < 1/16384, and 4n(x + 3y), 4n(x + 2y), 4n(x − 2y), 4n(x + y), 4n(x −
y), 4nx, 4ny ∈ (−1, 1) for all n = 0, 1, . . . , k − 1. Hence, for n = 0, 1, . . . , k − 1, Dsϕ(4

nx, 4ny) = 0. From the

definition of f and the inequality (3.28), we obtain that

|Dsf(x, y)| ≤
∞∑

n=k

4−7n · 5168 =
5168 · 47(1−k)

16383
≤ 5168 · 163843

16383
(|x|7 + |y|7).

Therefore, f satisfies (3.27) for all x, y ∈ ℝ. Now, we claim that the functional equation (1.1) is not stable for

λ = 7 in Corollary 3.3 (α = β = p = 1). Suppose on the contrary that there exists a septic mapping S : ℝ → ℝ
and constant d > 0 such that |f(x)− S(x)| ≤ d |x|7 for all x ∈ ℝ. Then there exists a constant c ∈ ℝ such that

S(x) = cx7 for all rational numbers x. So we obtain that

|f(x)| ≤ (d+ |c|)|x|5 (3.29)

for all x ∈ Q. Let m ∈ N with m + 1 > d + |c|. If x is a rational number in (0, 4−m), then 4nx ∈ (0, 1) for all

n = 0, 1, . . . ,m, and for this x we get

f(x) =
∞∑

n=0

ϕ(4nx)

47n
≥

m∑
n=0

(4nx)7

47n
= (m+ 1)x7 > (d+ |c|)x7,

which contradicts (3.29).

Theorem 3.5. Let j ∈ {−1, 1} be fixed, φ : X ×X → [0,∞) be a function such that there exists an L < 1 with

φ(2jx, 2jy) ≤ 256jβLφ(x, y) for all x, y ∈ X. Let f : X → Y be a mapping satisfying

∥Dof(x, y)∥Y ≤ φ(x, y) (3.30)

for all x, y ∈ X. Then there exists a unique octic mapping O : X → Y such that

∥f(x)−O(x)∥Y ≤ 1

256β |1− Lj |
φo(x) (3.31)
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for all x ∈ X, where

φo(x) = 1
20160β

[K
6

2β
φ(0, 2x) + ( K7

1152β
+ K6

40320β
+ 7βK5

360β
+ 7βK4

90β
+ 35βK3

576β
+ K6

630β
)φ(0, 0)

+35βK2φ(0, x) + 56βK3φ(x, x) +K6φ(4x, x) + 8βK4φ(3x, x) + 28βK4φ(2x, x)

+( K9

1440β
+ K7

90β
+ 7βK6

288β
+ K7

1440β
)(φ(2x, 2x) + φ(2x,−2x)) + K11

10080β
(φ(6x, 6x) + φ(6x,−6x))

+ K11

80640β
(φ(8x, 8x) + φ(8x,−8x)) + ( K7

180β
+ K7

5040β
+ 7βK6

180β
+ 7βK5

144β
)(φ(x, x) + φ(x,−x))

+( K7

720β
+ K7

144β
)(φ(3x, 3x) + φ(3x,−3x)) + ( K7

1152β
+ K10

2880β
)(φ(4x, 4x) + φ(4x,−4x))].

Proof. Replacing x = y = 0 in (3.30), we have

∥f(0)∥Y ≤ 1

40320β
φ(0, 0). (3.32)

Replacing y by −y in (3.30), we get

∥f(x− 4y)− 8f(x− 3y) + 28f(x− 2y)− 56f(x− y) + 70f(x)− 56f(x+ y)

+28f(x+ 2y)− 8f(x+ 3y) + f(x+ 4y)− 40320f(−y)∥Y ≤ φ(x,−y)
(3.33)

for all x, y ∈ X. By (3.30) and (3.33), one gets

∥f(x)− f(−x)∥Y ≤ K

40320β
(φ(x, x) + φ(x,−x)) (3.34)

for all x ∈ X. Replacing x and y by 0 and 2x in (3.30), respectively, one obtains

∥f(8x)− 8f(6x) + 28f(4x)− 56f(2x) + 70f(0)− 56f(−2x) + 28f(−4x)− 8f(−6x)

+f(−8x)− 40320f(2x)∥Y ≤ φ(0, 2x)
(3.35)

for all x ∈ X. By (3.32), (3.34), and (3.35), we have

∥f(8x)− 8f(6x) + 28f(4x)− 20216f(2x)∥Y
≤ K

2β
φ(0, 2x) + K2

1152β
φ(0, 0) + K4

1440β
(φ(2x, 2x) + φ(2x,−2x)) + K5

2880β
(φ(4x, 4x) + φ(4x,−4x))

+ K6

10080β
(φ(6x, 6x) + φ(6x,−6x)) + K6

80640β
(φ(8x, 8x) + φ(8x,−8x))

(3.36)

for all x ∈ X. Replacing x and y by 4x and x in (3.30), respectively, we get

∥f(8x)− 8f(7x) + 28f(6x)− 56f(5x) + 70f(4x)− 56f(3x) + 28f(2x) + f(0)− 40328f(x)∥Y ≤ φ(4x, x) (3.37)

for all x ∈ X. Using (3.32), one gets

∥f(8x)− 8f(7x) + 28f(6x)− 56f(5x) + 70f(4x)− 56f(3x) + 28f(2x)− 40328f(x)∥Y
≤ Kφ(4x, x) + K

40320β
φ(0, 0)

(3.38)

for all x ∈ X. By (3.36) and (3.38), we have

∥8f(7x)− 36f(6x) + 56f(5x)− 70f(4x) + 56f(3x)− 28f(2x) + 40328f(x)∥Y
≤ K2

2β
φ(0, 2x) + K3

1152β
φ(0, 0) + K5

1440β
(φ(2x, 2x) + φ(2x,−2x)) + K6

2880β
(φ(4x, 4x) + φ(4x,−4x))

+ K7

10080β
(φ(6x, 6x) + φ(6x,−6x)) + K7

80640β
(φ(8x, 8x) + φ(8x,−8x)) +K2φ(4x, x) + K2

40320β
φ(0, 0)

(3.39)

for all x ∈ X. Replacing x and y by 3x and x in (3.30), respectively, and then using (3.32) and (3.34), one

obtains
∥8f(7x)− 64f(6x) + 224f(5x)− 448f(4x) + 560f(3x)− 448f(2x)− 322328f(x)∥Y
≤ 8βφ(3x, x) + K2

630β
φ(0, 0) + K3

5040β
(φ(x, x) + φ(x,−x))

(3.40)

for all x ∈ X. Subtracting (3.39)− (3.40), we obtain

∥28f(6x)− 168f(5x) + 406f(4x)− 504f(3x)− 19796f(2x) + 362656f(x)∥Y
≤ K3

2β
φ(0, 2x) + K4

1152β
φ(0, 0) + K6

1440β
(φ(2x, 2x) + φ(2x,−2x)) + K7

2880β
(φ(4x, 4x) + φ(4x,−4x))

+ K8

10080β
(φ(6x, 6x) + φ(6x,−6x)) + K8

80640β
(φ(8x, 8x) + φ(8x,−8x)) +K3φ(4x, x) + K3

40320β
φ(0, 0)

+8βKφ(3x, x) + K3

630β
φ(0, 0) + K4

5040β
(φ(x, x) + φ(x,−x))

(3.41)
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for all x ∈ X. Replacing x and y by 2x and x in (3.30), respectively, and then using (3.32) and (3.34), we have

∥28f(6x)− 224f(5x) + 784f(4x)− 1568f(3x) + 1988f(2x)− 1130752f(x)∥Y
≤ 28βKφ(2x, x) + 7βK2

360β
φ(0, 0) + K4

180β
(φ(x, x) + φ(x,−x)) + K4

1440β
(φ(2x, 2x) + φ(2x,−2x))

(3.42)

for all x ∈ X. Subtracting (3.41)− (3.42), one gets

∥56f(5x)− 378f(4x) + 1064f(3x)− 21784f(2x) + 1493408f(x)∥Y
≤ K4

2β
φ(0, 2x) + K5

1152β
φ(0, 0) + K7

1440β
(φ(2x, 2x) + φ(2x,−2x)) + K8

2880β
(φ(4x, 4x) + φ(4x,−4x))

+ K9

10080β
(φ(6x, 6x) + φ(6x,−6x)) + K9

80640β
(φ(8x, 8x) + φ(8x,−8x)) +K4φ(4x, x) + K4

40320β
φ(0, 0)

+8βK2φ(3x, x) + K4

630β
φ(0, 0) + K5

5040β
(φ(x, x) + φ(x,−x)) + 28βK2φ(2x, x) + 7βK3

360β
φ(0, 0)

+ K5

180β
(φ(x, x) + φ(x,−x)) + K5

1440β
(φ(2x, 2x) + φ(2x,−2x))

(3.43)

for all x ∈ X. Replacing x and y by x and x in (3.30), respectively, and then using (3.32) and (3.34), we have

∥f(5x)− 8f(4x) + 29f(3x)− 64f(2x)− 40222f(x)∥Y
≤ Kφ(x, x) + K2

720β
φ(0, 0) + K4

1440β
(φ(x, x) + φ(x,−x))

+ K5

5040β
(φ(2x, 2x) + φ(2x,−2x)) + K5

40320β
(φ(3x, 3x) + φ(3x,−3x))

(3.44)

for all x ∈ X. Multiply each side of (3.44) by 56β , one gets

∥56f(5x)− 448f(4x) + 1624f(3x)− 3584f(2x)− 2252432f(x)∥Y
≤ 56βKφ(x, x) + 7βK2

90β
φ(0, 0) + 7βK4

180β
(φ(x, x) + φ(x,−x))

+K5

90β
(φ(2x, 2x) + φ(2x,−2x)) + K5

720β
(φ(3x, 3x) + φ(3x,−3x))

(3.45)

for all x ∈ X. By (3.43) and (3.45), we have

∥70f(4x)− 560f(3x)− 18200f(2x) + 3745840f(x)∥Y
≤ K5

2β
φ(0, 2x) + K6

1152β
φ(0, 0) + K8

1440β
(φ(2x, 2x) + φ(2x,−2x)) + K9

2880β
(φ(4x, 4x) + φ(4x,−4x))

+ K10

10080β
(φ(6x, 6x) + φ(6x,−6x)) + K10

80640β
(φ(8x, 8x) + φ(8x,−8x)) +K5φ(4x, x) + K5

40320β
φ(0, 0)

+8βK3φ(3x, x) + K5

630β
φ(0, 0) + K6

5040β
(φ(x, x) + φ(x,−x)) + 28βK3φ(2x, x) + 7βK4

360β
φ(0, 0)

+ K6

180β
(φ(x, x) + φ(x,−x)) + K6

1440β
(φ(2x, 2x) + φ(2x,−2x)) + 56βK2φ(x, x) + 7βK3

90β
φ(0, 0)

+7βK5

180β
(φ(x, x) + φ(x,−x)) + K6

90β
(φ(2x, 2x) + φ(2x,−2x)) + K6

720β
(φ(3x, 3x) + φ(3x,−3x))

(3.46)

for all x ∈ X. Replacing x and y by 0 and x in (3.30), respectively, and then using (3.32) and (3.34), we have

∥2f(4x)− 16f(3x) + 56f(2x)− 40432f(x)∥Y
≤ Kφ(0, x) + K2

576β
φ(0, 0) + K4

720β
(φ(x, x) + φ(x,−x)) + K5

1440β
(φ(2x, 2x) + φ(2x,−2x))

+ K6

5040β
(φ(3x, 3x) + φ(3x,−3x)) + K6

40320β
(φ(4x, 4x) + φ(4x,−4x))

(3.47)

for all x ∈ X. Multiply each side of (3.47) by 35β , one gets

∥70f(4x)− 560f(3x) + 1960f(2x)− 1415120f(x)∥Y
≤ 35βKφ(0, x) + 35βK2

576β
φ(0, 0) + 7βK4

144β
(φ(x, x) + φ(x,−x)) + 7βK5

288β
(φ(2x, 2x) + φ(2x,−2x))

+ K6

144β
(φ(3x, 3x) + φ(3x,−3x)) + K6

1152β
(φ(4x, 4x) + φ(4x,−4x))

(3.48)

for all x ∈ X. By (3.46) and (3.48), we obtain ∥f(2x)− 28f(x)∥Y ≤ φo(x) for all x ∈ X. By Lemma 3.1, there

exists a unique mapping O : X → Y such that O(2x) = 28O(x) and

∥f(x)−O(x)∥Y ≤ 1

256β |1− Lj |
φ̃(x)

for all x ∈ X. It remains to show that O is an octic mapping. By (3.30), we have

∥Dof(2
jnx, 2jny)/256jn∥Y ≤ 256−jnβφ(2jnx, 2jny) ≤ 256−jnβ(256jβL)nφ(x, y) = Lnφ(x, y)

for all x, y ∈ X and n ∈ N. So ∥DoO(x, y)∥Y = 0 for all x, y ∈ X. Thus the mapping O : X → Y is octic. �
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Corollary 3.6. Let X be a quasi-α-normed space with quasi-α-norm ∥ · ∥X , Y be a (β, p)-Banach space

with (β, p)-norm ∥ · ∥Y . Let δ, λ be positive numbers with λ ̸= 8β
� , and f : X → Y be a mapping satisfying

∥Dof(x, y)∥Y ≤ δ(∥x∥λX + ∥y∥λX) for all x, y ∈ X. Then there exists a unique octic mapping O : X → Y such

that

∥f(x)−O(x)∥Y ≤

{
δελ

256β−2αλ ∥x∥λX , λ ∈ (0, 8β� );
2λαδελ

256β(2λα−256β)
∥x∥λX , λ ∈ ( 8β� ,∞);

for all x ∈ X, where

ελ = 1
20160β

[K
6

2β
2�λ + 35βK2 + 2 · 56βK3 +K6(4�λ + 1) + 8βK4(3�λ + 1) + 28βK4(2�λ + 1)

+4 · 2�λ( K9

1440β
+ K7

90β
+ 7βK6

288β
+ K7

1440β
) + 4( K7

180β
+ K7

5040β
+ 7βK6

180β
+ 7βK5

144β
)

+4⋅K116αλ

10080β
+ 4⋅K118αλ

80640β
+ 4 · 3�λ( K7

720β
+ K7

144β
) + 4 · 4�λ( K7

1152β
+ K10

2880β
)].

Remark 3.7. The Hyers–Ulam stability for the case of λ = 8β
� was excluded in Corollary 3.6 (see Example 3.4).
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Abstract

The power average (PA) operator, power geometric (PG) operator,
power ordered weighted average (POWA) operator and power ordered
weighted geometric (POWG) operator are the nonlinear weighted aggre-
gation tools whose weighting vectors depend on input arguments. In this
paper, we develop a power harmonic (PH) operator and a power ordered
weighted harmonic (POWH) operator, and study some properties of these
operators. Then we extends the PH and POWH operators to uncertain en-
vironments, i.e, develop an uncertain PH (UPH) operator and its weighted
form, and uncertain POWH (UPOWH) operator to aggregate the input
arguments taking the form of interval numbers. Moreover, we utilize the
weighted PH and POWH operators, respectively, to develop an approach
to group decision making based on preference relations and utilize the
weighted UPH and UPOWH operators, respectively, to develop an ap-
proach to group decision making based on uncertain preference relations.
Finally, an example is used to illustrate the applicability of both the de-
veloped approaches.

Keywords: Group decision making, power harmonic (PH) opera-
tor, power ordered weighted harmonic (POWH) operator, uncertain PH
(UPH) operator, uncertain POWH (UPOWH) operator.

2000 AMS Subject Classifications: 90B50, 91B06, 90C29

1 Introduction

Information aggregation is an essential process of gathering relevant informa-
tion from multiple sources by using a proper aggregation technique. Many
techniques, such as the weighted average operator [1], the weighted geomet-
ric mean operator [2], harmonic mean operator [3], weighted harmonic mean
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(WHM) operator [3], ordered weighted average (OWA) operator [4], ordered
weighted geometric operator [5, 6], weighted OWA operator [7], induced OWA
operator [8], induced ordered weighted geometric operator [9], uncertain OWA
operator [10], hybrid aggregation operator [11], linguistic aggregation operators
[12, 14, 15, 16, 17, 18] and so on have been developed to aggregate data in-
formation. However, yet most of existing aggregation operators do not take
into account the information about the relationship between the values being
fused. Yager [19] introduced a tool to provide more versatility in the informa-
tion aggregation process, i.e., developed a power average (PA) operator and a
power OWA (POWA) operator. In some situations, however, these two opera-
tors are unsuitable to deal with the arguments taking the forms of multiplicative
variables because of lack of knowledge, or data, and decision makers’ limited ex-
pertise related to the problem domain. So, based on this tool, Xu and Yager [20]
developed additional new geometric aggregation operators, including the power
geometric (PG) operator, weighted PG operator and power ordered weighted
geometric (POWG) operator, whose weighting vectors depend upon the input
arguments and allow values being aggregated to support and reinforce each
other. In this paper, we will develop some new harmonic aggregation opera-
tors, including the power-harmonic (PH) operator, weighted PH operator, and
power-ordered weighted harmonic (POWH) operator, and apply them to group
decision making. In order to do this, the remainder of this paper is arranged
in following sections. In Section 2, we first review some aggregation operators,
including the PA, PG, POWA and POWG operators. Then, we develop a PH
operator and its weighted form based on the PA (or PG) operator and the har-
monic mean, and a POWH operator based on the POWA (POWG) operator
and the harmonic mean, and investigate some of their properties, such as com-
mutativity, idempotency and boundedness. The relationship among the PA, PG
and PH operators and the relationship the POWA, POWG and POWH oper-
ators are also discussed. In Section 3, we utilize the weighted PH and POWH
operators, respectively, to develop an approach to group decision making. In
Section 4, we develop an uncertain PH (UPH) operator and its weighted form
and uncertain POWH (UPOWH) operator to aggregate the input arguments,
which are expressed in interval numbers, and also study the properties of these
operators. In Section 5, we utilize the weighted UPH and UPOWH operators,
respectively, to develop an approach to group decision making based on uncer-
tain preference relations. Section 6 illustrates the presented approach with a
practical example. Section 7 ends the paper with some concluding remarks.

2 Power harmonic operators

Yager [19] introduced a nonlinear weighted average aggregation operation tool,
which is called PA operator, and can be defined as follows:

PA(a1, a2, . . . , an) =
∑n

i=1(1 + T (ai))ai∑n
i=1(1 + T (ai))

(1)

where

T (ai) =
n∑

j=1,j 6=i

Sup(ai, aj) (2)

and Sup(a, b) is the support for a from b, which satisfies the following three prop-
erties: 1) Sup(a, b) ∈ [0, 1], 2) Sup(a, b) = Sup(b, a), 3) Sup(a, b) ≥ Sup(x, y) if
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|a− b| < |x− y|.
Yager [19], based on the OWA operator [4] and PA operator, also defined a

POWA operator as follows:

POWA(a1, a2, . . . , an) =
n∑

i=1

uiaindex(i) (3)

where index is an indexing function such that index(i) is the index of the ith
largest of the arguments aj (j = 1, 2, . . . , n), and thus aindex(i) is the ith largest
argument of aj (j = 1, 2, . . . , n), and ui (i = 1, 2, . . . , n) are a collection of
weights such that

ui = g

(
Ri

TV

)
− g

(
Ri−1

TV

)
, Ri =

i∑
j=1

Vindex(j), TV =
n∑

i=1

Vindex(i),

Vindex(i) = 1 + T (aindex(i)) (4)

where g : [0, 1] → [0, 1] is a basic unit-interval monotone (BUM) function having
the following properties: 1) g(0) = 0, 2) g(1) = 1, 3) g(x) ≥ g(y) if x > y, and
T (aindex(i)) denotes the support of the ith largest argument by all the other
arguments, i.e.,

T (aindex(i)) =
n∑

j=1,j 6=i

Sup(aindex(i), aindex(j)) (5)

where Sup(aindex(i), aindex(j)) indicates the support of the jth largest argument
for the ith largest argument.

Based on the PA operator and the geometric mean, in the following, Xu and
Yager [20] defined the PG operator:

PG(a1, a2, . . . , an) =
n∏

i=1

a

1+T (ai)∑n

i=1
(1+T (ai))

i (6)

where aj (j = 1, 2, . . . , n) are a collection of arguments, and T (ai) satisfies the
condition (2). Based on the POWA operator and the geometric mean, Xu and
Yager [20] also defined the power ordered weighted geometric (POWG) operator
as follows:

POWG(a1, a2, . . . , an) =
n∏

i=1

aui

index(i) (7)

which satisfies the conditions (4) and (5), and aindex(i) is the ith largest argument
of aj (j = 1, 2, . . . , n).

Based on PA operator and the harmonic mean, in the following, we define a
PH operator:

PH(a1, a2, . . . , an) =
1∑n

i=1
1+T (ai)∑n

i=1
(1+T (ai))ai

(8)
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where aj (j = 1, 2, . . . , n) are a collection of arguments, and T (ai) satisfies
the condition (2). Clearly, the PH operator is a nonlinear weighted harmonic
aggregation operator, and the weight 1+T (ai)∑n

i=1
(1+T (ai))

of the argument ai depends

on all the input arguments aj (j = 1, 2, . . . , n) and allows the argument values
to support each other in the harmonic aggregation process.

Lemma 2.1 [22, 23, 24] Letting xi > 0, αi > 0, i = 1, 2, . . . , n, and
∑n

i=1 αi =
1, then

1∑n
i=1

αi

xi

≤
n∏

i=1

(xi)αi ≤
n∑

i=1

αixi (9)

with equality if and only if x1 = x2 = · · · = xn.

By Lemma 2.1, we have the following theorem.

Theorem 2.2 Assuming that aj (j = 1, 2, . . . , n) are a collection of arguments,
then we have

PH(a1, a2, . . . , an) ≤ PG(a1, a2, . . . , an) ≤ PA(a1, a2, . . . , an). (10)

Now, we discuss some properties of the PH operator.

Theorem 2.3 Letting Sup(ai, aj) = k, for all i 6= j, then

PH(a1, a2, . . . , an) =
n∑n

i=1
1
ai

(11)

which indicates that when all supports are the same, the PG operator is simply
the harmonic mean.

Especially, if Sup(ai, aj) = 0 for all i 6= j, i.e., all the supports are zero, then
there is no support in the harmonic aggregation process, and in this case, by
the condition (2), we have T (ai) = 0, i = 1, 2, . . . , n, then

1 + T (ai)∑n
i=1(1 + T (ai))

=
1
n

, i = 1, 2, . . . , n (12)

and thus, by (8) and (12), it is clear that the PH operator reduces to the
harmonic mean.

Theorem 2.4 Let aj (j = 1, 2, . . . , n) be a collection of arguments, then we
have the following properties.

1) (Commutativity): If (a′1, a
′
2, . . . , a

′
n) is any permutation of (a1, a2, . . . , an),

then

PH(a1, a2, . . . , an) = PH(a′1, a
′
2, . . . , a

′
n). (13)

2) (Idempotency): If aj = a for all j, then

PH(a1, a2, . . . , an) = a. (14)

3) (Boundedness):

min
i

ai ≤ PH(a1, a2, . . . , an) ≤ max
i

ai. (15)
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In (8), all the objects that are being aggregated are of equal importance. In
many situations, the weights of the objects should be taken into account, for
example, in group decision making, the decision makers usually have different
importance and thus, need to be assigned different weights. Suppose that each
object that is being aggregated has a weight indicating its importance, then we
define the weighted form of (8) as follows:

PHw(a1, a2, . . . , an) =
1∑n

i=1
wi(1+T ′(ai))∑n

i=1
wi(1+T ′(ai))ai

(16)

where

T ′(ai) =
n∑

j=1,j 6=i

wjSup(ai, aj) (17)

with the condition

wi ∈ [0, 1], i = 1, 2, . . . , n,
n∑

i=1

wi = 1. (18)

Obviously, the weighted PH operator has the properties, as described in
Theorem 2.2, as well as 2) and 3) of Theorem 2.4. However, Theorem 2.3 and
1) of Theorem 2.4 do not hold for the weighted PH operator.

Based on the POWA operator and the harmonic mean, we define a power
ordered weighted harmonic (POWH) operator as follows:

POWH(a1, a2, . . . , an) =
1∑n

i=1
ui

aindex(i)

(19)

which satisfies the conditions (4) and (5), and aindex(i) is the ith largest argument
of aj (j = 1, 2, . . . , n).

Especially, if g(x) = x, then the POWH operator reduces to the PH operator,
In fact, by (4), we have

POWH(a1, a2, . . . , an) =
1∑n

i=1
ui

aindex(i)

=
1∑n

i=1

g
(

Ri
T V

)
−g
(

Ri−1
T V

)
aindex(i)

=
1∑n

i=1

Ri
T V −

Ri−1
T V

aindex(i)

=
1∑n

i=1

Vindex(i)
T V

aindex(i)

=
1∑n

i=1
1+T (ai)∑n

i=1
(1+T (ai))ai

= PH(a1, a2, . . . , an). (20)

By Lemma 2.1, we the following theorem.

Theorem 2.5 Assuming that aj (j = 1, 2, . . . , n) are a collection of arguments,
then we have

POWH(a1, a2, . . . , an) ≤ POWG(a1, a2, . . . , an) ≤ POWA(a1, a2, . . . , an). (21)
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From Theorem 2.3 and (20), we have the following corollary.

Corollary 2.6 Letting Sup(ai, aj) = k for all i 6= j, and g(x) = x, then we
have

POWH(a1, a2, . . . , an) =
n∑n

i=1
1
ai

(22)

which indicates that when all supports are the same, the POWH operator is
simply the harmonic mean.

Similar to Theorem 2.4, we have the following theorem.

Theorem 2.7 Let aj (j = 1, 2, . . . , n) be a collection of arguments, then we
have the following properties.

1) (Commutativity): If (a′1, a
′
2, . . . , a

′
n) is any permutation of (a1, a2, . . . , an),

then

POWH(a1, a2, . . . , an) = POWH(a′1, a
′
2, . . . , a

′
n). (23)

2) (Idempotency): If aj = a for all j, then

POWH(a1, a2, . . . , an) = a. (24)

3) (Boundedness):

min
i

ai ≤ POWH(a1, a2, . . . , an) ≤ max
i

ai. (25)

From the above-mentioned theoretical analysis, the difference between the
weighted PH and POWH operators is that the weighted PH operator empha-
sizes the importance of each argument, while the POWH operator weights the
importance of the ordered position of each argument.

3 Approach to group decision making

Let us consider a group decision making problem. Let X = {x1, x2, . . . , xn} be a
finite set of alternatives and let D = {d1, d2, . . . , dm} be a set of decision makers,
whose weight vector is w = (w1, w2, . . . , wm)T , with wk ≥ 0, k = 1, 2, . . . ,m,
and

∑m
k=1 wk = 1. The decision maker dk compare each pair of alternatives

(xi, xj) and provides his/her preference value a
(k)
ij over them and constructs the

preference relation Ak on the set X, which is defined as a matrix Ak = (a(k)
ij )n×n

under the following condition:

a
(k)
ij ≥ 0, a

(k)
ij + a

(k)
ji = 1, a

(k)
ii =

1
2
, for all i, j = 1, 2, . . . , n. (26)

Then, we utilize the weighted PH operator to develop an approach to group
decision making based on preference relations, which involves the following
steps.

1125



Power harmonic operators and their applications

Approach I.
Step 1: Calculate the supports

Sup(a(k)
ij , a

(l)
ij ) = 1−

|a(k)
ij − a

(l)
ij |∑m

l=1,l 6=k |a
(k)
ij − a

(l)
ij |

, l = 1, 2, . . . ,m (27)

which satisfy the support condition 1)-3) in Section 2.
Especially, if

∑m
l=1,l 6=k |a

(k)
ij − a

(l)
ij | = 0, then we stipulate Sup(a(k)

ij , a
(l)
ij ) = 1.

Step 2: Utilize the weights wk (k = 1, 2, . . . ,m) of the decision makers dk

(k = 1, 2, . . . ,m) to calculate the weighted support T ′(a(k)
ij ) of the preference

value a
(k)
ij by the other preference values a

(l)
ij (l = 1, 2, . . . ,m, and l 6= k)

T ′(a(k)
ij ) =

m∑
l=1,l 6=k

wlSup(a(k)
ij , a

(l)
ij ) (28)

and calculate the weights v
(k)
ij (k = 1, 2, . . . ,m) associated with the preference

values a
(k)
ij (k = 1, 2, . . . ,m)

v
(k)
ij =

wk

(
1 + T ′(a(k)

ij )
)

∑m
k=1 wk

(
1 + T ′(a(k)

ij )
) , k = 1, 2, . . . ,m (29)

where v
(k)
ij ≥ 0, k = 1, 2, . . . ,m, and

∑m
k=1 v

(k)
ij = 1.

Step 3: Utilize the weighted PH operator to aggregate all the individual pref-
erence relations Ak = (a(k)

ij )n×n (k = 1, 2, . . . ,m) into the collective preference
relation A = (aij)n×n, where

aij = PHw(a(1)
ij , a

(2)
ij , . . . , a

(m)
ij ) =

1∑m
k=1

v
(k)
ij

a
(k)
ij

, i, j = 1, 2, . . . , n. (30)

Step 4: Utilize the normalizing rank aggregation method (NRAM) [25] given
by

vi =

∑n
j=1 aij∑n

i=1

∑n
j=1 aij

, i = 1, 2, . . . , n (31)

to derive the priority vector v = (v1, v2, . . . , vn)T of A = (aij)n×n, where vi > 0,
i = 1, 2, . . . , n, and

∑n
i=1 vi = 1.

Step 5: Rank all alternatives xi (i = 1, 2, . . . , n) in accordance with the
priority weights vi (i = 1, 2, . . . , n). The more the wight vi, the better the
alternative xi will be.

In the case where the information about the weights of decision makers is
unknown, then we utilize the POWH operator to develop an approach to group
decision making based on preference relations, which can be described as follows.
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Approach II.
Step 1: Calculate the supports

Sup
(
a
index(k)
ij , a

index(l)
ij

)
= 1−

∣∣aindex(k)
ij − a

index(l)
ij

∣∣∑m
l=1,l 6=k

∣∣aindex(k)
ij − a

index(l)
ij

∣∣ , l = 1, 2, . . . ,m (32)

which indicates the support of the lth largest preference value a
index(l)
ij for the

kth largest preference value a
index(k)
ij of a

(s)
ij (s = 1, 2, . . . ,m). Especially, if∑m

l=1,l 6=k |a
index(k)
ij −a

index(l)
ij | = 0, then we stipulate Sup(aindex(k)

ij , a
index(l)
ij ) = 1.

It is necessary to point out that the support measure is a similarity measure,
which can be used to measure the degree that a preference value provided by
a decision maker is close to another one provided by other decision maker in
a group decision making problem. Thus, Sup

(
a
index(k)
ij , a

index(l)
ij

)
denotes the

similarity degree between the kth largest preference value a
index(k)
ij and the lth

largest preference value a
index(l)
ij .

Step 2: Calculate the support T (aindex(k)
ij ) of the kth largest preference value

a
index(k)
ij by the other preference values a

(l)
ij (l = 1, 2, . . . ,m, and l 6= k)

T (aindex(k)
ij ) =

m∑
l=1,l 6=k

Sup(aindex(k)
ij , a

index(l)
ij ) (33)

and by (4), calculate the weight u
(k)
ij associated with the kth largest preference

value a
index(k)
ij , where

u
(k)
ij = g

(
R

(k)
ij

TVij

)
− g

(
R

(k−1)
ij

TVij

)
, R

(k)
ij =

k∑
l=1

V
index(l)
ij ,

TVij =
m∑

l=1

V
index(l)
ij , V

index(l)
ij = 1 + T (aindex(l)

ij ) (34)

where u
(k)
ij ≥ 0, k = 1, 2, . . . ,m, and

∑m
k=1 u

(k)
ij = 1, and g is the BUM function

described in Section 2.
Step 3: Utilize the POWH operator to aggregate all the individual preference

relations Ak = (a(k)
ij )n×n (k = 1, 2, . . . ,m) into the collective preference relation

A = (aij)n×n, where

aij = POWH(a(1)
ij , a

(2)
ij , . . . , a

(m)
ij ) =

1∑m
k=1

u
(k)
ij

a
index(k)
ij

, i, j = 1, 2, . . . , n. (35)

Step 4: For this step, see Approach I.
Step 5: For this step, see Approach I.
In the above-mentioned two approaches, Approach I considers the situations

where the weighted PH operator to aggregate all the individual preference re-
lations into the collective preference relation and then the NRAM method to
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derive its priority vector, and using this, we can rank and select the given al-
ternatives. While Approach II considers the situations where the information
about the weights of decision makers is unknown and utilizes the POWH opera-
tor to aggregate all the individual preference relations into collective preference
relation, then it also uses the NRAM method to find the final decision result.

4 Uncertain power harmonic operators

In this section, we consider the situations where the input arguments cannot
be expressed in exact numerical values, but value range (i.e., interval numbers)
can be obtained. We first review some operational laws, which are related to
interval numbers [26, 27].

Let ã = [aL, aU ] and b̃ = [bL, bU ] be two interval numbers, where aU ≥ aL >
0 and bU ≥ bL > 0, then we have the following operational laws.

1) ã + b̃ = [aL, aU ] + [bL, bU ] = [aL + bL, aU + bU ].
2) ãb̃ = [aL, aU ] · [bL, bU ] = [albL, aU , bU ].
3) λã = λ[aL, aU ] = [λaL, λaU ], where λ > 0.
4) 1

ã = 1
[aL,aU ]

= [ 1
aU , 1

aL ].

5) ã
b̃

= [aL,aU ]
[bL,bU ]

= [aL

bU , aU

bL ].
In order to rank interval numbers, we now introduce a possibility degree

formula [28] for the comparison between the interval numbers ã = [aL, aU ] and
b̃ = [bL, bU ]

p(ã ≥ b̃) = min
{

max
(

aU − bL

aU − aL + bU − bL
, 0
)

, 1
}

(36)

where p(ã ≥ b̃) is called the possibility degree of ã ≥ b̃, which satisfies

0 ≤ p(ã ≥ b̃) ≤ 1, p(ã ≥ b̃) + p(b̃ ≥ ã) = 1, p(ã ≥ ã) = 0.5. (37)

Let ãj = [aL
j , aU

j ] (j = 1, 2, . . . , n) be a collection of interval numbers, then
based on the previous operational laws of interval numbers, we extend the PH
operator to uncertain environments and define an UPH operator as follows:

UPH(ã1, ã2, . . . , ãn) =
1∑n

i=1
1+T (ãi)∑n

i=1
(1+T (ãi))ãi

(38)

where

T (ãi) =
n∑

j=1,j 6=i

Sup(ãi, ãj) (39)

and Sup(ã, b̃) is the support for ã from b̃, which satisfies the following three prop-
erties: 1) Sup(ã, b̃) ∈ [0, 1], 2) Sup(ã, b̃) = Sup(b̃, ã), 3) Sup(ã, b̃) ≥ Sup(x̃, ỹ) if
d(ã, b̃) < d(x̃, ỹ), where d is a distance measure.

Similar to the PH operator, the UPH operator has the following properties.
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Theorem 4.1 Letting Sup(ãi, ãj) = k for all i 6= j, then

UPH(ã1, ã2, . . . , ãn) =
n∑n

i=1
1
ãi

(40)

which indicates that when all the supports are the same, the UPH operator is
simply the uncertain harmonic mean.

Theorem 4.2 Let ãj (j = 1, 2, . . . , n) be a collection of interval numbers, then
we have the following properties.

1) (Commutativity): If (ã′1, ã
′
2, . . . , ã

′
n) is any permutation of (ã1, ã2, . . . , ãn),

then

UPH(ã1, ã2, . . . , ãn) = UPH(ã′1, ã
′
2, . . . , ã

′
n). (41)

2) (Idempotency): If ãj = ã for all j, then

UPH(ã1, ã2, . . . , ãn) = ã. (42)

3) (Boundedness):

min
i

ãi ≤ UPH(ã1, ã2, . . . , ãn) ≤ max
i

ãi. (43)

If the weights of the objects are taken into account, then we define the
weighted form of (38) as follows:

UPHw(ã1, ã2, . . . , ãn) =
1∑n

i=1
wi(1+T ′(ãi))∑n

i=1
wi(1+T ′(ãi))ãi

(44)

where

T ′(ãi) =
n∑

j=1,j 6=i

wjSup(ãi, ãj) (45)

with the condition

wi ∈ [0, 1], i = 1, 2, . . . , n,
n∑

i=1

wi = 1. (46)

Obviously, the weighted UPH operator has the properties of 2) and 3) in
Theorem 4.2. However, Theorem 4.1 and 1) of Theorem 4.2 do not hold for the
weighted UPH operator.

Based on the POWH operator and the possibility degree formula, we define
a UPOWH operator as follows:

UPOWH(ã1, ã2, . . . , ãn) =
1∑n

i=1
ui

ãindex(i)

(47)

where ãindex(i) is the ith largest interval number of ãj (j = 1, 2, . . . , n), and

ui = g

(
Ri

TV

)
− g

(
Ri−1

TV

)
, Ri =

i∑
j=1

Vindex(j),

TV =
n∑

i=1

Vindex(i), Vindex(j) = 1 + T (ãindex(i)) (48)
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and T (ãindex(i)) denotes the support of the ith largest interval number by all
the other interval numbers, i.e.,

T (ãindex(i)) =
n∑

j=1

Sup(ãindex(i), ãindex(j)) (49)

where Sup(ãindex(i), ãindex(j)) indicates the support of the jth largest interval
number for the ith largest interval number (here, we can use the possibility
degree formula (36) to rank interval numbers).

Especially, if g(x) = x, then the UPOWH operator reduces to the UPH
operator.

From Theorem 4.1, we have the following corollary.

Corollary 4.3 Letting Sup(ãindex(i), ãindex(j)) = k for all i 6= j, and g(x) = x,
then

UPOWH(ã1, ã2, . . . , ãn) =
n∑n

i=1
1
ãi

(50)

which indicates that when the supports are the same, the UPOWH operator is
simply the uncertain harmonic mean.

Similar to Theorem 4.2, we have the following theorem.

Theorem 4.4 Let ãj (j = 1, 2, . . . , n) be a collection of interval numbers, then
we have the following properties.

1) (Commutativity): If (ã′1, ã
′
2, . . . , ã

′
n) is any permutation of (ã1, ã2, . . . , ãn),

then

UPOWH(ã1, ã2, . . . , ãn) = UPOWH(ã′1, ã
′
2, . . . , ã

′
n). (51)

2) (Idempotency): If ãj = ã for all j, then

UPOWH(ã1, ã2, . . . , ãn) = ã. (52)

3) (Boundedness):

min
i

ãi ≤ UPOWH(ã1, ã2, . . . , ãn) ≤ max
i

ãi. (53)

5 Approach to group decision making based on
uncertain preference relations

As mentioned in Section 3, in this section, we will apply the weighted UPH
and UPOWH operators to group decision making based on uncertain prefer-
ence relations. Let X = {x1, x2, . . . , xn} be a finite set of alternatives and
let D = {d1, d2, . . . , dm} be a set of decision makers, whose weight vector is
w = (w1, w2, . . . , wm)T , with wk ≥ 0, k = 1, 2, . . . ,m, and

∑m
k=1 wk = 1.

The decision maker dk compare each pair of alternatives (xi, xj) and provides
his/her preference value range ã

(k)
ij = [aL(k)

ij , a
U(k)
ij ] over them and constructs
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the uncertain preference relation Ãk on the set X, which is defined as a matrix
Ãk = (ã(k)

ij )n×n under the following condition:

a
U(k)
ij ≥ a

L(k)
ij > 0, a

L(k)
ij + a

U(k)
ji = 1, a

L(k)
ji + a

U(k)
ij = 1,

a
L(k)
ii = a

U(k)
ii =

1
2
, i, j = 1, 2, . . . , n. (54)

Then, we utilize the weighted UPH operator to develop an approach to
group decision making based on uncertain preference relations, which involves
the following steps.

Approach III.
Step 1: Calculate the supports

Sup(ã(k)
ij , ã

(l)
ij ) = 1−

d
(
ã
(k)
ij , ã

(l)
ij

)∑m
l=1,l 6=k d

(
ã
(k)
ij , ã

(l)
ij

) , l = 1, 2, . . . ,m (55)

which satisfy the support condition 1)-3) in Section 4. Here, without loss of
generality, we let

d
(
ã
(k)
ij , ã

(l)
ij

)
=

1
2
(∣∣aL(l)

ij − a
L(k)
ij

∣∣+ ∣∣aU(l)
ij − a

U(k)
ij

∣∣). (56)

Especially, if
∑m

l=1,l 6=k d(ã(k)
ij , ã

(l)
ij ) = 0, then we stipulate Sup(ã(k)

ij , ã
(l)
ij ) = 1.

Step 2: Utilize the weights wk (k = 1, 2, . . . ,m) of the decision makers
dk (k = 1, 2, . . . ,m) to calculate the weighted support T ′(ã(k)

ij ) of the uncer-

tain preference value ã
(k)
ij by the other uncertain preference values ã

(l)
ij (l =

1, 2, . . . ,m, and l 6= k)

T ′(ã(k)
ij ) =

m∑
l=1,l 6=k

wlSup(ã(k)
ij , ã

(l)
ij ) (57)

and calculate the weights v̇
(k)
ij (k = 1, 2, . . . ,m) associated with the uncertain

preference values ã
(k)
ij (k = 1, 2, . . . ,m)

v̇
(k)
ij =

wk

(
1 + T ′(ã(k)

ij )
)

∑m
k=1 wk

(
1 + T ′(ã(k)

ij )
) , k = 1, 2, . . . ,m (58)

where v̇
(k)
ij ≥ 0, k = 1, 2, . . . ,m, and

∑m
k=1 v̇

(k)
ij = 1.

Step 3: Utilize the weighted UPH operator to aggregate all the individual
uncertain preference relations Ãk = (ã(k)

ij )n×n (k = 1, 2, . . . ,m) into the collec-
tive uncertain preference relation Ã = (ãij)n×n, where

ãij = [al
ij , a

U
ij ] = UPHw(ã(1)

ij , ã
(2)
ij , . . . , ã

(m)
ij )

=
1∑m

k=1

v̇
(k)
ij

ã
(k)
ij

, i, j = 1, 2, . . . , n. (59)
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Step 4: Utilize the uncertain NRAM (UNRAM) given by

ṽi =

∑n
j=1 ãij∑n

i=1

∑n
j=1 ãij

, i = 1, 2, . . . , n (60)

to derive the uncertain priority vector ṽ = (ṽ1, ṽ2, . . . , ṽn)T of Ã = (ãij)n×n.
Step 5: Compare each pair of the uncertain priority weights ṽi (i = 1, 2, . . . , n)

by using the possibility degree formula (36) and construct a possibility degree
matrix P = (pij)n×n, where pij = p(ṽi ≥ ṽj), i, j = 1, 2, . . . , n, which satisfy
pij ≥ 0 pij + pji = 1, pii = 0.5, i, j = 1, 2, . . . , n. Summing all the elements in
each line of the matrix P , we get

pi =
n∑

j=1

pij , i = 1, 2, . . . , n. (61)

Then we rank the uncertain priority weights ṽi (i = 1, 2, . . . , n) in descending
order in accordance with pi (i = 1, 2, . . . , n).

Step 6: Rank all alternatives xi (i = 1, 2, . . . , n) in accordance with the
descending order of the uncertain priority weights ṽi (i = 1, 2, . . . , n).

In the case where the information about the weights of decision makers is
unknown, then we utilize the UPOWH operator to develop an approach to group
decision making based on uncertain preference relations, which can be described
as follows.

Approach IV.
Step 1: Calculate the supports

Sup
(
ã
index(k)
ij , ã

index(l)
ij

)
= 1−

d
(
ã
index(k)
ij , ã

index(l)
ij

)∑m
l=1,l 6=k d

(
ã
index(k)
ij , ã

index(l)
ij

) , l = 1, 2, . . . ,m (62)

which indicates the support of lth largest uncertain preference value ã
index(l)
ij

for the kth largest uncertain preference value ã
index(k)
ij of ã

(s)
ij (s = 1, 2, . . . ,m)

(here, we can use Step 5 of Approach III to rank uncertain preference values).
Especially, if

∑m
l=1,l 6=k d(ãindex(k)

ij , ã
index(l)
ij ) = 0, then we stipulate Sup(ãindex(k)

ij ,

ã
index(l)
ij ) = 1.

Step 2: Calculate the support T (ãindex(k)
ij ) of the kth largest uncertain prefer-

ence value ã
index(k)
ij by the other uncertain preference values ã

(l)
ij (l = 1, 2, . . . ,m,

and l 6= k)

T (ãindex(k)
ij ) =

m∑
l=1,l 6=k

Sup(ãindex(k)
ij , ã

index(l)
ij ) (63)

and by (48), calculate the weight u̇
(k)
ij associated with the kth largest uncertain

preference value ã
index(k)
ij , where

u̇
(k)
ij = g

(
Ṙ

(k)
ij

TV ′
ij

)
− g

(
Ṙ

(k−1)
ij

TV ′
ij

)
, Ṙ

(k)
ij =

k∑
l=1

V
index(l)
ij ,
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TV ′
ij =

m∑
l=1

V
index(l)
ij , V

index(l)
ij = 1 + T (ãindex(l)

ij ) (64)

where u̇
(k)
ij ≥ 0, k = 1, 2, . . . ,m, and

∑m
k=1 u̇

(k)
ij = 1, and g is the BUM function

described in Section 2.
Step 3: Utilize the UPOWH operator to aggregate all the individual uncer-

tain preference relations Ãk = (ã(k)
ij )n×n (k = 1, 2, . . . ,m) into the collective

uncertain preference relation Ã = (ãij)n×n, where

ãij = [aL
ij , a

U
ij ] = UPOWH(ã(1)

ij , ã
(1)
ij , . . . , ã

(m)
ij )

=
1∑m

k=1

u̇
(k)
ij

ã
index(k)
ij

, i, j = 1, 2, . . . , n. (65)

Step 4: For this step, see Approach III.
Step 5: For this step, see Approach III.
Step 6: For this step, see Approach III.

6 Illustrative example

Four university students share a house, where they intend to have broadband
Internet connection installed (adapted from [20, 29]). There are four options
available to choose from, which are provided by three Internet service providers.

1) Option 1 (x1): 1 Mbps broadband;
2) Option 2 (x2): 2 Mbps broadband;
3) Option 3 (x3): 3 Mbps broadband;
4) Option 4 (x4): 8 Mbps broadband.
Since the Internet service and its monthly bill will be shared among the four

students dk (k = 1, 2, 3, 4) (whose weight vector w = (0.3, 0.3, 0.2, 0.2)T ), they
decide to perform a group decision analysis. Suppose that the students reveal
their preference relations for the options independently and anonymously and
construct the following preference relations, respectively:

A1 =

 0.5 0.4 0.5 0.8
0.6 0.5 0.8 0.9
0.5 0.2 0.5 0.6
0.2 0.1 0.4 0.5

 , A2 =

 0.5 0.8 0.7 0.4
0.2 0.5 0.6 0.6
0.3 0.4 0.5 0.8
0.6 0.4 0.2 0.5


A3 =

 0.5 0.4 0.7 0.6
0.6 0.5 0.3 0.7
0.3 0.7 0.5 0.6
0.4 0.3 0.4 0.5

 , A4 =

 0.5 0.7 0.7 0.5
0.3 0.5 0.4 0.4
0.3 0.6 0.5 0.9
0.5 0.6 0.1 0.5

 .

Since the weights of students are given, we then utilize Approach I to find
the decision result.

We first utilize (27) to calculate the supports Sup(a(k)
ij , a

(l)
ij ) (i, j, k, l =

1, 2, 3, 4, k 6= l), which are contained in the matrices Skl = (Skl(a(k)
ij , a

(l)
ij ))4×4
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(k = 1, 2, 3, 4), respectively

S12 =

 1 0.429 0.667 0.556
0.429 1 0.818 0.700
0.667 0.818 1 0.600
0.556 0.700 0.600 1

 , S13 =

 1 1 0.667 0.778
1 1 0.545 0.800

0.667 0.545 1 1
0.778 0.800 1 1


S14 =

 1 0.571 0.667 0.667
0.571 1 0.636 0.500
0.667 0.636 1 0.400
0.667 0.500 0.400 1

 , S21 =

 1 0.556 0 0.429
0.556 1 0.714 0.500

0 0.714 1 0.600
0.429 0.500 0.600 1


S23 =

 1 0.556 1 0.714
0.556 1 0.571 0.833

1 0.571 1 0.600
0.714 0.833 0.600 1

 , S24 =

 1 0.889 1 0.857
0.889 1 0.714 0.667

1 0.714 1 0.800
0.857 0.667 0.800 1


S31 =

 1 1 0 0.600
1 1 0.444 0.667
0 0.444 1 1

0.600 0.667 1 1

 , S32 =

 1 0.429 1 0.600
0.429 1 0.667 0.833

1 0.667 1 0.600
0.600 0.833 0.600 1


S34 =

 1 0.571 1 0.800
0.571 1 0.889 0.500

1 0.889 1 0.400
0.800 0.500 0.400 1

 , S41 =

 1 0.571 0 0.400
0.571 1 0.429 0.500

0 0.429 1 0.571
0.400 0.500 0.571 1


S42 =

 1 0.857 1 0.800
0.857 1 0.714 0.800

1 0.714 1 0.857
0.800 0.800 0.857 1

 , S43 =

 1 0.571 1 0.800
0.571 1 0.857 0.700

1 0.857 1 0.571
0.800 0.70 0.571 1

 .

Then, we utilize the weight vector w = (0.3, 0.3, 0.2, 0.2)T of the students
dk (k = 1, 2, 3, 4) and (28) to calculate the weighted supports T ′(a(k)

ij ) (i, j, k =

1, 2, 3, 4) of the preference values a
(k)
ij (i, j, k = 1, 2, 3, 4), which are contained in

the matrices T ′
k = (T ′(a(k)

ij ))4×4 (k = 1, 2, 3, 4), respectively

T ′
1 =

 0.700 0.443 0.467 0.456
0.443 0.700 0.482 0.470
0.467 0.482 0.700 0.460
0.456 0.470 0.460 0.700

 , T ′
2 =

 0.700 0.456 0.400 0.443
0.456 0.700 0.471 0.450
0.400 0.471 0.700 0.460
0.443 0.450 0.460 0.700


T ′

3 =

 0.800 0.543 0.500 0.520
0.543 0.800 0.511 0.550
0.500 0.511 0.800 0.560
0.520 0.550 0.560 0.800

 , T ′
4 =

 0.800 0.543 0.500 0.520
0.543 0.800 0.514 0.530
0.500 0.514 0.800 0.543
0.520 0.530 0.543 0.800


and then utilize (29) to calculate the weights v

(k)
ij (i, j, k = 1, 2, 3, 4) associated

with the preference values a
(k)
ij (i, j, k = 1, 2, 3, 4), which are contained in the

matrices Vk = (v(k)
ij )4×4 (k = 1, 2, 3, 4), respectively

V1 =

 0.293 0.291 0.301 0.296
0.291 0.293 0.298 0.295
0.301 0.298 0.293 0.293
0.295 0.295 0.293 0.293

 , V2 =

 0.293 0.294 0.288 0.293
0.293 0.293 0.296 0.292
0.287 0.296 0.293 0.293
0.293 0.292 0.293 0.293
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V3 =

 0.207 0.207 0.205 0.206
0.208 0.207 0.203 0.208
0.206 0.203 0.207 0.208
0.206 0.208 0.208 0.207

 , V4 =

 0.207 0.208 0.206 0.206
0.208 0.207 0.203 0.205
0.206 0.203 0.207 0.206
0.206 0.205 0.206 0.207

 .

Based on this, we utilize the weighted PH operator (30) to aggregate all the
individual preference relations Ak = (a(k)

ij )4×4 (k = 1, 2, 3, 4) into the collective
preference relation

A =

 0.5000 0.5237 0.6248 0.5383
0.3344 0.5000 0.4878 0.6157
0.3411 0.3499 0.5000 0.6992
0.3460 0.2121 0.2093 0.5000

 .

After this, we utilize the NRAM (31) to derive the priority vector of A

v = (0.3003, 0.2661, 0.2596, 0.1740)T .

Using this, we get the ranking of the options as follows:

x1 � x2 � x3 � x4.

7 Conclusions

In this paper, based on the PA operator, we have developed several new non-
linear weighted harmonic aggregation operators including the PH operator,
weighted PH operator, POWH operator, UPH operator, weighted UPH operator
and UPOWH operator. We have studied some desired properties of the devel-
oped operators, such as commutativity, idempotency and boundedness. The
fundamental idea of these operators is that the weight of each input argument
depends on the other input arguments and allows argument values to support
each other in the harmonic aggregation process. Moreover, we have applied the
developed operators to aggregate all individual preference (or uncertain prefer-
ence) relations into collective preference (or uncertain preference) under various
group decision making environment and then developed some group decision
making approaches. The merit of the developed approaches is that they can
take all the decision arguments and their relationships into account. In the
future, we will develop several applications of the developed aggregation opera-
tors in other fields, such as pattern recognition, supply chain management and
image processing.
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MULTIPLICATIONAL COMBINATIONS AND A GENERAL SCHEME OF
SINGLE-STEP ITERATIVE METHODS FOR MULTIPLE ROOTS

SIYUL LEE1,∗ AND HYEONGMIN CHOE1

1Seoul Science High School, Seoul 110-530, Republic of Korea

ABSTRACT. In this paper, a general form of single-step iterative methods for multiple roots of
nonlinear equations is derived under a number of assumptions of optimization. Definition of multi-
plicational combinations and their properties are used upon the optimization procedure. Among all,
we construct a family of iterative methods with nine parameters and simplest terms, and we obtain
23 simplest iterative methods within the family, those including all existing methods of single-step
scheme. Numerical comparisons between the methods also present interesting and noteworthy re-
sults.

1. INTRODUCTION

Solving nonlinear equations is one of the most basic problems of mathematics, yet it is often
greatly complicated. Therefore, to develop methods to obtain roots of a nonlinear equation f(x) =
0 has become crucial, especially with advance of computational technology.

Newton’s method, defined by

xn+1 = xn −
f(xn)

f ′(xn)
(1)

makes use of an approximated root to obtain a new approximation with less error. This classical
method, however, ceases to be efficient when a multiple root of f is to be obtained. In such cases,
one may solve a nonlinear equation u(x) = 0 where u(x) = f(x)/f ′(x) instead of f(x) = 0,
since u(x) has multiple roots of f(x) as its simple roots, see [1, p.126]. When multiplicity m of
the desired root of f is known, one may use the modified Newton’s method,

xn+1 = xn −m
fn
f ′n

(2)

where f (i)n denotes f (i)(xn) instead of the original Newton’s method (1).
The modified Newton’s method for multiple roots is quadratically convergent. More advanced

iterative algorithms with cubic or higher order of convergence are actively being developed, in

Keywords: Newton’s method, Iterative methods, Single-step methods, Nonlinear equations, Cubic order, Multiple
roots.
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order to improve the computational efficiency. One widely known cubically convergent example is
Halley’s method(HM), namely,

xn+1 = xn −
fn

m+1
2m f ′n −

fnf ′′n
2f ′n

, (3)

see [2].
The Euler-Chebyshev method(ECM),

xn+1 = xn −
m(3−m)

2

fn
f ′n
− m2

2

fn
2f ′′n
f ′n

3 (4)

is also of cubic convergence, see [1].
Osada in [3] and Chun and Neta in [4], developed other cubically convergent iterative methods,

xn+1 = xn −
1

2
m(m+ 1)

fn
f ′n

+
1

2
(m− 1)2

f ′n
f ′′n
, (5)

and

xn+1 = xn −
2m2fn

2f ′′n
m(3−m)fnf ′nf

′′
n + (m− 1)2f ′n

3 , (6)

OM and CNM in short, respectively.
Biazar and Ghanbari in [5] assumed a form of Newton-like methods with four parameters as

follows:

xn+1 = xn −
Afnf

′
n
2f ′′n +Bf ′n

4 + Cfn
2f ′′n

2

f ′n
3f ′′n +Dfnf ′nf

′′
n
2 . (7)

From the error equation of the assumed method, parameters are controlled to make the method
cubically convergent. A new method thereby introduced is

xn+1 = xn −
f ′n

m+3
2(m−1)f

′′
n −

m(m+1)
2(m−1)2

fnf ′′n
2

f ′n
2

, (8)

which is to be referred to as Biazar and Ghanbari’s method(BGM).
In Section 2.1, we start with basic but essential definitions. We also define multiplicational

combinations with restricted derivatives of f , and write a general expression for them. Then,
a Newton-like method with nine parameters is constructed under a number of assumptions. In
Section 2.2, we derive the error equation of the method and solve for parameters to obtain a cubic
convergence. In such a way, we derive a number of Newton-like methods, some of which are
introduced previously. Section 3 contains numerical comparisons between the methods introduced
or derived.

2. DEVELOPMENT OF METHODS

2.1. Construction of the scheme. Before we begin, the order of convergence and multiple roots
must be defined clearly.
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Definition 1. (See [6]) With α a real number, and n a non-negative integer, if a real sequence {xn}
converges to α and for n large enough there exist constants c ≥ 0 and p ≥ 0 that satisfy

| xn+1 − α |≤ c | xn − α |p, (9)

then the maximum of p is said to be an order of convergence of {xn} to α.

Definition 2. (See [7, p.79]) A root α of an equation f(x) = 0 is said to have the multiplicity m if
and only if f(α) = 0, f ′(α) = 0, f ′′(α) = 0, . . . , f (m−1)(α) = 0 and f (m)(α) 6= 0. In this case,
f can be written as

f(x) = (x− α)mg(x), (10)

with g(α) 6= 0.

Now, as a preparation for the rest of the section, we define a new concept of multiplicational
combinations.

Definition 3. Let f be a two times differentiable function. With any integers a,b, and c such that
a+ b+ c = 0,

Fk,−c = faf ′bf ′′c (11)

is a multiplicational combination of f , f ′, and f ′′, with differential order k=b+2c.

Multiplicational combinations acquire an important property that will be used importantly for
the discussion followed.

Theorem 1. If Fk,−c is a multiplicational combination of f , f ′, and f ′′, with differential order k,

Fk,−c = Fk,s = (
f ′

f
)k(

f ′2

ff ′′
)s, (12)

for some integer s = −c. The converse is also true.

Proof. Let Fk,−c = faf ′bf ′′c for integers a, b, and c. By Definition 3, a+b+c = 0 and b+2c = k.
Solving the system gives a = −k + c and b = k − 2c. Thus

Fk,−c = f−k+cf ′k−2cf ′′c = (
f ′

f
)k(

f ′2

ff ′′
)−c. (13)

Letting s = −c, we have

Fk,s = (
f ′

f
)k(

f ′2

ff ′′
)s. (14)

If u = (f
′

f )
k( f ′2

ff ′′ )
s,

u = f−k−sf ′k+2sf ′′−s = Fk,s, (15)

and thus is a multiplicational combination of f , f ′, and f ′′, with differential order k. This completes
the proof. �
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Single-step iterative methods are generally expressed as xn+1 = xn − g(xn), where g(xn)
denotes an iteration function of xn. For computational efficiency, we only consider g(xn)’s that
consist of fn, f ′n, f ′′n and a finite number of fundamental arithmetic operations between them. With
the assumption, g(xn) can be written as follows:

g(xn) =

∑
a,b,c fn

af ′n
bf ′′n

cθ(a, b, c)∑
a,b,c fn

af ′n
bf ′′n

cφ(a, b, c)
, (16)

where θ and φ symbolize the linear combination of fnaf ′n
bf ′′n

c’s in the numerator and the denomi-
nator, respectively. It is reasonable to assume that all terms included in the sum are required to have
the same arithmetic order, namely, a+ b+ c. Thus, by an appropriate division, both the numerator
and the denominator each reduces to a linear combination of multiplicational combinations. Then
by Theorem 1,

g(xn) =

∑
k,s (

f ′

f )
k( f ′2

ff ′′ )
sθ(k, s)∑

k,s(
f ′

f )
k( f ′2

ff ′′ )
sφ(k, s)

. (17)

Here, for optimization(see Remark 1), we assume that the numerator and the denominator each
consists of multiplicational combinations of uniform differential order. That is, for integers k1 and
k2,

g(xn) =
(f
′

f )
k1
∑

s (
f ′2

ff ′′ )
sθ(s)

(f
′

f )
k2
∑

s(
f ′2

ff ′′ )
sφ(s)

. (18)

Theorem 2. For an iteration function defined by (18), if xn+1 = xn−g(xn) is cubically convergent
to α, the root of f(x) = 0 with multiplicity m, it is required that k1 − k2 = −1.

Proof. Taylor’s expansion for f about a multiple root α of f(x) = 0 with multiplicity m gives

f(xn) = f (m)(α)(c0e
m
n + c1e

m+1
n + c2e

m+2
n + · · · ), (19)

f ′(xn) = f (m)(α){mc0em−1n + (m+ 1)c1e
m
n + (m+ 2)c2e

m+1
n + · · · }, (20)

and

f ′′(xn) = f (m)(α){m(m− 1)c0e
m−2
n + (m+ 1)mc1e

m−1
n + (m+ 2)(m+ 1)c2e

m
n , (21)

where cn’s and en are defined as follows:

cn =
1

(m+ n)!

f (m+n)(α)

f (m)(α)
, en = xn − α. (22)

Then,
fn
f ′n

=
1

m
en −

1

m2

c1
c0
e2n +

(m+ 1

m3

c21
c20
− 2

m2

c2
c0

)
e3n + · · · , (23)

f ′2n
fnf ′′n

=
m

m− 1
− 2

(m− 1)2
c1
c0
en +

( 3m2 + 1

m(m− 1)3
c21
c20
− 6

(m− 1)2
c2
c0

)
e2n + · · · , (24)

and thus
g(xn) =

(
en +O(e2n)

)k2−k1(1 +O(en)
)
= ek2−k1n +O(ek2−k1+1

n ). (25)
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For cubic convergence, we require en+1 = O(e3n) and thus,

g(xn) = en +O(e3n). (26)

From (25) and (26), k2 − k1 = 1, which completes the proof. �

Thereby the iteration function g(xn) reduces to its final form,

g(xn) = (
fn
f ′n

)

∑
s F0,sθ(s)∑
s F0,sφ(s)

. (27)

There are infinitely many F0,s’s, however, writing from the simplest terms, five examples of
multiplicational combinations of zeroth differential order can be written as

1,
f ′2

ff ′′
, (
f ′2

ff ′′
)−1, (

f ′2

ff ′′
)2, (

f ′2

ff ′′
)−2, · · · . (28)

Therefore, we construct a Newton-like method with nine parameters as follows:

xn+1 = xn − (
fn
f ′n

)

(A+B( f ′n
2

fnf ′′n
) + C( f ′n

2

fnf ′′n
)−1 +D( f ′n

2

fnf ′′n
)2 + E( f ′n

2

fnf ′′n
)−2

1 + F ( f ′n
2

fnf ′′n
) +G( f ′n

2

fnf ′′n
)−1 +H( f ′n

2

fnf ′′n
)2 + I( f ′n

2

fnf ′′n
)−2

)
(29)

2.2. Solving for parameters. During the last section, (29) was derived to be the simplest possible
form for the cubic order methods. Now we will find which among the form actually acquire the
desired order.

Theorem 3. Let α be an exact root of f and its multiplicity be m. Let n be an integer with n ≥ 0,
xn an approximation after n iterations. Then the Newton-like method defined by (29) is cubically
convergent if and only if

X
(
A B C D E F G H I

)T
=

(
1
0

)
(30)

with

X =

(
1
m

1
m−1

m−1
m2

m
(m−1)2

(m−1)2
m3 − m

m−1 −m−1
m − m2

(m−1)2 − (m−1)2
m2

1
m2

m+1
m(m−1)2

m−3
m3

m+3
(m−1)3

(m−1)(m−5)
m4 − 2

(m−1)2
2
m2 − 4m

(m−1)3
4(m−1)

m3

)
(31)

is satisfied.
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Proof. We use the Taylor’s expansion (19) through (21) of f about α and definition (22) to obtain
expressions for the nine terms included in (29).

fn
f ′n

=
1

m
en −

1

m2

c1
c0
e2n +

(m+ 1

m3

c21
c20
− 2

m2

c2
c0

)
e3n + · · · (32)

f ′n
f ′′n

=
1

m− 1
en −

m+ 1

m(m− 1)2
c21
c20
e2n −

( (m+ 1)2

m(m− 1)3
c21
c20
− 2(m+ 2)

m(m− 1)2
c2
c0

)
e3n + · · · (33)

f2nf
′′
n

f ′3n
=
m− 1

m2
en −

m− 3

m3

c1
c0
e2n +

(m2 − 3m− 6

m4

c21
c20
− 2(m− 4)

m3

c2
c0

)
e3n + · · · (34)

f ′3n
f2nf

′′
n

=
m

(m− 1)2
en −

m+ 3

(m− 1)3
c1
c0
e2n +

((m+ 2)(m+ 3)

(m− 1)4
c21
c20
− 2(m+ 5)

(m− 1)3
c2
c0

)
e3n + · · · (35)

f3nf
′′2
n

f ′5n
=
(m− 1)2

m3
en −

(m− 1)(m− 5)

m4

c1
c0
e2n (36)

+
(m3 − 7m2 − 5m+ 15

m5

c21
c20
− 2(m− 1)(m− 7)

m4

c2
c0

)
e3n + · · ·

f ′2n
fnf ′′n

=
m

m− 1
− 2

(m− 1)2
c1
c0
en +

( 3m2 + 1

m(m− 1)3
c21
c20
− 6

(m− 1)2
c2
c0

)
e2n + · · · (37)

fnf
′′
n

f ′2n
=
m− 1

m
+

2

m2

c1
c0
en +

(
− 3m+ 1

m3

c21
c20

+
6

m2

c2
c0

)
e2n + · · · (38)

f ′4n
f2nf

′′2
n

=
m2

(m− 1)2
− 4m

(m− 1)3
c1
c0
en +

(6(m2 + 1)

(m− 1)4
c21
c20
− 12m

(m− 1)3
c2
c0

)
e2n + · · · (39)

f2nf
′′2
n

f ′4n
=
(m− 1)2

m2
+

4(m− 1)

m3

c1
c0
en +

(
− 2(3m2 − 5)

m4

c21
c20
− 12(m− 1)

m3

c2
c0

)
e2n + · · · (40)

From these equations, an error equation of (29) is easily derived:

en+1 = en −K1en −K2en
2 +O(e3n) (41)

where

K1 =
( 1
m
A+

1

m− 1
B +

m− 1

m2
C +

m

(m− 1)2
D +

(m− 1)2

m3
E

− m

m− 1
F − m− 1

m
G− m2

(m− 1)2
H − (m− 1)2

m2
I
) (42)

and

K2 =
( 1

m2
A+

m+ 1

m(m− 1)2
B +

m− 3

m3
C +

m+ 3

(m− 1)3
D +

(m− 1)(m− 5)

m4
E

− 2

(m− 1)2
F +

2

m2
G− 4m

(m− 1)3
H +

4(m− 1)

m3
I
)
.

(43)

The condition for (29) to be cubically convergent is K1 = 1 and K2 = 0, which is equivalent to
(30). This completes the proof.
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Any combinations of parameters satisfying (30) would yield a cubic order Newton-like iterative
method. However, a combination with all parameters activated will lead to a very complicated
method, resulting in a relatively high computational cost. For this reason, it would be the best to let
as many parameters as possible be zero, leaving only two of them non-zero. Noting that A, B, C,
D, E cannot be all zero at the same time, there are 30 combinations in each of which all parameters
except for two of them are zero. Nevertheless, it can be observed that 7 pairs are equivalent, by
multiplying an appropriate power of f ′2

ff ′′ to both the numerator and the denominator. Thereby we
obtain 23 unique cubic order methods among the family of (29).

Letting all parameters but A and B be zero, and solving (30) gives

A =
m(m+ 1)

2
, B = −(m− 1)2

2
, (44)

yielding a method

xn+1 = xn −
m(m+ 1)

2

fn
f ′n

+
(m− 1)

2

2 f ′n
f ′′n
. (45)

Similarly, 22 other methods obtained are displayed in Table 1. In the left column are combina-
tions of non-zero parameters, and by solving (30) for the parameters, we obtain iterative methods
displayed in the right column.

parameters iterative method obtained

A,C xn+1 = xn −
m(3−m)

2

fn
f ′n
− m2

2

f2nf
′′

f ′3n
(46)

A,D xn+1 = xn −
m(m+ 3)

4

fn
f ′n

+
(m− 1)3

4m

f ′3n
fnf ′′2n

(47)

A,E xn+1 = xn +
m(m− 5)

4

fn
f ′n
− m3

4(m− 1)

f3nf
′′2
n

f ′5n
(48)

A,F xn+1 = xn +
2m2f2nf

′′
n

m(m− 3)fnf ′nf
′′
n − (m− 1)2f ′3n

(49)

A,G xn+1 = xn −
2mfnf

′
n

(m+ 1)f ′2n −mfnf ′′n
(50)

A,H xn+1 = xn +
4m3f3nf

′′2
n

m2(m− 5)f2nf
′
nf
′′2
n − (m− 1)3f ′5n

(51)

A,I xn+1 = xn −
4m(m− 1)fnf

′3
n

(m− 1)(m+ 3)f ′4n −m2f2nf
′′2
n

(52)

Table 1. Non-zero parameters and corresponding iterative methods.
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parameters iterative method obtained

B,C xn+1 = xn +
(m− 1)(m− 3)

4

f ′n
f ′′n
− m2(m+ 1)

4(m− 1)

f2nf
′′
n

f ′3n
(53)

B,D xn+1 = xn −
(m− 1)(m+ 3)

2

f ′n
f ′′n

+
(m− 1)2(m+ 1)

2m

f ′3n
fnf ′′2n

(54)

B,E xn+1 = xn +
(m− 1)(m− 5)

6

f ′n
f ′′n
− m3(m+ 1)

6(m− 1)2
f3nf

′′2
n

f ′5n
(55)

B,G xn+1 = xn −
2(m− 1)2f ′3n

(m− 1)(m+ 3)f ′2n f
′′
n −m(m+ 1)fnf ′′2n

(56)

B,H xn+1 = xn +
4m2(m− 1)f2nf

′
nf
′′
n

m2(m− 3)f2nf
′′2
n − (m− 1)2(m+ 1)f ′4n

(57)

B,I xn+1 = xn −
4(m− 1)3f ′5n

(m− 1)2(m+ 5)f ′4n f
′′
n −m2(m+ 1)f2nf

′′3
n

(58)

C,D xn+1 = xn −
m2(m+ 3)

6(m− 1)

f2nf
′′
n

f ′3n
+

(m− 1)2(m− 3)

6m

f ′3n
fnf ′′2n

(59)

C,E xn+1 = xn +
m2(m− 5)

2(m− 1)

f2nf
′′
n

f ′3n
− m2(m− 3)

2(m− 1)2
f3nf

′′2
n

f ′5n
(60)

C,F xn+1 = xn +
2m3f3nf

′′2
n

m(m− 1)(m− 5)fnf ′3n f
′′
n − (m− 1)2(m− 3)f ′5n

(61)

C,H xn+1 = xn +
4m4f4nf

′′3
n

m2(m− 1)(m− 7)f2nf
′3
n f
′′2
n − (m− 1)3(m− 3)f ′7n

(62)

D,E xn+1 = xn +
(m− 1)2(m− 5)

8m

f ′3n
fnf ′′2n

− m3(m+ 3)

8(m− 1)2
f3nf

′′2
n

f ′5n
(63)

D,G xn+1 = xn −
2(m− 1)3f ′5n

m(m− 1)(m+ 5)fnf ′2n f
′′2
n −m2(m+ 3)f2nf

′′3
n

(64)

D,I xn+1 = xn −
4(m− 1)4f ′7n

m(m− 1)2(m+ 7)fnf ′4n f
′′2
n −m3(m+ 3)f3nf

′′4
n

(65)

E,F xn+1 = xn +
2m4f4nf

′′3
n

m(m− 1)2(m− 7)fnf ′5n f
′′
n − (m− 1)3(m− 5)f ′7n

(66)

E,H xn+1 = xn +
4m5f5nf

′′4
n

m2(m− 1)2(m− 9)f2nf
′5
n f
′′2
n − (m− 1)4(m− 5)f ′9n

(67)

Table 1. (continued)

Method (45) is Osada’s method(OM) introduced in (5), (46) is Euler-Chebyshev method(ECM)
introduced in (4), (48) is Chun and Neta’s method(CNM) introduced in (6), (49) is Halley’s
method(HM) introduced in (3), and (56) is Biazar and Ghanbari’s method(BGM) introduced in
(8). Moreover, since these methods are constructed by allowing only two of nine parameters to be
non-zero, more can be constructed from (29) by setting various combinations of non-zero parame-
ters, though an excess of non-zero terms would corrupt the computational efficiency.

An efficiency index of an iterative method is defined by p1/d where p denotes the order of
convergence of an iterative method, and d denotes the number of function evaluations required per
each iteration, which is very reasonable considering the definition of the order of convergence. The

1145



SINGLE-STEP ITERATIVE METHODS FOR MULTIPLE ROOTS

efficiency index of methods (45) through (67) is 31/3 = 1.442, which is higher than the Newton’s
method (2) or optimal fourth-order iterative methods, with efficiency index 21/2 = 41/4 = 1.414.
Note that the third-ordered methods (45) through (67) require one functional and two derivative
evaluations per iteration.

Remark 1. Summing multiplicational combinations of uniform differential order k preserves the
expansion form of ekn(p1 + p2

c1
c0
en + (p3

c21
c20

+ p4
c2
c0
)e2n + O(e3n)), where pi’s are constants. While

the error equation must be an identity of ci’s and en, it is optimal to reduce as many terms of ci’s
and en as possible in order to keep the method simple. In fact, all existing single-step methods of
cubic convergence are included within (27), or in fact, within (29).

Remark 2. The condition for (29) to converge with fourth order, simultaneously derived, is equiv-
alent to an impossible system of equations. Therefore we consider it to be impossible to construct
a fourth-order iterative method of single-step scheme, with three or less function evaluations. This
limits the efficiency of single-step iterative methods for multiple roots.

3. NUMERICAL COMPARISONS

In this Section, numerical comparisons between cubically convergent methods of family (29) are
presented. Test functions used for root-finding are displayed in Table 2, along with each of their
approximate root and their multiplicity, and values used as initial points for each test function.

test function approximate root multiplicity initial value
f1(x) = (x3 + 4x2 − 10)3 1.36523 m=3 2 1
f2(x) = (sin2 x− x2 + 1)2 1.40449 m=2 2.3 2
f3(x) = (x2 − ex − 3x+ 2)5 0.25753 m=5 -1 1
f4(x) = (cosx− x)3 0.73909 m=3 1.7 1
f5(x) = ((x− 1)3 − 1)6 2 m=6 3 2.3
f6(x) = (xex

2 − sin2 x+ 3 cosx+ 5)4 -1.20765 m=4 -2 -1
f7(x) = (sinx− x/2)2 1.89549 m=2 1.7 2

Table 2. Test functions, approximate roots, their multiplicity, and initial values used.
Displayed in Table 3 are the number of iterations required to reach | f(xn) |≤ 10−128 for each
method and for each test function and an initial value. In the parentheses are the absolute value
of f(xn) after such iterations. Average numbers of iterations required for these cases are also
displayed for each method. All computations were done using Mathematica, inserting inputs with
significant figures large enough. Here * denotes where the approximation does not converge into
the exact root.

From the result, we consider (52) to be the most powerful iterative method among the family, and
(50), (56), or (63) are also of considerable quality. It is interesting that though (64)and (65) often
fail to converge into the root either temporarily or permanently, other methods have similar speed
of convergence, differing by no more than 1 in average number of iterations. In fact, all methods
in the comparison required the same number of iterations in two cases, namely, f3(x), x0 = 1 and
f4(x), x0 = 1.
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4. CONCLUSION

Reduced from the most primitive form of iteration functions, a general single-step iterative
scheme is constructed under a number of assumptions while maintaining simplicity. Considering
only a finite number of multiplicational combinations, 23 cubically convergent iterative methods,
those we consider to be the simplest among the scheme, are derived by the method of undetermined
coefficients in the error equation. They include all existing single-step iterative methods. The mul-
tiplicational combination-based approach allows construction of more methods with consistency,
within the same scheme. The numerical comparisons show the quality of the derived methods, and
it can be observed from the comparisons that few of these methods have higher quality than the
others, though not of significant difference.

f1(x) f2(x) f3(x) f4(x)
methods x0 = 2 x0 = 1 x0 = 2.3 x0 = 2 x0 = −1 x0 = 1 x0 = 1.7
(45)(OM) 5(8e-322) 5(2e-258) 6(3e-343) 5(7e-153) 4(1e-267) 4(7e-286) 5(2e-364)
(46)(ECM) 5(5e-371) 5(7e-374) 5(2e-142) 5(1e-190) 4(2e-278) 4(2e-279) 5(5e-378)
(47) 5(3e-304) 5(7e-210) 6(9e-317) 5(3e-141) 4(2e-264) 4(3e-289) 5(9e-359)
(48)(CNM) 4(2e-133) 4(1e-149) 5(2e-169) 5(1e-227) 4(8e-287) 4(2e-276) 5(4e-386)
(49)(HM) 5(5e-371) 5(7e-374) 6(4e-377) 5(6e-168) 4(5e-300) 4(2e-273) 5(5e-378)
(50) 4(1e-154) 4(1e-179) 5(8e-172) 5(3e-231) 4(1e-358) 4(1e-267) 4(5e-131)
(51) 5(6e-342) 5(1e-321) 6(3e-341) 5(5e-152) 4(8e-287) 4(2e-276) 5(7e-371)
(52) 4(7e-195) 4(7e-294) 5(2e-266) 5(1e-335) 3(8e-180) 4(8e-265) 4(1e-134)
(53) 5(5e-371) 5(7e-374) 5(7e-166) 5(1e-222) 4(3e-275) 4(5e-281) 5(5e-378)
(54) 5(7e-262) 6(3e-324) 6(5e-225) 6(3e-302) 4(6e-261) 4(1e-296) 5(5e-344)
(55) 4(4e-149) 4(3e-268) 5(7e-173) 5(3e-253) 4(8e-287) 4(2e-276) 4(6e-131)
(56)(BGM) 4(3e-146) 4(1e-131) 5(3e-240) 5(2e-144) 4(3e-309) 4(2e-259) 4(5e-156)
(57) 5(5e-371) 5(7e-374) 6(3e-336) 5(2e-149) 4(2e-309) 4(6e-272) 5(5e-378)
(58) 5(7e-323) 5(3e-325) 5(5e-131) 6(2e-143) 4(2e-272) 4(1e-255) 4(3e-169)
(59) 5(5e-371) 5(7e-374) 5(3e-208) 5(1e-289) 4(1e-272) 4(1e-282) 5(5e-378)
(60) 5(5e-371) 5(7e-374) 6(8e-333) 5(1e-147) 4(8e-287) 4(2e-276) 5(5e-378)
(61) 5(5e-371) 5(7e-374) 5(1e-164) 5(9e-221) 4(8e-287) 4(2e-276) 5(5e-378)
(62) 5(5e-371) 5(7e-374) 5(4e-205) 5(6e-283) 4(6e-282) 4(6e-278) 5(5e-378)
(63) 4(1e-174) 4(5e-164) 5(1e-157) 4(5e-147) 4(8e-287) 4(2e-276) 4(2e-134)
(64) 5(1e-194) 5(3e-228) 17(4e-357) 74(3e-164) 4(3e-236) 4(1e-249) 4(6e-135)
(65) 6(2e-370) 5(3e-185) * 6(2e-187) 4(4e-215) 4(6e-245) 5(6e-383)
(66) 4(2e-147) 4(2e-160) 5(1e-152) 5(1e-268) 4(8e-287) 4(2e-276) 4(7e-131)
(67) 4(1e-171) 5(8e-390) 5(9e-153) 5(4e-299) 4(8e-287) 4(2e-276) 4(2e-134)

Table 3. Numbers of iterations for test functions and initial points given in Table 1, with | f(xn) |
after such iterations.
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f4(x) f5(x) f6(x) f7(x)
x0 = 1 x0 = 3 x0 = 2.3 x0 = −2 x0 = −1 x0 = 1.7 x0 = 2 average

(45) 4(1e-237) 5(4e-258) 4(9e-238) 6(1e-141) 5(3e-317) 5(3e-227) 4(2e-157) 4.79
(46) 4(6e-247) 5(3e-286) 4(1e-253) 6(5e-200) 4(4e-150) 5(2e-333) 4(6e-177) 4.64
(47) 4(1e-233) 5(3e-246) 4(5e-231) 7(4e-375) 5(1e-261) 5(2e-187) 4(4e-151) 4.86
(48) 4(2e-252) 5(2e-303) 4(3e-263) 6(5e-248) 4(1e-184) 4(2e-146) 4(7e-195) 4.43
(49) 4(6e-247) 5(5e-351) 4(2e-288) 6(8e-255) 4(3e-181) 5(3e-276) 4(1e-165) 4.71
(50) 4(4e-259) 4(7e-140) 4(4e-326) 5(6e-196) 4(5e-361) 4(1e-139) 4(1e-195) 4.21
(51) 4(6e-242) 5(2e-324) 4(1e-274) 6(7e-196) 4(1e-152) 5(8e-236) 4(3e-157) 4.71
(52) 4(8e-267) 4(6e-158) 4(6e-354) 5(2e-289) 4(5e-259) 4(4e-192) 4(2e-243) 4.14
(53) 4(6e-247) 5(2e-277) 4(1e-248) 6(8e-189) 4(7e-140) 4(1e-178) 4(1e-193) 4.57
(54) 4(2e-223) 5(6e-227) 4(6e-220) 7(2e-268) 5(5e-167) 6(2e-221) 4(5e-130) 5.07
(55) 4(9e-259) 5(5e-300) 4(3e-261) 6(7e-265) 4(8e-205) 5(3e-280) 4(1e-198) 4.43
(56) 4(2e-308) 4(4e-215) 3(6e-146) 7(6e-354) 4(4e-160) 5(1e-228) 4(1e-152) 4.36
(57) 4(6e-247) 5(2e-370) 4(3e-298) 6(3e-286) 4(3e-192) 5(3e-245) 4(8e-157) 4.71
(58) 4(2e-315) 4(1e-252) 3(7e-175) 7(4e-180) 4(6e-132) 5(1e-185) 4(3e-134) 4.57
(59) 4(6e-247) 5(3e-269) 4(6e-244) 6(2e-179) 4(1e-129) 5(3e-378) 4(9e-230) 4.64
(60) 4(6e-247) 5(5e-307) 4(3e-265) 6(1e-230) 4(4e-171) 5(5e-248) 4(2e-156) 4.71
(61) 4(6e-247) 5(1e-319) 4(5e-272) 6(3e-213) 4(8e-161) 4(1e-135) 4(4e-193) 4.57
(62) 4(6e-247) 5(1e-306) 4(4e-265) 6(6e-199) 4(4e-151) 5(2e-331) 4(3e-228) 4.64
(63) 4(5e-266) 5(9e-297) 4(2e-259) 6(1e-281) 4(4e-242) 5(7e-186) 4(1e-159) 4.36
(64) 4(1e-372) 4(1e-310) 4(9e-389) * 5(9e-297) 6(4e-354) 5(3e-328) 10.85
(65) 4(7e-285) 4(2e-201) 4(1e-319) * 5(1e-242) 6(3e-270) 5(7e-294) 4.83
(66) 4(1e-258) 5(8e-311) 4(2e-267) 6(1e-246) 4(1e-186) 6(1e-381) 4(3e-163) 4.5
(67) 4(8e-266) 5(7e-307) 4(3e-265) 6(6e-263) 4(2e-211) 5(3e-292) 4(5e-145) 4.5

Table 3. (continued)
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COMPACT DIFFERENCES OF VOLTERRA COMPOSITION
OPERATORS FROM BERGMAN-TYPE SPACES TO

BLOCH-TYPE SPACES

ZHI JIE JIANG

Abstract. This paper characterizes the metrically compactness of differences

of Volterra composition operators from the weighted Bergman-type space Apu,
0 < p <∞, to the Bloch-type space B∞v of analytic functions on the unit disk

D in terms of inducing symbols ϕ1, ϕ2 : D → D and ψ1, ψ2 : D → C.

1. Introduction

Let D be the open unit disk in the complex plane, H(D) the space of all analytic
functions on D, and H∞(D) = H∞ the space of all bounded analytic functions on
D with the supremum norm ‖f‖∞ = supz∈D |f(z)|.

Let dA(z) = 1
πdxdy be the normalized Lebesgue measure on D. A positive

continuous function u on [0, 1) is normal, if there exist positive numbers s and t,
0 < s < t, such that u(r)/(1−r)s is decreasing on [0, 1) and limr→1 µ(r)/(1−r)s = 0;
u(r)/(1− r)t is increasing on [0, 1) and limr→1 u(r)/(1− r)t =∞. For 0 < p <∞
and the normal function u, the Bergman-type space Apu(D) = Apu consists of all
f ∈ H(D) such that

‖f‖pp,u =
∫

D
|f(z)|pu

p(|z|)
1− |z|

dA(z) <∞.

When p ≥ 1, the Bergman-type space with the norm ‖ · ‖p,u becomes a Banach
space. If p ∈ (0, 1), it is a Fréchet space with the translation invariant metric

d(f, g) = ‖f − g‖pp,u.

Let v be a positive continuous function on D (weight). The weighted-type space
H∞v (D) = H∞v consists of all f ∈ H(D) such that

‖f‖H∞v = sup
z∈D

v(z)|f(z)| <∞.

It is known that H∞v is a Banach space. The Bloch-type space B∞v (D) = B∞v
consists of all f ∈ H(D) such that

‖f‖v = sup
z∈D

v(z)|f ′(z)| <∞.

Various kinds of weights and related weighted-type spaces and Bloch-type spaces
have been studied, e.g., in [1, 2, 4, 10, 11, 12].

2000 Mathematics Subject Classification. Primary 47B38; Secondary 47B33, 47B37.
Key words and phrases. Volterra composition operator, Bergman-type space, weighted-type

space, Bloch-type space, metrically bounded operator, metrically compact operator.
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2 ZHI JIE JIANG

Let ϕ be an analytic self-map of D and ψ be an analytic function on D. For
f ∈ H(D) the Volterra composition operator Vϕ,ψ is defined by

Vϕ,ψf(z) =
∫ z

0

(f ◦ ϕ)(ξ)(ψ ◦ ϕ)′(ξ)dξ, z ∈ D.

As a kind of integral-type operator, the Volterra composition operators have been
studied in [7, 14, 17].

LetX and Y be topological vector spaces whose topologies are given by translation-
invariant metrics dX and dY , respectively, and L : X → Y be a linear operator. It
is said that L is metrically bounded if there exists a positive constant K such that

dY (Lf, 0) ≤ KdX(f, 0)

for all f ∈ X. When X and Y are Banach spaces, the metrically boundedness
coincides with the usual definition of bounded operators between Banach spaces.
Recall that L : X → Y is metrically compact if it maps bounded sets into relatively
compact sets. If X and Y are Banach spaces then metrically compactness becomes
usual compactness. For some results in this topic see [3, 5, 9, 16, 18, 19].

Let ϕ1, ϕ2 be nonconstant analytic self-maps of D and ψ1, ψ2 ∈ H(D). Differ-
ences of Voterra composition operators on H(D) are defined as follows

(Vϕ1,ψ1−Vϕ2,ψ2)(f)(z) =
∫ z

0

(
(f◦ϕ1)(ξ)(ψ1◦ϕ1)′(ξ)−(f◦ϕ2)(ξ)(ψ2◦ϕ1)′(ξ)

)
dξ, z ∈ D.

Differences of composition operators was studied first on the Hardy space H2(D)
in [3]. Recently Nieminen [13] has characterized the compactness of difference
of weighted composition operators Wϕ1,ψ1 −Wϕ2,ψ2 on weighted-type space given
by standard weights. Lindström and wolf [9] have generalized Nieminen’s result
to more general weights v and u and found an expression for the essential norm
‖Wϕ1,ψ1 −Wϕ2,ψ2‖e,H∞v →H∞u , where max{‖ϕ1‖∞, ‖ϕ2‖∞} = 1.

Here we continue this line of research and investigate the metrically compactness
of differences of Volterra composition operators acting from the weighted Bergman-
type space Apu to the Bloch-type space B∞v on the open unit disk. These results
extend the corresponding results on the single Volterra composition operators (see,
for example, [7, 14, 17]).

For w ∈ D, let σw be the Möbius transformation of D defined by σw(z) =
(w − z)/(1− wz). Note that the pseudo-hyperbolic metric ρ(z, w) = |σw(z)|.

Throughout this paper, constants are denoted by C, they are positive and may
differ from one occurrence to the other. The notation a � b means that there is a
positive constant C such that a/C ≤ b ≤ Ca.

2. Auxiliary results

The proof of the following lemma is standard, so it will be omitted (see, e.g.,
Lemma 3 in [15]).

Lemma 1. Assume that p > 0, u is a normal function on [0, 1), v is a weight
on D, ϕ1, ϕ2 are analytic self-maps of D, ψ1, ψ2 are analytic functions on D and
the operator Vϕ1,ψ1 − Vϕ2,ψ2 : Apu → B∞v is metrically bounded. Then the operator
Vϕ1,ψ1 − Vϕ2,u2 : Apu → B∞v is metrically compact if and only if for every bounded
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sequence (fn)n∈N in Apu such that fn → 0 uniformly on every compact subset of D
as n→∞ it follows that

lim
n→∞

‖(Vϕ1,ψ1 − Vϕ2,ψ2)fn‖v = 0.

The following lemma was proved in [8].

Lemma 2. There exists a constant C > 0 independent of f ∈ Apu such that

|f(z)| ≤ C‖f‖p,u
u(|z|)(1− |z|2)1/p

. (1)

Lemma 3. Let p > 0, u is a normal function on [0, 1), v is a weight on D, ϕ is
an analytic self-map of D and ψ is an analytic function on D. Then the operator
Vϕ,ψ : Apu → B∞v is metrically bounded if and only if

sup
z∈D

v(z)|ϕ′(z)||ψ′(z)|
u(|ϕ(z)|)(1− |ϕ(z)|2)1/p

<∞. (2)

Proof. Suppose that Vϕ,ψ : Apu → B∞v is metrically bounded. For a fixed w ∈ D,
setting

fw(z) =
(1− |ϕ(w)|2)t+1

u(|ϕ(w)|)(1− ϕ(w)z)1/p+t+1
,

then it is easy to show fw ∈ Apu and ‖fw‖p,u ≤ C. Thus

C‖Vϕ,ψ‖ ≥ ‖Vϕ,ψfw‖v = sup
z∈D

v(z)|ϕ′(z)||ψ′(z)||fw(ϕ(z))|

≥ v(w)|ϕ′(w)||ψ′(w)||fw(ϕ(w))|

=
v(w)|ϕ′(w)||ψ′(w)|

u(|ϕ(w)|)(1− |ϕ(w)|2)1/p
.

So, we prove that (2) holds.
If (2) holds, by Lemma 2, then we have

‖Vϕ,ψf‖v = sup
z∈D

v(z)|ϕ′(z)||ψ′(z)||f(ϕ(z))|

≤ C sup
z∈D

v(z)|ϕ′(z)||ψ′(z)|
u(|ϕ(z)|)(1− |ϕ(z)|2)1/p

‖f‖p,u.

It follows that Vϕ,ψ : Apu → B∞v is metrically bounded. �

The next lemma shows that H∞ ⊆ Apu.

Lemma 4. Assume that p > 0 and u is a normal function on [0, 1). Then H∞ ⊆
Apu.

Proof. For f ∈ H∞, we assume that |f(z)| ≤ M for all z ∈ D. Then by the
definition of the normal function and the Beta function,

‖f‖pp,u =
∫

D
|f(z)|pu

p(|z|)
1− |z|

dA(z) ≤M
∫

D

up(|z|)
1− |z|

dA(z)

= M

∫
D

up(|z|)
(1− |z|)ps

(1− |z|)ps−1dA(z)

=
M

π

∫ 2π

0

∫ 1

0

up(r)
(1− r)ps

(1− r)ps−1rdrdθ
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≤ 2Mup(0)B(2, ps),

where B(2, ps) is the Beta function. Thus we prove that f ∈ Apu. �

The following lemma is very useful in the proof of the main result.

Lemma 5. Assume that u is a normal function on [0, 1) such that u is continuously
differentiable. Then there exists a constant C > 0 such that∣∣∣u(|z|)(1− |z|2)1/pf(z)− u(|w|)(1− |w|2)1/pf(w)

∣∣∣ ≤ C‖f‖p,uρ(z, w) (3)

for all f ∈ Apu and for all z, w in D.

Proof. By Lemma 3 we have that if f ∈ Apu, then f ∈ H∞
u(|z|)(1−|z|2)1/p and

moreover ‖f‖u(|z|)(1−|z|2)1/p ≤ C‖f‖p,u. By the definition of normal function, it
follows that

u(|z|)(1− |z|2)1/p

(1− |z|)1/p+t
is increasing on [0, 1), where t is the positive number in the definition of normal
function. Then by the proof in [9], we obtain that u(|z|)(1 − |z|2)1/p satisfies the
following so-called Lusky condition (which is due to Lusky [11])

inf
n∈N

u(1− 2−n−1)(1− (1− 2−n−1)2)1/p

u(1− 2−n)(1− (1− 2−n)2)1/p
> 0.

Therefore, by the Lemma 1 in [9], for each f ∈ H∞
u(|z|)(1−|z|2)1/p and z, V ∈ D there

exists a C > 0 such that∣∣∣u(|z|)(1− |z|2)1/pf(z)− u(|w|)(1− |w|2)1/pf(w)
∣∣∣ ≤ C‖f‖u(|z|)(1−|z|2)1/pρ(z, w)

≤ C‖f‖p,uρ(z, w).

From this inequality estimate (3) follows. �

3. Main results

In this section we formulate and prove the main result of this paper.

Theorem 1. Assume that p > 0, u is a normal function on [0, 1) such that u
is continuously differentiable, v is a weight on D, ϕ1, ϕ2 are nonconstant analytic
self-maps of D, ψ1, ψ2 are analytic functions on D and Vϕ1,ψ1 , Vϕ2,ψ2 : Apu → B∞v
are metrically bounded operators. Then the operator Vϕ1,ψ1 − Vϕ2,ψ2 : Apu → B∞v is
metrically compact if and only if the following conditions hold:
(a)

lim
|ϕ1(z)|→1

v(z)|ϕ′1(z)||ψ′1(z)|
u(|ϕ1(z)|)(1− |ϕ1(z)|2)

1
p

ρ(ϕ1(z), ϕ2(z)) = 0;

(b)

lim
|ϕ2(z)|→1

v(z)|ϕ′2(z)||ψ′2(z)|
u(|ϕ2(z)|)(1− |ϕ2(z)|2)

1
p

ρ(ϕ1(z), ϕ2(z)) = 0;

(c)

lim
min{|ϕ1(z)|,|ϕ2(z)|}→1

v(z)
∣∣∣ ϕ′1(z)ψ′1(z)

u(|ϕ1(z)|)(1− |ϕ1(z)|2)
1
p

− ϕ′2(z)ψ′2(z)

u(|ϕ2(z)|)(1− |ϕ2(z)|2)
1
p

∣∣∣ = 0.
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Proof. Suppose that the operator Vϕ1,ψ1 − Vϕ2,ψ2 : Apu → B∞v is metrically
compact. If ‖ϕ1‖∞ < 1, then (a) vacuously holds. Hence assume that ‖ϕ1‖∞ = 1.
Suppose to the contrary that (a) is not true. Then there exists a sequence (zn)n∈N
such that |ϕ1(zn)| → 1 as n→∞ and

δ := lim
n→∞

v(zn)|ϕ′1(zn)||ψ′1(zn)|
u(|ϕ1(zn)|)(1− |ϕ1(zn)|2)1/p

ρ(ϕ1(zn), ϕ2(zn)) > 0. (4)

Since |ϕ1(zn)| → 1 as n → ∞, we can use the proof of Theorem 3.1 in [6] to find
functions fn ∈ H∞, n ∈ N, such that

∞∑
n=1

|fn(z)| ≤ 1, for all z ∈ D, (5)

and

fn(ϕ1(zn)) > 1− 1
2n
, n ∈ N. (6)

Since fn ∈ H∞, by Lemma 4 we have that fn ∈ Apu and ‖fn‖p,u ≤ C for all n ∈ N.
Note that form (6) it follows that lim

n→∞
|fn(ϕ1(zn))| = 1. Now, we define

kn(z) =
(1− |ϕ(zn)|2)t+1

u(|ϕ(zn)|)(1− ϕ(zn)z)1/p+t+1
, n ∈ N.

By the proof of Theorem 3.1 in [8], we obtain that that supn∈N ‖kn‖p,u ≤ C. Put
gn(z) = fn(z)σϕ2(zn)(z)kn(z), n ∈ N. Then clearly gn ∈ Apu with supn∈N ‖gn‖p,u ≤
C and gn → 0 uniformly on compact subsets of D as n→∞. Since Vϕ1,ψ1−Vϕ2,ψ2 :
Apu → B∞v is metrically compact, by Lemma 1 we get

lim
n→∞

‖(Vϕ1,ψ1 − Vϕ2,ψ2)gn‖v = 0. (7)

On the other hand, from the definition of the space B∞v , the definition of functions
gn and by using (6), we have that

‖(Vϕ1,ψ1 − Vϕ2,ψ2)gn‖v ≥v(zn)
∣∣ϕ′1(zn)ψ′1(zn)gn(ϕ1(zn))− ϕ′2(zn)ψ′2(zn)gn(ϕ2(zn))

∣∣
=v(zn)

∣∣ϕ′1(zn)ψ′1(zn)fn(ϕ1(zn))σϕ2(zn)(ϕ1(zn))kn(ϕ1(zn))
∣∣

≥v(zn)|ϕ′1(zn)||ψ′1(zn)|ρ(ϕ1(zn), ϕ2(zn))

u(|ϕ1(zn)|)(1− |ϕ1(zn)|2)
1
p

(
1− 1

2n
)
. (8)

Letting n→∞ in (8) and using (4), we obtain

lim
n→∞

‖(Vϕ1,ψ1 − Vϕ2,ψ2)gn‖v ≥ lim
n→∞

v(zn)|ϕ′1(zn)||ψ′1(zn)|ρ(ϕ1(zn), ϕ2(zn))

u(|ϕ1(zn)|)(1− |ϕ1(zn)|2)
1
p

= δ > 0,

which contradicts (7). This shows that

lim
n→∞

v(zn)|ϕ′1(zn)||ψ′1(zn)|
u(|ϕ1(zn)|)(1− |ϕ1(zn)|2)

1
p

ρ(ϕ1(zn), ϕ2(zn)) = 0,

for every sequence (zn)n∈N such that |ϕ1(zn)| → 1 as n→∞, which implies (a).
Condition (b) is proved similarly. Hence we omit it.
Now, we prove (c). Suppose to the contrary that (c) does not hold. Then there

is a sequence (zn)n∈N such that min{|ϕ1(zn)|, |ϕ2(zn)|} → 1 as n→∞ and

β := lim
n→∞

v(zn)
∣∣∣ ϕ′1(zn)ψ′1(zn)

u(|ϕ1(zn)|)(1− |ϕ1(zn)|2)
1
p

− ϕ′2(zn)ψ′2(zn)

u(|ϕ2(zn)|)(1− |ϕ2(zn)|2)
1
p

∣∣∣. (9)
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We may also assume that there is the following limit

l := lim
n→∞

ρ(ϕ1(zn), ϕ2(zn)) ≥ 0. (10)

Assume that l > 0. Then we have that for sufficiently large n, say n ≥ n0

0 <
β

2
≤ v(zn)

∣∣∣ ϕ′1(zn)ψ′1(zn)

u(|ϕ1(zn)|)(1− |ϕ1(zn)|2)
1
p

− ϕ′2(zn)ψ′2(zn)

u(|ϕ2(zn)|)(1− |ϕ2(zn)|2)
1
p

∣∣∣
≤2
l

( v(zn)|ϕ′1(zn)||ψ′1(zn)|
u(|ϕ1(zn)|)(1− |ϕ1(zn)|2)

1
p

+
v(zn)|ϕ′2(zn)||ψ′2(zn)|

u(|ϕ2(zn)|)(1− |ϕ2(zn)|2)
1
p

)
ρ(ϕ1(zn), ϕ2(zn)).

(11)

Letting n → ∞ in (11) and using (a) and (b), we arrive at a contradiction. Thus,
we can assume that l = 0. Let the sequences of functions (fn)n∈N and (kn)n∈N be
defined as above. Set

hn(z) = fn(z)kn(z), n ∈ N.
Then supn∈N ‖hn‖p,u ≤ C and hn → 0 uniformly on compact subsets of D as
n→∞. Hence by Lemma 1

lim
n→∞

‖(Vϕ1,ψ1 − Vϕ2,ψ2)hn‖v = 0. (12)

Since Vϕ2,ψ2 : Apu → B∞v is metrically bounded, then by Lemma 3 we have that

M := sup
z∈D

v(z)|ϕ′2(z)||ψ′2(z)|
u(|ϕ2(z)|)(1− |ϕ2(z)|2)1/p

<∞. (13)

We have

‖(V ϕ1,ψ1 − Vϕ2,ψ2)hn‖v ≥ v(zn)
∣∣ϕ′1(zn)ψ′1(zn)hn(ϕ1(zn))− ϕ′2(zn)ψ′2(zn)hn(ϕ2(zn))

∣∣
=v(zn)

∣∣ϕ′1(zn)ψ′1(zn)fn(ϕ1(zn))kn(ϕ1(zn))− ϕ′2(zn)ψ′2(zn)fn(ϕ2(zn))kn(ϕ2(zn))
∣∣

≥v(zn)
∣∣∣ ϕ′1(zn)ψ′1(zn)fn(ϕ1(zn))
u(|ϕ1(zn)|)(1− |ϕ1(zn)|2)1/p

− ϕ′2(zn)ψ′2(zn)fn(ϕ1(zn))
u(|ϕ2(zn)|)(1− |ϕ2(zn)|2)1/p

∣∣∣
− v(zn)

∣∣∣ ϕ′2(zn)ψ′2(zn)fn(ϕ1(zn))
u(|ϕ2(zn)|)(1− |ϕ2(zn)|2)1/p

− ϕ′2(zn)ψ′2(zn)fn(ϕ2(zn))kn(ϕ2(zn))
∣∣∣

≥v(zn)
∣∣∣ ϕ′1(zn)ψ′1(zn)
u(|ϕ1(zn)|)(1− |ϕ1(zn)|2)1/p

− ϕ′2(zn)ψ′2(zn)
u(|ϕ2(zn)|)(1− |ϕ2(zn)|2)1/p

∣∣∣(1− 1
2n
)

− v(zn)|ϕ′2(zn)||ψ′2(zn)|
u(|ϕ2(zn)|)(1− |ϕ2(zn)|2)1/p

∣∣∣u(|ϕ1(zn)|)(1− |ϕ1(zn)|2)1/phn(ϕ1(zn))

− u(|ϕ2(zn)|)(1− |ϕ2(zn)|2)1/phn(ϕ2(zn))
∣∣∣. (14)

From (13), applying Lemma 5 to the functions hn with the points z = ϕ1(zn) and
w = ϕ2(zn), and by using the fact supn∈N ‖hn‖p,u ≤ C, we get

v(zn)|ϕ′2(zn)||ψ′2(zn)|
u(|ϕ2(zn)|)(1− |ϕ2(zn)|2)1/p

∣∣∣u(|ϕ1(zn)|)(1− |ϕ1(zn)|2)1/phn(ϕ1(zn))− u(|ϕ2(zn)|)

(1− |ϕ2(zn)|2)1/phn(ϕ2(zn))
∣∣∣ ≤ CMρ(ϕ1(zn), ϕ2(zn)). (15)

Using (15) in (14), then letting n → ∞ is such obtained inequality and using (12)
we obtain that β = 0, which is a contradiction. This proves (c).

Now we assume that conditions (a)-(c) hold. Assume (fn)n∈N is a bounded
sequence in Apu such that fn → 0 uniformly on compact subsets of D. To prove
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that Vϕ1,ψ1−Vϕ2,ψ2 : Apu → B∞v is a metrically compact operator, in view of Lemma
1, it is enough to show that ‖(Vϕ1,ψ1 −Vϕ2,ψ2)fn‖v → 0 as n→∞. Suppose to the
contrary that this is not true. Then for some ε > 0 there is a subsequence (fnk

)k∈N
of (fn)n∈N such that ‖(Vϕ1,ψ1 − Vϕ2,ψ2)fnk

‖v ≥ 2ε > 0 for every k ∈ N. We may
assume that (fnk

)k∈N is (fn)n∈N. Then there is a sequence (zn)n∈N in D such that

v(zn)
∣∣ϕ′1(zn)ψ′1(zn)fn(ϕ1(zn))− ϕ′2(zn)ψ′2(zn)fn(ϕ2(zn))

∣∣ ≥ ε > 0, n ∈ N. (16)

We may also assume that the sequences (ϕ1(zn))n∈N and (ϕ2(zn))n∈N converge.
If it were max{|ϕ1(zn)|, |ϕ2(zn)|} → q < 1, then from (16), since for the test
function f(z) ≡ 1 ∈ Apu (by Lemma 4), from the boundedness of the operators
Vϕi,ψi : Apu → B∞v , i = 1, 2, we have that ψ1 ◦ ϕ1, ψ2 ◦ ϕ2 ∈ B∞v and since
fn(ϕi(zn)) → 0 as n → ∞, i = 1, 2, we would obtain a contradiction. Hence
max{|ϕ1(zn)|, |ϕ2(zn)|} → 1 as n → ∞. We can suppose that |ϕ1(zn)| → 1 and
ϕ2(zn) → z0 as n → ∞. Also, we can suppose that limit in (10) exists. Assume
that l > 0. Then by (a) and (b), we get

lim
|ϕ1(zn)|→1

v(zn)|ϕ′1(zn)||ψ′1(zn)|
u(|ϕ1(zn)|)(1− |ϕ1(zn)|2)1/p

ρ(ϕ1(zn), ϕ2(zn)) = 0 (17)

and

lim
|ϕ2(zn)|→1

v(zn)|ϕ′2(zn)||ψ′2(zn)|
u(|ϕ2(zn)|)(1− |ϕ2(zn)|2)1/p

ρ(ϕ1(zn), ϕ2(zn)) = 0. (18)

From (16) and Lemma 2, it follows that

0 <ε ≤ v(zn)|ϕ′1(zn)||ψ′1(zn)|
u(|ϕ1(zn)|)(1− |ϕ1(zn)|2)

1
p

∣∣∣u(|ϕ1(zn)|)(1− |ϕ1(zn)|2)
1
p fn(ϕ1(zn))

∣∣∣
+

v(zn)|ϕ′2(zn)||ψ′2(zn)|
u(|ϕ2(zn)|)(1− |ϕ2(zn)|2)

1
p

∣∣∣u(|ϕ2(zn)|)(1− |ϕ2(zn)|2)
1
p fn(ϕ2(zn))

∣∣∣
≤C
( v(zn)|ϕ′1(zn)||ψ′1(zn)|
u(|ϕ1(zn)|)(1− |ϕ1(zn)|2)

1
p

+
v(zn)|ϕ′2(zn)||ψ′2(zn)|

u(|ϕ2(zn)|)(1− |ϕ2(zn)|2)
1
p

)
‖fn‖p,u. (19)

Letting n→∞ in (19) and using (18) we obtain a contradiction. Thus, we conclude
that l = 0 which implies that |ϕ2(zn)| → 1 as n → ∞. From (16), Lemmas 2, 3
and 5, and using (a) and (b) we have

0 < ε ≤ v(zn)
∣∣ϕ′1(zn)ψ′1(zn)f(ϕ1(zn))− ϕ′2(zn)ψ′2(zn)f(ϕ2(zn))

∣∣
≤ v(zn)|ϕ′1(zn)||ψ′1(zn)|
u(|ϕ1(zn)|)(1− |ϕ1(zn)|2)

1
p

∣∣∣u(|ϕ1(zn)|)(1− |ϕ1(zn)|2)
1
p f(ϕ1(zn))

− u(|ϕ2(zn)|)(1− |ϕ2(zn)|2)
1
p f(ϕ2(zn))

∣∣∣+ v(zn)
∣∣∣ ϕ′1(zn)ψ′1(zn)

u(|ϕ1(zn)|)(1− |ϕ1(zn)|2)
1
p

− ϕ′2(zn)ψ′2(zn)

u(|ϕ2(zn)|)(1− |ϕ2(zn)|2)
1
p

∣∣∣u(|ϕ2(zn)|)(1− |ϕ2(zn)|2)
1
p |f(ϕ2(zn))|

≤ C v(zn)|ϕ′1(zn)||ψ′1(zn)|
u(|ϕ1(zn)|)(1− |ϕ1(zn)|2)

1
p

‖fn‖p,uρ(ϕ1(zn), ϕ2(zn)) + v(zn)

×
∣∣∣ ϕ′1(zn)ψ′1(zn)

u(|ϕ1(zn)|)(1− |ϕ1(zn)|2)
1
p

− ϕ′2(zn)ψ′2(zn)

u(|ϕ2(zn)|)(1− |ϕ2(zn)|2)
1
p

∣∣∣‖fn‖p,u
−→ 0,
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as n→∞, which is a contradiction. The proof is complete. �
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SOME NEW ERROR INEQUALITIES FOR A TAYLOR-LIKE FORMULA

WENJUN LIU AND QILIN ZHANG

Abstract. Some new error inequalities for a Taylor-like formula are established. Sharp
bounds are given when n is an odd and even integer, respectively.

1. Introduction

Error analysis for the Taylor and generalized Taylor formulas has been extensively studied
in recent years. The approach from an inequalities point of view to estimate the error
terms has been used in these studies (see [1]-[18] and the references therein). In [19], by
appropriately choosing the Peano kernel

Gn(x) =


1

n!

(
x− 3a+ t

4

)n−1 [
x+

(n− 3)a− (n+ 1)t

4

]
, x ∈

[
a,
a+ t

2

]
,

1

n!

(
x− a+ 3t

4

)n−1 [
x+

(n− 3)t− (n+ 1)a

4

]
, x ∈

(
a+ t

2
, t

]
,

(1)

a Taylor-like formula was derived as follows.

Lemma 1. ([19]) Let f : [a, t] → ℝ be a function such that f (n) is absolutely continuous.
Then

f(t) =f(a)−
n∑

k=1

(−1)k(t− a)k

4kk!
(1 + k)

[
fk(t)− (−1)kfk(a)

]
−

n∑
k=2

(−1)k(t− a)k

4kk!
(1− k)[1− (−1)k]fk

(
a+ t

2

)
+R(f). (2)

By introducing the notations

Fn(t, a) =f(a)−
n∑

k=1

(−1)k(t− a)k

4kk!
(1 + k)

[
fk(t)− (−1)kfk(a)

]
−

n∑
k=2

(−1)k(t− a)k

4kk!
(1− k)[1− (−1)k]fk

(
a+ t

2

)
,

the following error inequalities were derived in [19].

Theorem 1. Let f : [a, t] → ℝ be a function such that f (n) is absolutely continuous.

If there exist real numbers n,Γn such that n ≤ f (n+1)(x) ≤ Γn, x ∈ [a, t], then

|f(t)− Fn(t, a)| ≤
Γn − n
(n+ 1)!

2n+ 2

4n+1
(t− a)n+1, if n is odd (3)

2010 Mathematics Subject Classification. 26D10, 41A58, 41A80.
Key words and phrases. Taylor-like formula, approximation error, inequality, sharp bound.
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and

|f(t)− Fn(t, a)| ≤
1

n! 4n
∥f (n+1)∥∞(t− a)n+1, if n is even. (4)

If there exists a real number n such that n ≤ f (n+1)(x), x ∈ [a, t], then

|f(t)− Fn(t, a)| ≤

[
f (n)(t)− f (n)(a)

t− a
− n

]
n+ 1

n! 4n
(t− a)n+1, if n is odd. (5)

If there exists a real number Γn such that f (n+1)(x) ≤ Γn, x ∈ [a, t], then

|f(t)− Fn(t, a)| ≤

[
Γn − f (n)(t)− f (n)(a)

t− a

]
n+ 1

n! 4n
(t− a)n+1, if n is odd. (6)

The purpose of this paper is to establish some new error inequalities for the above Taylor-
like formula. Especially, sharp bounds will be given when n is an odd and even integer,
respectively.

2. Main results

The following lemma is needed in the proof of our main results.

Lemma 2. The Peano kernels Gn(t), satisfy∫ t

a
Gn(x)dx =


0, n odd,

2

(n+ 1)! 4n
(t− a)n+1, n even,

(7)

∫ t

a
|Gn(x)|dx =

1

n! 4n
(t− a)n+1, (8)

max
x∈[a,t]

|Gn(x)| =
n+ 1

n! 4n
(t− a)n, (9)∫ t

a
G2

n(x)dx =
2n3 + n2 + 2n− 1

(2n+ 1)(2n− 1)(n!)242n
(t− a)2n+1, (10)

max
x∈[a,t]

∣∣∣∣G2m(x)− 1

t− a

∫ t

a
G2m(x)dx

∣∣∣∣ = 4m2 + 4m− 1

(2m+ 1)! 42m
(t− a)2m. (11)

Proof. The proof of (7)-(9) were given in [19]. (10) can be obtained by a direct calculation.
From (7), we have

max
x∈[a,t]

∣∣∣∣G2m(x)− 1

t− a

∫ t

a
G2m(x)dx

∣∣∣∣ = max
x∈[a,t]

∣∣∣∣G2m(x)− 2(t− a)2m

(2m+ 1)! 42m

∣∣∣∣
=max

{
max

x∈[a,a+t
2 ]

∣∣∣∣∣ 1

(2m)!

(
x− 3a+ t

4

)2m−1 [
x+

(2m− 3)a− (2m+ 1)t

4

]
− 2(t− a)2m

(2m+ 1)! 42m

∣∣∣∣∣ ,
max

x∈[a+t
2

,t]

∣∣∣∣∣ 1

(2m)!

(
x− a+ 3t

4

)2m−1 [
x+

(2m− 3)t− (2m+ 1)a

4

]
− 2(t− a)2m

(2m+ 1)! 42m

∣∣∣∣∣
}

=
(t− a)2m

(2m− 1)! 42m
max

{∣∣∣∣ 1

2m
+ 1− 2

2m+ 1

∣∣∣∣ , ∣∣∣∣ 1

2m
− 1− 2

2m+ 1

∣∣∣∣}
=
4m2 + 4m− 1

(2m+ 1)! 42m
(t− a)2m.
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Thus, (11) is obtained. �

We first establish two new error inequalities for f (n+1) ∈ L1[a, b] and f (n+1) ∈ L2[a, b],
respectively.

Theorem 2. Let f : [a, t] → ℝ be a function such that f (n) is absolutely continuous on

[a, t]. If f (n+1) ∈ L1[a, t], then we have

|f(t)− Fn(t, a)| ≤
n+ 1

n! 4n
∥f (n+1)∥1(t− a)n, (12)

where ∥f (n+1)∥1 :=
∫ t
a |f

(n+1)(x)|dx is the usual Lebesgue norm on L1[a, t].

Proof. By using the identity (2), we have

|f(t)− Fn(t, a)| =
∣∣∣∣∫ t

a
Gn(x)f

(n+1)(x)dx

∣∣∣∣ ≤ max
x∈[a,t]

|Gn(x)|
∫ t

a
|f (n+1)(x)|dx. (13)

Consequently, the inequality (12) follows from (13) and (9). �

Theorem 3. Let f : [a, t] → ℝ be a function such that f (n) is absolutely continuous on

[a, t]. If f (n+1) ∈ L2[a, t], then we have

|f(t)− Fn(t, a)| ≤
√
2n3 + n2 + 2n− 1√

(2n+ 1)(2n− 1)n! 4n
∥f (n+1)∥2(t− a)n+

1
2 , (14)

where ∥f (n+1)∥2 :=
(∫ t

a |f
(n+1)(x)|2dx

) 1
2
is the usual Lebesgue norm on L2[a, t].

Proof. By using the identity (2), we have

|f(t)− Fn(t, a)| =
∣∣∣∣∫ t

a
Gn(x)f

(n+1)(x)dx

∣∣∣∣ ≤ ∥f (n+1)∥2∥Gn∥2. (15)

Consequently, the inequality (14) follows from (15) and (10). �

Then, if f (n+1) is integrable and bounded and n is an even integer, we prove two perturbed
error inequalities.

Theorem 4. Let f : [a, b] → ℝ be such that f (n+1) is integrable with n ≤ f (n+1)(x) ≤ Γn

for all x ∈ [a, t], where n,Γn ∈ R are constants. If n is an even integer (n = 2m), we have∣∣∣∣∣f(t)− F2m(t, a)− 2(t− a)2m+1

(2m+ 1)! 42m
f (2m)(t)− f (2m)(a)

t− a

∣∣∣∣∣
≤

[
f (2m)(t)− f (2m)(a)

t− a
− 2m

]
4m2 + 4m− 1

(2m+ 1)! 42m
(t− a)2m+1, (16)

∣∣∣∣∣f(t)− F2m(t, a)− 2(t− a)2m+1

(2m+ 1)! 42m
f (2m)(t)− f (2m)(a)

t− a

∣∣∣∣∣
≤

[
Γ2m − f (2m)(t)− f (2m)(a)

t− a

]
4m2 + 4m− 1

(2m+ 1)! 42m
(t− a)2m+1. (17)
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Proof. By (7) and (2), we can obtain∣∣∣∣∣f(t)− F2m(t, a)− 2(t− a)2m+1

(2m+ 1)! 42m
f (2m)(t)− f (2m)(a)

t− a

∣∣∣∣∣
=

∣∣∣∣∫ t

a

[
G2m(x)− 1

t− a

∫ t

a
G2m(x)dx

]
[f (2m+1)(x)− C]dx

∣∣∣∣ , (18)

where C ∈ R is a constant.
If we choose C = 2m, we have∣∣∣∣∣f(t)− F2m(t, a)− 2(t− a)2m+1

(2m+ 1)! 42m
f (2m)(t)− f (2m)(a)

t− a

∣∣∣∣∣
≤ max

x∈[a,t]

∣∣∣∣G2m(x)− 1

t− a

∫ t

a
G2m(x)dx

∣∣∣∣ ∫ t

a
|f (2m+1)(x)− 2m|dx, (19)

and hence the inequality (16) follows from (19) and (11).
Similarly we can prove that the inequality (17) holds. �

Next, we derive two sharp bounds when n is an odd and even integer, respectively.

Theorem 5. Let f : [a, t] → ℝ be a function such that f (n) is absolutely continuous on

[a, t] and f (n+1) ∈ L2[a, t], where n is an odd integer. Then we have

|f(t)− Fn(t, a)| ≤
√
2n3 + n2 + 2n− 1√

(2n+ 1)(2n− 1)n! 4n

√
σ(f (n+1))(t− a)n+

1
2 , (20)

where σ(·) is defined by σ(f) = ∥f∥22 − 1
t−a

(∫ t
a f(x)dx

)2
. Inequality (20) is sharp in the

sense that the constant
√
2n3+n2+2n−1√

(2n+1)(2n−1)n! 4n
cannot be replaced by a smaller one.

Proof. From (2), (7) and (10), we can easily get

|f(t)− Fn(t, a)| =
∣∣∣∣∫ t

a
Gn(x)

[
f (n+1)(x)− 1

t− a

∫ t

a
f (n+1)(x)dx

]
dx

∣∣∣∣
≤
(∫ t

a
G2

n(x)dx

) 1
2

(∫ t

a

[
f (n+1)(x)− 1

t− a

∫ t

a
f (n+1)(x)dx

]2
dx

) 1
2

=

(
2n3 + n2 + 2n− 1

(2n+ 1)(2n− 1)(n!)242n
(t− a)2n+1

) 1
2

(
∥f (n+1)∥22 −

[f (n)(t)− f (n)(a)]2

t− a

) 1
2

=

√
2n3 + n2 + 2n− 1√

(2n+ 1)(2n− 1)n! 4n

√
σ(f (n+1))(t− a)n+

1
2 .

To prove the sharpness of (20), we suppose that (20) holds with a constant C > 0 as

|f(t)− Fn(t, a)| ≤ C
√
σ(f (n+1))(t− a)n+

1
2 . (21)
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We may find a function f : [a, t] → ℝ such that f (n) is absolutely continuous on [a, t] as

f (n)(x) =


1

(n+ 1)!

(
x− 3a+ t

4

)n [
x+

(n− 2)a− (n+ 2)t

4

]
, x ∈

[
a,
a+ t

2

]
,

1

(n+ 1)!

(
x− a+ 3t

4

)n [
x+

(n− 2)t− (n+ 2)a

4

]
, x ∈

(
a+ t

2
, t

]
It follows that

f (n+1)(x) = Gn(x). (22)

It’s easy to find that the left-hand side of the inequality (21) becomes

L.H.S.(21) =
2n3 + n2 + 2n− 1

(2n+ 1)(2n− 1)(n!)242n
(t− a)2n+1, (23)

and the right-hand side of the inequality (21) is

R.H.S.(21) =

√
2n3 + n2 + 2n− 1√

(2n+ 1)(2n− 1)n! 4n
C(t− a)2n+1. (24)

It follows from (21), (23) and (24) that

C ≥
√
2n3 + n2 + 2n− 1√

(2n+ 1)(2n− 1)n! 4n
,

which prove that the constant
√
2n3+n2+2n−1√

(2n+1)(2n−1)n! 4n
is the best possible in (20). �

Theorem 6. Let f : [a, t] → ℝ be a function such that f (n) is absolutely continuous on

[a, t] and f (n+1) ∈ L2[a, t], where n is an even integer (n = 2m). Then we have∣∣∣∣∣f(t)− F2m(t, a)− 2(t− a)2m+1

(2m+ 1)! 42m
f (2m)(t)− f (2m)(a)

t− a

∣∣∣∣∣ (25)

≤ 1

(2m)! 42m

√
1

4m+ 1
+

4m2

4m− 1
− 4

(2m+ 1)2

√
σ(f (2m+1))(t− a)2m+ 1

2 . (26)

Inequality (25) is sharp in the sense that the constant 1
(2m)! 42m

√
1

4m+1 + 4m2

4m−1 − 4
(2m+1)2

cannot be replaced by a smaller one.

Proof. From (2), (7) and (10), we can easily obtain∣∣∣∣∣f(t)− F2m(t, a)− 2(t− a)2m+1

(2m+ 1)! 42m
f (2m)(t)− f (2m)(a)

t− a

∣∣∣∣∣
=

∣∣∣∣∫ t

a
G2m(x)f (2m+1)(x)dx− 1

t− a

∫ t

a
G2m(x)dx

∫ t

a
f (2m+1)(x)dx

∣∣∣∣
=

1

2(t− a)

∣∣∣∣∫ t

a

∫ t

a
[G2m(x)−G2m(y)][f (2m+1)(x)− f (2m+1)(y)]dxdy

∣∣∣∣
≤ 1

2(t− a)

(∫ t

a

∫ t

a
[G2m(x)−G2m(y)]2dxdy

) 1
2
(∫ t

a

∫ t

a
[f (2m+1)(x)− f (2m+1)(y)]2dxdy

) 1
2

=

(∫ t

a
G2

2m(x)dx− 1

t− a

[∫ t

a
G2m(y)dy

]2) 1
2
(∫ t

a
[f (2m)(x)]2dx− 1

t− a

[∫ t

a
f (2m)(y)dy

]2) 1
2
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=
1

(2m)! 42m

√
1

4m+ 1
+

4m2

4m− 1
− 4

(2m+ 1)2

√
σ(f (2m+1))(t− a)2m+ 1

2 .

To prove the sharpness of (25), we suppose that (25) holds with a constant C > 0 as∣∣∣∣∣f(t)− F2m(t, a)− 2(t− a)2m+1

(2m+ 1)! 42m
f (2m)(t)− f (2m)(a)

t− a

∣∣∣∣∣
≤C
√
σ(f (2m+1))(t− a)2m+ 1

2 . (27)

We may find a function f : [a, b] → R such that f (2m) is absolutely continuous on [a, t] as

f (n)(x)

=


1

(2m+ 1)!

(
x− 3a+ t

4

)2m [
x+

(2m− 2)a− (2m+ 2)t

4

]
− 2(t− a)2m+1

2(2m+ 1)! 42m
, x ∈

[
a,
a+ t

2

]
,

1

(2m+ 1)!

(
x− a+ 3t

4

)2m [
x+

(2m− 2)t− (2m+ 2)a

4

]
+

2(t− a)2m+1

2(2m+ 1)! 42m
, x ∈

(
a+ t

2
, t

]
.

It follows that

f (2m+1)(x) = G2m(x). (28)

It’s easy to find that the left-hand side of the inequality (27) becomes

L.H.S.(27) =
1

((2m)!)2 44m

[
1

4m+ 1
+

4m2

4m− 1
− 4

(2m+ 1)2

]
(t− a)4m+1, (29)

and the right-hand side of the inequality (27) is

R.H.S.(27) =
1

(2m)! 42m

√
1

4m+ 1
+

4m2

4m− 1
− 4

(2m+ 1)2
C(t− a)4m+1. (30)

It follows from (27), (29) and (30) that

C ≥ 1

(2m)! 42m

√
1

4m+ 1
+

4m2

4m− 1
− 4

(2m+ 1)2
,

which prove that the constant 1
(2m)! 42m

√
1

4m+1 + 4m2

4m−1 − 4
(2m+1)2

is the best possible in

(25). �

Remark 1. We note that some applications of the classical or perturbed Taylor’s formula
with the integral remainder in numerical analysis, for special means and some usual map-
pings have been given in [7]. The interested reader can also apply the results we obtained
here in these mentioned fields.
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[17] N. Ujević, A new generalized perturbed Taylor’s formula, Nonlin. Funct. Anal. Appl., 7 (2) (2002),
255-267.
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ADDITIVE FUNCTIONAL INEQUALITIES IN GENERALIZED

QUASI-BANACH SPACES

LEXIN LI, GANG LU, CHOONKIL PARK, AND DONG YUN SHIN∗

Abstract. In this paper, we investigate the Hyers-Ulam stability of the following function
inequalities

∥af(x) + bf(y) + cf(z)∥ ≤
∥∥∥∥Kf (ax+ by + cz

K

)∥∥∥∥ (0 < |K| < |a+ b+ c|),

∥af(x) + bf(y) +Kf(z)∥ ≤
∥∥∥∥Kf (ax+ by

K
+ z

)∥∥∥∥ (0 < K < |a+ b+K|)

in generalized quasi-Banach spaces.

1. Introduction and preliminaries

The stability problem of functional equations originated from a question of Ulam [1] in 1940,

concerning the stability of group homomorphisms. Let (G1, .) be a group and let (G2, ∗) be a

metric group with the metric d(., .). Given ϵ > 0, does there exist a δ0, such that if a mapping

h : G1 → G2 satisfies the inequality d(h(x.y), h(x)∗h(y)) < δ for all x, y ∈ G1, then there exists

a homomorphism H : G1 → G2 with d(h(x),H(x)) < ϵ for all x ∈ G1? In the other words,

Under what condition does there exists a homomorphism near an approximate homomorphism?

The concept of stability for functional equation arises when we replace the functional equation

by an inequality which acts as a perturbation of the equation. In 1941, Hyers [2] gave the first

affirmative answer to the question of Ulam for Banach spaces. Let f : E → E′ be a mapping

between Banach spaces such that

∥f(x+ y)− f(x)− f(y)∥ ≤ δ

for all x, y ∈ E, and for some δ > 0. Then there exists a unique additive mapping T : E → E′

such that

∥f(x)− T (x)∥ ≤ δ

for all x ∈ E. Moreover, if f(tx) is continuous in t ∈ ℝ for each fixed x ∈ E, then T is ℝ-linear.
In 1978, Th.M. Rassias [3] proved the following theorem.

Theorem 1.1. Let f : E → E′ be a mapping from a normed vector space E into a Banach

space E′ subject to the inequality

∥f(x+ y)− f(x)− f(y)∥ ≤ ϵ(∥x∥p + ∥y∥p) (1.1)

2010 Mathematics Subject Classification. Primary 39B62, 39B52, 46B25.
Key words and phrases. Hyers-Ulam stability; additive functional inequality; generalized quasi-Banach space;

additive mapping.
∗Corresponding author.
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for all x, y ∈ E, where ϵ and p are constants with ϵ > 0 and p < 1. Then there exists a unique

additive mapping T : E → E′ such that

∥f(x)− T (x)∥ ≤ 2ϵ

2− 2p
∥x∥p (1.2)

for all x ∈ E. If p < 0 then inequality (1.1) holds for all x, y ̸= 0, and (1.2) for x ̸= 0. Also, if

the function t 7→ f(tx) from ℝ into E′ is continuous in t ∈ ℝ for each fixed x ∈ E, then T is

ℝ-linear.

In 1991, Gajda [4] answered the question for the case p > 1, which was raised by Th.M.

Rassias. On the other hand, J.M. Rassias [5] generalized the Hyers-Ulam stability result by

presenting a weaker condition controlled by a product of different powers of norms.

Theorem 1.2. ([6, 7]) If it is assumed that there exist constants Θ ≥ 0 and p1, p2 ∈ ℝ such

that p = p1 + p2 ̸= 1, and f : E → E′ is a mapping from a norm space E into a Banach space

E′ such that the inequality

∥f(x+ y)− f(x)− f(y)∥ ≤ Θ∥x∥p1∥y∥p2

for all x, y ∈ E, then there exists a unique additive mapping T : E → E′ such that

∥f(x)− T (x)∥ ≤ Θ

2− 2p
∥x∥p,

for all x ∈ E. If, in addition, f(tx) is continuous in t ∈ ℝ for each fixed x ∈ E, then T is

ℝ-linear

More generalizations and applications of the Hyers-Ulam stability to a number of functional

equations and mappings can be found in [8]–[22].

In [23], Park et al. investigated the following inequalities

∥f(x) + f(y) + f(z)∥ ≤
∥∥∥∥2f (x+ y + z

2

)∥∥∥∥ ,
∥f(x) + f(y) + f(z)∥ ≤ ∥f(x+ y + z)∥,

∥f(x) + f(y) + 2f(z)∥ ≤
∥∥∥∥2f (x+ y

2
+ z

)∥∥∥∥
in Banach spaces. Recently, Cho et al. [24] investigated the following functional inequality

∥f(x) + f(y) + f(z) ≤
∥∥∥∥Kf (x+ y + z

K

)∥∥∥∥ (0 < |K| < |3|)

in non-Archimedean Banach spaces. Lu and Park [25] investigated the following functional

inequality ∥∥∥∥∥
N∑
i=1

f(xi)

∥∥∥∥∥ ≤

∥∥∥∥∥Kf
(∑N

i=1(xi)

K

)∥∥∥∥∥ (0 < |K| ≤ N)

in Fréchet spaces.

In [26], we investigated the following functional inequalities

∥f(x) + f(y) + f(z)∥ ≤
∥∥∥∥Kf (x+ y + z

K

)∥∥∥∥ (0 < |K| < 3), (1.3)
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∥f(x) + f(y) +Kf(z)∥ ≤
∥∥∥∥Kf (x+ y

K
+ z

)∥∥∥∥ (0 < K ̸= 2) (1.4)

and proved the Hyers-Ulam stability of the functional inequalities (1.3) and (1.4) in Banach

spaces.

We consider the following functional inequalities

∥af(x) + bf(y) + cf(z)∥ ≤
∥∥∥∥Kf (ax+ by + cz

K

)∥∥∥∥ (0 < |K| < |a+ b+ c|), (1.5)

∥af(x) + bf(y) +Kf(z)∥ ≤
∥∥∥∥Kf (ax+ by

K
+ z

)∥∥∥∥ (0 < K < |a+ b+K|), (1.6)

where a, b, c are nonzero real numbers.

Now, we recall some basic facts concerning quasi-Banach spaces and some preliminary results.

Definition 1.3. ([27, 28]) Let X be a linear space. A quasi-norm is a real-valued function on

X satisfying the following:

(1) ∥x∥ ≥ 0 for all x ∈ X and ∥x∥ = 0 if and only if x = 0.

(2) ∥λx∥ = |λ|∥x∥ for all λ ∈ ℝ and all x ∈ X.

(3) There is a constant C ≥ 1 such that ∥x+ y∥ ≤ C(∥x∥+ ∥y∥) for all x, y ∈ X.

The pair (X, ∥ · ∥) is called a quasi-normed space if ∥ · ∥ is a quasi-norm on X.

A quasi-Banach space is a complete quasi-normed space.

Baak [29] generalized the concept of quasi-normed spaces.

Definition 1.4. ([29]) Let X be a linear space. A generalized quasi-norm is a real-valued

function on X satisfying the following:

(1) ∥x∥ ≥ 0 for all x ∈ X and ∥x∥ = 0 if and only if x = 0.

(2) ∥λx∥ = |λ| · ∥x∥ for all λ ∈ ℝ and all x ∈ X.

(3) There is a constant C ≥ 1 such that ∥
∑∞

j=1 xj∥ ≤
∑∞

j=1C∥xj∥ for all x1, x2, · · · ∈ X

with
∑∞

j=1 xj ∈ X.

The pair (X, ∥·∥) is called a generalized quasi-normed space if ∥·∥ is a generalized quasi-norm

on X. The smallest possible C is called the modulus of concavity of ∥ · ∥.
A generalized quasi-Banach space is a complete generalized quasi-normed space.

In this paper, we show that the Hyers-Ulam stability of the functional inequalities (1.5) and

(1.6) in generalized quasi-Banach spaces.

Throughout this paper, assume that X is a generalized quasi-normed vector space with

generalized quasi-norm ∥ · ∥ and that (Y, ∥ · ∥) is a generalized quasi-Banach space. Let C be

the modulus of concavity of ∥ · ∥.

2. Hyers-Ulam stability of the functional inequality (1.5)

Throughout this section, assume that K is a real number with 0 < |K| < |a+ b+ c|.

Proposition 2.1. Let f : X → Y be a mapping such that

∥af(x) + bf(y) + cf(z)∥ ≤
∥∥∥∥Kf (ax+ by + cz

K

)∥∥∥∥ (2.1)

for all x, y, z ∈ X. Then the mapping f : X → Y is additive.

1167



L. LI, G. LU, C. PARK, AND D.Y. SHIN

Proof. Letting x = y = z = 0 in (2.1), we get

∥(a+ b+ c)f(0)∥ ≤ ∥Kf(0)∥.

So f(0) = 0.

Letting z = 0 and y = − b
ax in (2.1), we get∥∥∥af(x) + bf

(
−a
b
x
)∥∥∥ ≤ ∥Kf(0)∥ = 0

for all x ∈ X. So f(x) = − b
af(−

a
bx) for all x ∈ X.

Replacing x by −x and letting y = 0 and z = a
cx in (2.1), we get∥∥∥af(−x) + cf

(a
c
x
)∥∥∥ ≤ ∥Kf(0)∥ = 0

for all x ∈ X. So f(−x) = − c
af(

a
cx) for all x ∈ X. Then we get

∥f(x) + f(−x)∥ =

∥∥∥∥− baf (−ab x)− c

a
f
(a
c
x
)∥∥∥∥

=
1

|a|

∥∥∥af(0) + bf
(
−a
b
x
)
+ cf

(a
c
x
)∥∥∥

≤ 1

|a|

∥∥∥∥Kf (a · 0− babx+ cacx

K

)∥∥∥∥ = 0

Thus f(x) = −f(−x).
∥f(x) + f(y)− f(x+ y)∥ = ∥f(x) + f(y) + f(−x− y)∥

=

∥∥∥∥−aaf(−aax)− b

a
f(−a

b
y)− c

a
f(
ax+ ay

c
)

∥∥∥∥
=

1

|a|

∥∥∥∥af(−aax) + bf(−a
b
y) + cf(

ax+ ay

c
)

∥∥∥∥
=

1

|a|

∥∥∥∥∥Kf
(
a · (−a

ax) + b · (−a
bx) + c · a(x+y)

c

K

)∥∥∥∥∥ = 0.

Thus

f(x+ y) = f(x) + f(y)

for all x, y ∈ X, as desired. �

Theorem 2.2. Assume that a mapping f : X → Y satisfies the inequality

∥af(x) + bf(y) + cf(z)∥ ≤
∥∥∥∥Kf (ax+ by + cz

K

)∥∥∥∥+ ϕ(x, y, z), (2.2)

where ϕ : X3 → [0,∞) satisfies ϕ(0, 0, 0) = 0 and

ϕ̃(x, y, z) :=

∞∑
j=0

( c
a

)j
ϕ

((a
c

)j
y,
(a
c

)j
z,
(a
c

)j
x

)
<∞

for all x, y, z ∈ X. Then there exists a unique additive mapping A : X → Y such that

∥A(x)− f(x)∥ ≤ C2

|a|

[
ϕ̃
(
x,−a

b
x, 0
)
+ ϕ̃

(
0,−a

b
x,
a

c
x
)]

(2.3)

for all x ∈ X.
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Proof. Letting x = y = z = 0 in (2.2), we get ∥(a+b+c)f(0)∥ ≤ ∥Kf(0)∥+ϕ(0, 0, 0) = ∥Kf(0)∥.
So f(0) = 0.

Letting y = 0 and z = −a
cx in (2.2), we get

∥∥∥af(x) + cf
(
−a
c
x
)∥∥∥ ≤ ϕ

(
x, 0,−a

c
x
)

for all x ∈ X. So
∥∥f(x) + c

af(−
a
cx)
∥∥ ≤ 1

|a|ϕ
(
x, 0,−a

cx
)
for all x ∈ X.

Letting y = −a
bx and z = 0 in (2.2), we obtain

∥∥∥∥f(x) + b

a
f
(
−a
b
x
)∥∥∥∥ ≤ 1

|a|
ϕ
(
x,−a

b
x, 0
)

for all x ∈ X. So

∥∥∥f(x)− c

a
f
(a
c
x
)∥∥∥ =

∥∥∥∥f(x) + b

a
f
(
−ax
b

)
− b

a
f
(
−ax
b

)
− c

a
f
(a
c
x
)∥∥∥∥

≤ C

(∥∥∥∥f(x) + b

a
f
(
−ax
b

)∥∥∥∥+ ∥∥∥∥ baf (−axb )+ c

a
f
(a
c
x
)∥∥∥∥)

≤ C

|a|

[
ϕ
(
x,−ax

b
, 0
)
+ ϕ

(
0,−ax

b
,
ax

c

)] (2.4)

for all x ∈ X.

It follows from (2.4) that

∥∥∥( c
a
)lf
(
(
a

c
)lx
)
− (

c

a
)mf

(
(
a

c
)mx

)∥∥∥
≤ C

m−1∑
j=l

∥∥∥( c
a
)jf
(
(
a

c
)jx
)
− (

c

a
)j+1f

(
(
a

c
)j+1x

)∥∥∥
≤ C2

|a|

m−1∑
j=l

( c
a

)j [
ϕ

((a
c

)j
x,−a

b

(a
c

)j
x, 0

)
+ ϕ

(
0,−a

b

(a
c

)j
x,
(a
c

)j+1
x

)]

for all nonnegative integers m and l with m > l and all x ∈ X. It means that the se-

quence {( ca)
nf((ac )

nx)} is a Cauchy sequence for all x ∈ X. Since Y is complete, the sequence

{( ca)
nf((ac )

nx)} converges. We define the mappingA : X → Y byA(x) = limn→∞{( ca)
nf((ac )

nx)}
for all x ∈ X. Moreover, letting l = 0 and passing the limit m→ ∞, we get (2.3).
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Next, we show that A : X → Y is an additive mapping.

∥A(x) +A(−x)∥ = lim
n→∞

(
c

a
)n
∥∥∥∥f (anxcn

)
+ f

(
−anx
cn

)∥∥∥∥
≤ C lim

n→∞
(
c

a
)n
[∥∥∥∥f (anxcn

)
+
b

a
f

(
−a
b
· a

nx

cn

)∥∥∥∥
+

∥∥∥∥f (−anxcn
)
+
c

a
f

(
a

c
· a

nx

cn

)∥∥∥∥
+

∥∥∥∥ baf
(
−a
b
· a

nx

cn

)
+
c

a
f

(
a

c
· a

nx

cn

)∥∥∥∥]
≤ C

1

|a|
lim
n→∞

(
c

a
)n
[
ϕ

(
anx

cn
,−a

b

anx

cn
, 0

)
+ ϕ

(
−a

nx

cn
, 0,

an+1x

cn+1

)
+ ϕ

(
0,−a

b

anx

cn
,
an+1x

cn+1

)]
= 0

and so A(−x) = −A(x) for all x ∈ X.

∥A(x) +A(y)−A(x+ y)∥| = lim
n→∞

(
c

a
)n
∥∥∥∥f (anxcn

)
+ f

(
any

cn

)
− f

(
an(x+ y)

cn

)∥∥∥∥
= C lim

n→∞
(
c

a
)n
[∥∥∥∥f (anxcn

)
+
b

a
f

(
−a
b

anx

cn

)∥∥∥∥
+

∥∥∥∥f (anycn
)
+
c

a
f

(
−a

n+1y

cn+1

)∥∥∥∥
+

∥∥∥∥f (an(x+ y)

cn

)
+
b

a
f

(
−a
b

anx

cn

)
+
c

a
f

(
−a

n+1y

cn+1

)∥∥∥∥]
≤ C

1

|a|
lim
n→∞

(
c

a
)n
[
ϕ

(
anx

cn
,−a

b
(
anx

cn
), 0

)
+ ϕ

(
any

cn
, 0,−a

c
(
anx

cn
)

)
+ϕ

(
an(x+ y)

cn
,−a

b
(
anx

cn
),−a

c
(
anx

cn
)

)]
= 0

for all x, y ∈ X. Thus the mapping A : X → Y is additive.

Now, we prove the uniqueness of A. Assume that T : X → Y is another additive mapping

satisfying (2.3). Then we obtain

∥A(x)− T (x)∥ = (
c

a
)n
∥∥∥A((a

c
)nx
)
− T

(
(
a

c
)nx
)∥∥∥

≤ C · ( c
a
)n
[∥∥∥A((a

c
)nx
)
− f

(
(
a

c
)nx
)∥∥∥

+
∥∥∥T ((a

c
)nx
)
− f

(
(
a

c
)nx
)∥∥∥]

≤ 2C
C2

|a|

[
ϕ̃
(
x,−a

b
x, 0
)
+ ϕ̃(0,−a

b
x,
a

c
x)
]

which tends to zero as n → ∞ for all x ∈ X. Then we can conclude that A(x) = T (x) for all

x ∈ X. This complete the proof. �
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Corollary 2.3. Let p and θ be positive real numbers with p > 1. Let f : X → Y be a mapping

satisfying

∥af(x) + bf(y) + cf(z)∥ ≤
∥∥∥∥Kf (ax+ by + cz

K

)∥∥∥∥+ θ(∥x∥p + ∥y∥p + ∥z∥p)

for all x, y, z ∈ X. Then there exists a unique additive mapping A : X → Y such that

∥f(x)−A(x)∥ ≤ C

|a|
· cp + ap

cp − c(a+ b)p−1
θ∥x∥p

for all x ∈ X.

3. Hyers-Ulam stability of the functional inequality (1.6)

Throughout this section, assume that K, a, b are nonzero real numbers with 0 < K ̸= 2 and

|a+ b+K| ≥ K.

Proposition 3.1. Let f : X → Y be a mapping such that

∥af(x) + bf(y) +Kf(z)∥ ≤
∥∥∥∥Kf (ax+ by

K
+ z

)∥∥∥∥ (3.1)

for all x, y, z ∈ X. Then the mapping f : X → Y is additive.

Proof. Letting x = y = z = 0 in (3.1), we get

∥(K + a+ b)f(0)∥ ≤ ∥Kf(0)∥.

So f(0) = 0.

Letting y = −a
bx and z = 0 in (3.1), we get∥∥∥af(x) + bf

(
−a
b
x
)∥∥∥ ≤ ∥Kf(0)∥ = 0

for all x ∈ X. So f(x) = − b
af(−

a
bx) for all x ∈ X.

Replacing x by −x and letting y = 0 and z = a
Kx in (3.1), we get∥∥∥af(−x) +Kf

( a
K
x
)∥∥∥ ≤ ∥Kf(0)∥ = 0

for all x ∈ X. So f(−x) = −K
a f(

a
Kx) for all x ∈ X.

Thus we get

∥f(x) + f(−x)∥ =
1

|a|

∥∥∥bf (−a
b
x
)
+Kf

( a
K
x
)∥∥∥ ≤ 1

|a|
∥f(0)∥ = 0

for all x ∈ X. So f(−x) = −f(x) for all x ∈ X.

Letting z = −x−y
K in (3.1), we get∥∥∥∥af(x) + bf(y)−Kf

(
ax+ by

K

)∥∥∥∥ =

∥∥∥∥af(x) + bf(y) +Kf

(
−ax− by

K

)∥∥∥∥
≤ ∥Kf(0)∥ = 0

for all x, y ∈ X. Thus

Kf

(
ax+ by

K

)
= af(x) + bf(y) (3.2)
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for all x, y ∈ X. Letting y = 0 in (3.2), we get f(x) = a
K f
(
Kx
a

)
for all x ∈ X. Letting x = 0 in

(3.2), we get f(y) = b
K f
(
Ky
b

)
. So

∥f(x) + f(y)− f(x+ y)∥ =

∥∥∥∥ aK f

(
Kx

a

)
+

b

K
f

(
Ky

b

)
+ f(−x− y)

∥∥∥∥
=

1

|K|

∥∥∥∥af (Kxa
)
+ bf

(
Ky

b

)
+Kf(−x− y)

∥∥∥∥ = 0

for all x, y ∈ X, as desired. �

Theorem 3.2. Assume that a mapping f : X → Y satisfies the inequality

∥af(x) + bf(y) +Kf(z)∥ ≤
∥∥∥∥Kf (ax+ by

K
+ z

)∥∥∥∥+ ϕ(x, y, z), (3.3)

where ϕ : X3 → [0,∞) satisfies ϕ(0, 0, 0) = 0 and

ϕ̃(x, y, z) :=

∞∑
j=1

∣∣∣∣( aK )j
∣∣∣∣ϕ
((

K

a

)j

x,

(
K

a

)j

y,

(
K

a

)j

z

)
<∞

for all x, y, z ∈ X. Then there exists a unique additive mapping A : X → Y such that

∥A(x)− f(x)∥ ≤ C2

|K|

[
ϕ̃

(
0,−K

a
x, x)

)
+ ϕ̃

(
K

a
x,−K

b
x, 0

)]
(3.4)

for all x ∈ X.

Proof. Letting x = y = z = 0 in (3.3), we get ∥(K + a + b)f(0)∥ ≤ ∥Kf(0)∥ + ϕ(0, 0, 0) =

∥Kf(0)∥. So f(0) = 0.

Letting x = 0, y = −Kx
b , z = x in (3.3), we obtain∥∥∥∥af(0) + bf

(
−K
b
x

)
+Kf(x)

∥∥∥∥ ≤ ϕ

(
0,−K

b
x, x

)
for all x ∈ X.

Letting y = 0, z = −Kx
a in (3.3), we obtain∥∥∥∥af(x) + bf(0) +Kf

(
−ax
K

)∥∥∥∥ ≤ ϕ
(
x, 0,−ax

K

)
for all x ∈ X.

Letting x = Kx
a , y = −Kx

b , z = 0 in (3.3), we get∥∥∥∥af (Kxa
)
+ bf

(
−Kx

b

)
+Kf(0)

∥∥∥∥ ≤ ϕ

(
Kx

a
,−Kx

b
, 0

)
for all x ∈ X. So∥∥∥∥f(x)− a

K
f

(
K

a
x

)∥∥∥∥
≤ C

[∥∥∥∥f(x) + b

K
f

(
−Kx

b

)∥∥∥∥+ ∥∥∥∥ bK f

(
−K
b
x

)
+

a

K
f

(
K

a
x

)∥∥∥∥]
≤ C

|K|

[
ϕ

(
0,−K

b
x, x

)
+ ϕ

(
K

a
x,−K

b
x, 0

)] (3.5)

1172



FUNCTIONAL INEQUALITIES IN GENERALIZED QUASI-BANACH SPACES

for all x ∈ X. It follows from (3.5) that∥∥∥∥∥( aK )l f
((

K

a

)l

x

)
−
( a
K

)m
f

((
K

a

)m

x

)∥∥∥∥∥
≤ C

m−1∑
j=l

∥∥∥∥∥( aK )j f
((

K

a

)j

x

)
−
( a
K

)j+1
f

((
K

a

)j+1

x

)∥∥∥∥∥
≤ C2

m−1∑
j=l

∣∣∣( a
K

)j
∣∣∣ [∥∥∥∥∥f(

((
K

a

)j

x

)
+

b

K
f

(
−K
b

((
K

a

)j

x

))
)

∥∥∥∥∥
+

∥∥∥∥∥ bK f

(
−K
b

((
K

a

)j

x

))
+

a

K
f

(
K

a

((
K

a

)j

x

))∥∥∥∥∥
]

≤ C2

|K|

m−1∑
j=l

∣∣∣( a
K

)j
∣∣∣ [ϕ(0,−K

a

(
K

a

)j

x,

(
K

a

)j

x

)
+ ϕ

(
K

a

(
K

a

)j

x,−K
b

(
K

a

)j

x, 0

)]

for all nonnegative integers m and l with m > l and all x ∈ X. It means that the se-

quence {( a
K )nf((Ka )

nx)} is a Cauchy sequence for all x ∈ X. Since Y is complete, the se-

quence {( a
K )nf((Ka )

nx)} converges. So we may define the mapping A : X → Y by A(x) =

limn→∞(( a
K )nf((Ka )

nx)) for all x ∈ X.

Moreover, by letting l = 0 and passing the limit m→ ∞, we get (3.4).

Now, we show that A is additive.

∥A(x) +A(y)−A(x+ y)∥

= lim
n→∞

∣∣∣ a
K

∣∣∣n ∥∥∥∥f((Ka )nx) + f((
K

a
)ny)− f((

K

a
)n(x+ y))

∥∥∥∥
≤ C lim

n→∞

∣∣∣ a
K

∣∣∣n [∥∥∥∥f ((Ka
)n

x

)
+

b

K
f

(
−K
b

(
K

a

)n

x

)∥∥∥∥
+

∥∥∥∥f ((Ka
)n

y

)
+

a

K
f

(
−K
a

(
K

a

)n

y

)∥∥∥∥
+

∥∥∥∥ aK f

(
−K
a

(
K

a

)n

y

)
+

b

K
f

(
−K
b

(
K

a

)n

x

)
+ f

((
K

a

)n

(x+ y)

)∥∥∥∥]
≤ C lim

n→∞

∣∣∣ a
K

∣∣∣n [ϕ(0,−K
b

(
K

a

)n

x,

(
K

a

)n

x

)
+ ϕ

(
−K
a

(
K

a

)n

y, 0,

(
K

a

)n

y

)
+ ϕ

(
−K
a

(
K

a

)n

y,−K
b

(
K

a

)n

x,

(
K

a

)n

(x+ y)

)]
= 0

for all x, y ∈ X. So the mapping A : X → Y is an additive mapping.
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Now, we show that the uniqueness of A. Assume that T : X → Y is another additive mapping

satisfying (3.4). Then we get

∥A(x)− T (x)∥ = lim
n→∞

∣∣∣ a
K

∣∣∣n ∥∥∥∥A ∣∣∣∣(Ka
∣∣∣∣n x)− T

((
K

a

)n

x

)∥∥∥∥
≤ C lim

n→∞

∣∣∣ a
K

∣∣∣n [∥∥∥∥A((Ka
)n

x

)
− f

((
K

a

)n

x

)∥∥∥∥+ ∥∥∥∥T ((Ka
)n

x

)
− f

((
K

a

)n

x

)∥∥∥∥]
≤ 2C

C2

|K|
lim
n→∞

[
ϕ̃

(
0,−K

a

(
K

a

)n

x,

(
K

a

)n

x)

)
+ ϕ̃

(
K

a

(
K

a

)n

x,−K
b

(
K

a

)n

x, 0

)]
= 0

for all x ∈ X. Thus we may conclude that A(x) = T (x) for all x ∈ X. This proves the

uniqueness of A. So the mapping A : X → Y is a unique additive mapping satisfying (3.4). �

Corollary 3.3. Let p, θ and K be positive real numbers with p > 1 and |a+ b+K| > K. Let

f : X → Y be a mapping satisfying

∥af(x) + bf(y) +Kf(z)∥ ≤
∥∥∥∥Kf (ax+ by

K
+ z

)∥∥∥∥+ θ(∥x∥p + ∥y∥p + ∥z∥p)

for all x, y, z ∈ X. Then there exists a unique additive mapping A : X → Y such that

∥f(x)−A(x)∥ ≤
1
K

(
a
K

)p
+ 3a

K(
a
K

)p − a
K

θ∥x∥p

for all x ∈ X.
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COMPOSITION OPERATORS FROM HARDY SPACE TO n-TH
WEIGHTED-TYPE SPACE OF ANALYTIC FUNCTIONS ON THE

UPPER HALF-PLANE

ZHI-JIE JIANG AND ZUO-AN LI

Abstract. Motivated by some recent results on composition operators, the

boundedness of composition operator from the Hardy space to the n-th weighted-
type space on the half plane H = {z ∈ C : Imz > 0} is characterized.

1. Introduction

Let H = {z ∈ C : Imz > 0} be the upper half plane in the complex plane C and
H(H) the space of all analytic functions in H. For p > 0, the Hardy space Hp(H)
consists of all f ∈ H(H) such that

‖f‖pHp(H) = sup
y>0

∫ +∞

−∞
|f(x+ iy)|pdx <∞.

When p ≥ 1, the Hardy space with the norm ‖·‖Hp(H) becomes a Banach space(even
a Hilbert space when p = 2), and when 0 < p < 1,

d(f, g) = ‖f − g‖pHp(H)

defines a Fréchet space distance on Hp(H). For some details of this space and some
operators on it see, e.g. [2], [3], [10] and [12].

Let µ(z) be a positive continuous function on a domain X ⊆ C, and n ∈ N0

be fixed. The n-th weighted-type space on X, denoted by W(n)
µ (X) consists of all

f ∈ H(X) such that

bW(n)
µ (X)

(f) := sup
z∈X

µ(z)|f (n)(z)| <∞.

For n = 0 the space is called the weighted-type space Aµ(X), for n = 1 the Bloch-
type Bµ(X), and for n = 2 the Zygmund-type space Zµ(X). Some information of
these spaces on the unit disc and some operators on them can be found, e.g., in [5],
[8], [9], [11], [14] and [16]. This considerable interest in Zygmund-type spaces, as
well as a necessity for unification of weighted-type, Bloch-type and Zygmund-type
spaces, motivated us to define the n-th weighted-type space.

The quantity bW(n)
µ (X)

(f) is a seminorm on the n-th weighted-type spaceW(n)
µ (X)

and a norm on W(n)
µ (X)/Pn−1, where Pn−1 is the set of all polynomials whose de-

grees are less than or equal to n − 1. A natural norm on the n-th weighted-type

2000 Mathematics Subject Classification. Primary 47B38; Secondary 47B33, 47B37.
Key words and phrases. Hardy space, upper half plane, n-th weighted-type space, composition

operator, boundedness.
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2 ZHI-JIE JIANG AND ZUO-AN LI

space W(n)
µ (X) is defined as follows

‖f‖W(n)
µ (X)

=
n−1∑
j=0

|f (j)(a)|+ bW(n)
µ (X)

(f),

where a is an element in X. Under this norm this space becomes a Banach space.
For X = H, we obtain the space W(n)

µ (H) on which the following norm can be
introduced by

‖f‖W(n)
µ (H)

:=
n−1∑
j=0

|f (j)(i)|+ sup
z∈H

µ(z)|f (n)(z)|,

and for X = D, the unit disc we get the space W(n)
µ (D), and a norm on it is

introduced by

‖f‖W(n)
µ (D)

:=
n−1∑
j=0

|f (n)(0)|+ sup
z∈D

µ(z)|f (n)(z)|.

Let ϕ be an analytic self-map of X. The composition operator induced by ϕ is
defined on H(X) by

Cϕf(z) = f(ϕ(z)), z ∈ X.

A natural problem is to characterize the bounded or compact composition opera-
tor between two given spaces of analytic functions in terms of function theoretic
properties of the induced symbol ϕ.

During the past few decades, composition operators have been studied exten-
sively on spaces of analytic functions on the unit disc or the unit ball. One can
consult [1] and [13] for the general theory of these operators. As a consequence of
the Littlewood’s subordination theorem, it is well known that every composition
operator is bounded on Hardy spaces and weighted Bergman spaces of the unit
disc. However, when people consider the Hardy space or the Bergman space on
the upper half plane, they find that the situation is entirely different. There do
exist unbounded composition operators on these spaces. Matache [10] proved that
there didn’t exist compact composition operators on Hardy spaces of the upper
half plane. Shapiro and Smith [12] also showed that there were no compact com-
position operators on Bergman spaces of the upper half plane. Because of these
facts of composition operators, many authors recently have begun to investigate
them on spaces of analytic functions on the upper half plane. The present author
in [5] characterized the boundedness of composition operators from the weighted
Bergman spaces to the weighted-type, Bloch-type and Zymund-type spaces with
the weight µ(z) = Imz on the upper half plane. In [16], Stević generalized the
result of [14].

In [6], the present author characterized the boundedness of composition operator
from the weighted Bergman space to n-th weighted-type space with µ(z) = Imz and
n = 4. Motivated by [5], [6], [14] and [16], here we characterize the boundedness of
composition operator from the Hardy space to the n-th weighted-type space on the
upper half plane. On the one hand, this paper can be regarded as a generalization of
results in [14] and [16]; on the other hand, it also can be regarded as a continuation
of investigations of composition operators see, e.g. [4]-[12],[14]-[16].
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Let Y be a Banach space. Recall that the norm of the composition operator is
defined by

‖Cϕ‖Hp(H)→Y := sup
‖f‖Hp(H)≤1

‖Cϕf‖Y .

It is easy to see that this quantity is finite if and only if the operator Cϕ :
Hp(H)→ Y is bounded.

Throughout this paper, constants are denoted by C, they are positive and may
differ from one occurrence to the other. The notation a � b means that there is a
positive constant C such that a/C ≤ b ≤ Ca.

2. Main results

In this section, we first quote and prove several auxiliary lemmas. The first
lemma was proved in [16].

Lemma 2.1. Suppose that p ≥ 1, n ∈ N and w ∈ H, then the function

fw,n(z) =
(Imw)n−

1
p

(z − w)n

belongs to Hp(H) and supw∈H ‖fw,n‖Hp(H) ≤ π
1
p .

Lemma 2.2. Suppose that p ≥ 1, then there exists a positive constant C indepen-
dent of f such that

|f (n)(z)| ≤ C
‖f‖Hp(H)

(Imz)n+ 1
p .

Proof. For each f ∈ Hp(H), it follows from Cauchy’s integral formula that

f(z) =
1

2πi

∫ +∞

−∞

f(t)
t− z

dt. (1)

Differentiating in (1) under the integral sign n times , we have

f (n)(z) =
n!
2π

∫ +∞

−∞

f(t)
(t− z)n+1

dt.

Then

|f (n)(z)| ≤ n!
2π

∫ +∞

−∞

f(t)
[(t− x)2 + y2](n+1)/2

dt. (2)

By using the change t− x = sy, we have∫ +∞

−∞

yn

[(t− x)2 + y2](n+1)/2
dt =

∫ +∞

−∞

ds

(1 + s2)(n+1)/2
=: cn <∞. (3)

From (3) and applying Jensen’s inequality in (2), we get

|f (n)(z)|p ≤ dn
∫ +∞

−∞

|f(t)|p

ynp
yn

[(t− x)2 + y2](n+1)/2
dt

≤ dn
∫ +∞

−∞

|f(t)|p

ynp+1
dt

= dn
‖f‖pHp(H)

ynp+1
,
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where dn = (cnn!/2π)p, from which the desired result is obtained.

The following lemma was proved in [15].

Lemma 2.3. Suppose that a > 0 and

Dn(a) =

∣∣∣∣∣∣∣∣
1 1 · · · 1
a a+ 1 · · · a+ n+ 1
· · · · · · · · · · · ·∏n−2

j=0 (a+ j)
∏n−2
j=0 (a+ j + 1) · · ·

∏n−2
j=0 (a+ j + n− 1)

∣∣∣∣∣∣∣∣ ,
then Dn(a) =

∏n−1
j=1 j!

Before we formulate and prove the main result of this paper, we will need the
following classical Faàdi Bruno’s formula

(f ◦ ϕ)(n)(z) =
∑ n!

k1! · · · kn!
f (k)(ϕ(z))

n∏
j=1

(ϕ(j)(z)
j!

)kj
,

where k = k1 + k2 + · · · + kn, and the sum is over all non-negative integers k1,
k2, ..., kn satisfying k1 + 2k2 + · · ·+ nkn = n. For the information related to this
formula see [7].

Theorem 2.4. Suppose that p ≥ 1 and ϕ is an analytic self-map of H, then the
operator Cϕ : Hp(H)→W(n)

µ (H) is bounded if and only if for each k ∈ {1, 2, ..., n}
it follows that

Ik := sup
z∈H

µ(z)
∣∣∣∑ n!

k1!···kn!

∏n
j=1

(
ϕ(j)(z)
j!

)kj ∣∣∣
(Imϕ(z))k+

1
p

<∞, (4)

where the sum is over all non-negative integers k1, k2, ..., kn satisfying k1 + 2k2 +
· · ·+ nkn = n.

Moreover, if the operator Cϕ : Hp(H)→W(n)
µ (H)/Pn−1 is bounded, then

‖Cϕ‖Hp(H)→W(n)
µ (H)/Pn−1

�
n∑
k=1

Ik. (5)

Proof. First assume that the operator Cϕ : Hp(H)→W(n)
µ (H) is bounded. For

a fixed w ∈ H and constants c1, c2, ..., cn, set the function

fw(z) =
n∑
j=1

cj

n− 2 + j + 2
p

(2iImw)n−2+j+ 1
p

(z − w)n−2+j+ 2
p

.

Then by Lemma 2.1 we know that fw ∈ Hp(H) for every w ∈ H, and

sup
w∈H
‖fw‖Hp(H) ≤ C. (6)

Now we prove that for each k ∈ {1, ..., n}, there are constants c1, c2, ..., cn such
that

f (k)
w (w) =

1

(2iImw)k+
1
p

, f (l)
w (w) = 0, l ∈ {1, ..., n} \ {k}. (7)
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In fact, by differentiating function fw for each k ∈ {1, ..., n}, the system in (7)
becomes

c1 + c2 + · · ·+ cn = 0(
n+

2
p

)
c1 +

(
n+ 1 +

2
p

)
c2 + · · ·+

(
2n− 1 +

2
p

)
cn = 0

· · ·
k−2∏
j=0

(
n+ j +

2
p

)
c1 +

k−2∏
j=0

(
n+ j + 1 +

2
p

)
c2 + · · ·+

k−2∏
j=0

(
2n− 1 +

2
p

)
cn = 1

· · ·
n−2∏
j=0

(
n+ j +

2
p

)
c1 +

n−2∏
j=0

(
n+ j + 1 +

2
p

)
c2 + · · ·+

n−2∏
j=0

(
2n− 1 +

2
p

)
cn = 0. (8)

Applying Lemma 2.3 with a = n+ 2/p > 0, we see that the determinant of system
(8) is different from zero, from which the claim holds.

For each k ∈ {1, ..., n}, we choose the corresponding function which satisfy (7),
and write it by fw,k. For each k ∈ {1, ..., n}, the boundedness of the operator
Cϕ : Hp(H)→W(n)

µ (H), Faàdi Bruno’s formula and (6) imply that

µ(z)
∣∣∣∑ n!

k1!···kn!

∏n
j=1

(
ϕ(j)(z)
j!

)kj ∣∣∣
(Imϕ(z))k+

1
p

≤ sup
w∈H
‖Cϕfϕ(w),k‖W(n)

µ (H)

≤ C‖Cϕ‖Hp(H)→W(n)
µ (H)

, (9)

where the sum is over all non-negative integers k1, k2, ..., kn satisfying k1 + 2k2 +
· · ·+ nkn = n.

Now assume that the condition in (4) holds. By Faàdi Bruno’s formula and
Lemma 2.2, we have

‖Cϕf‖W(n)
µ (H)

=
n−1∑
j=0

|f ◦ ϕ(0)|+ sup
z∈H

µ(z)|(Cϕf)(n)(z)|

=
n−1∑
j=0

∣∣∣∑ j!
l1! · · · lj !

f (l)(ϕ(0))
j∏
s=1

(ϕ(s)(0)
s!

)ls ∣∣∣
+ sup
z∈H

µ(z)
∣∣∣∑ n!

k1! · · · kn!
f (k)(ϕ(z))

n∏
j=1

(ϕ(j)(z)
j!

)kj ∣∣∣
≤
n−1∑
j=0

j∑
l=0

|f (l)(ϕ(0))|
∣∣∣∑ j!

l1! · · · lj !

j∏
s=1

(ϕ(s)(0)
s!

)ls ∣∣∣
+ C‖f‖Hp(H)

n∑
k=1

sup
z∈H

µ(z)
∣∣∣∑ n!

k1!···kn!

∏n
j=1

(
ϕ(j)(z)
j!

)kj ∣∣∣
(Imϕ(z))k+

1
p

. (10)

From this, Lemma 2.2 with z = ϕ(0) and the condition in (4), we prove that
Cϕ : Hp(H)→W(n)

µ (H) is bounded. Moreover, if we consider the bounded operator
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Cϕ : Hp(H)→W(n)
µ (H)/Pn−1, then

‖Cϕ‖Hp(H)→W(n)
µ (H)/Pn−1

≤ C
n∑
k=1

sup
z∈H

µ(z)
∣∣∣∑ n!

k1!···kn!

∏n
j=1

(
ϕ(j)(z)
j!

)kj ∣∣∣
(Imϕ(z))k+

1
p

. (11)

Combining (9) and (11), we obtain the desired asymptotic relation in (5).
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Abstract

Recently, some generalizations of the generalized Gamma, Beta, Gauss hypergeometric and Con-
�uent hypergeometric functions has been introduced in [11]. In this paper we obtain some integral
representations of the above mentioned functions and Mellin transform representation of the gener-
alized Gamma function. Furthermore, some recurrence relations of these functions are given.

Key words : Gamma Function, Beta Function, Hypergeometric Function, Con�uent Hypergeometric
Function, Mellin transform.
2000 Mathematics Subject Classi�cation. 33C45, 33C50.

1 Introduction

In recent years, some extensions of the well known special functions have been considered by several
authors [1], [2], [4], [5], [6], [9]. In 1994, Chaudhry and Zubair [1] have introduced the following extension
of gamma function

�p(x) :=

1Z
0

tx�1 exp
�
�t� pt�1

�
dt; (1)

Re (p) > 0:

In 1997, Chaudhry et al. [2] has presented the following extension of Euler�s beta function

Bp (x; y) :=

Z 1

0

tx�1 (1� t)y�1 exp
�
� p

t(1� t)

�
dt; (2)

(Re(p) > 0;Re(x) > 0;Re(y) > 0)

and they proved that this extension has connection with the Macdonald, error and Whittakers function.
It is clearly seen that �0(x) = � (x) and B0 (x; y) = B (x; y).
Afterwards, Chaudhry et al. [3] used Bp (x; y) to extend the hypergeometric functions (and con�uent

hypergeometric functions) as follows:

Fp (a; b; c; z) =
1X
n=0

Bp (b+ n; c� b)
B (b; c� b) (a)n

zn

n!

p � 0 ; Re (c) > Re (b) > 0;

1
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�p (b; c; z) =
1X
n=0

Bp (b+ n; c� b)
B (b; c� b)

zn

n!

p� 0 ; Re (c) > Re (b) > 0;

where (�)� denotes the Pochhammer symbol de�ned by

(�)0 � 1 and (�)� :=
�(�+ �)

�(�)

and gave the Euler type integral representation

Fp (a; b; c; z) =
1

B (b; c� b)

Z 1

0

tb�1 (1� t)c�b�1 (1� zt)�a exp
�
� p

t(1� t)

�
dt

p > 0 ; p = 0 and jarg (1� z)j < � < p; Re (c) > Re (b) > 0:

They called these functions as extended Gauss hypergeometric function (EGHF) and extended con�uent
hypergeometric function (ECHF), respectively. They have discussed the di¤erentiation properties and
Mellin transforms of Fp (a; b; c; z) and obtained transformation formulas, recurrence relations, summation
and asymptotic formulas for this function. Note that F0 (a; b; c; z) = 2F1 (a; b; c; z) :
Note that, very recently, the second au¬thor obtained some representations of these extended func-

tions in terms of a �nite number of well known higher transcendental functions, specially, as an in�nite
series containing hypergeometric, con�uent hypergeometric, Whittaker�s, Lagrange functions, Laguerre
polynomials, and products of them [10].
We consider the following generalizations of gamma and Euler�s beta functions

�(�;�)p (x) :=

Z 1

0

tx�1 1F1

�
�;�;�t� p

t

�
dt (3)

Re(�) > 0;Re(�) > 0;Re(p) > 0;Re(x) > 0;

B(�;�)p (x; y) :=

Z 1

0

tx�1 (1� t)y�1 1F1
�
�;�;

�p
t(1� t)

�
dt; (4)

(Re(p) > 0;Re(x) > 0;Re(y) > 0;Re(�) > 0;Re(�) > 0):

respectively. It is obvious by (1), (3) and (2), (4) that, �(�;�)p (x) = �p (x), �
(�;�)
0 (x) = � (x) ; B

(�;�)
p (x; y) =

Bp (x; y) and B
(�;�)
0 (x; y) = B (x; y) : We call the functions �(�;�)p (x) and B(�;�)p (x; y) as generalized

Euler�s gamma function (GEGF) and generalized Euler�s beta function (GEBF), respectively.
On the other hand using the new generalization (4) of beta function the generalized Gauss hypergeo-

metric (GGHF) and generalized con�uent hypergeometric functions (GCHF) is de�ned by

F (�;�)p (a; b; c; z) :=
1X
n=0

(a)n
B
(�;�)
p (b+ n; c� b)
B (b; c� b)

zn

n!

and

1F
(�;�;p)
1 (b; c; z) :=

1X
n=0

B
(�;�)
p (b+ n; c� b)
B (b; c� b)

zn

n!
;

respectively (see [11]). The following integral representations were obtained in [11]:

F (�;�)p (a; b; c; z) :=
1

B(b; c� b)

Z 1

0

tb�1 (1� t)c�b�1 1F1
�
�;�;

�p
t (1� t)

�
(1� zt)�a dt;

Re (p) > 0; p = 0 and jarg (1� z)j < �; Re (c) > Re (b) > 0;

2
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and

1F
(�;�;p)
1 (b; c; z) :=

1

B(b; c� b)

Z 1

0

tb�1 (1� t)c�b�1 ezt 1F1
�
�;�;

�p
t (1� t)

�
dt; (6)

p � 0; and Re(c) > Re(b) > 0:

Observe that [3],

F (�;�)p (a; b; c; z) = Fp (a; b; c; z) ; F
(�;�)
0 (a; b; c; z) = 2F1 (a; b; c; z) ;

and
1F

(�;�;p)
1 (b; c; z) = 1F

(p)
1 (b; c; z) = �p (b; c; z) ; 1F

(�;�;0)
1 (b; c; z) = 1F1 (b; c; z) :

In section 2, we obtain some integral representations of generalized beta, Gauss hypergeometric and
Con�uent hypergeometric functions. Mellin transform representation of the generalized Gamma function
is also be given. Furthermore, some recurrence relations of the above mentioned functions are presented.

2 New integral representations of GEBF, GGHF and GCHF

It is important and useful to obtain di¤erent integral representations of the new generalized beta function,
for later use. Also it is useful to discuss the relationships between classical gamma functions and new
generalizations. We start with the following integral representation for B(�;�)p (x) by means of Chaudhry�s
extended beta function:

Theorem 1 For the new generalized beta function, we have

B(�;�)p (x; y) =
�(�)

�(�)�(� � �)

1Z
0

Bpt (x; y) t
��1(1� t)����1dt:

Proof. Using the integral representation of con�uent hypergeometric function, we have

B(�;�)p (x; y) =
�(�)

�(�)�(� � �)

1Z
0

1Z
0

ux�1(1� u)y�1 exp
�
� pt

u(1� u)

�
t��1(1� t)����1dtdu:

From the uniform convergence of the integrals, the order of integration can be interchanged to yield that

B(�;�)p (x; y) =
�(�)

�(�)�(� � �)

1Z
0

8<:
1Z
0

ux�1(1� u)y�1 exp
�
� pt

u(1� u)

�
du

9=; t��1(1� t)����1dt:
In view of (2), we get

B(�;�)p (x; y) =
�(�)

�(�)�(� � �)

1Z
0

Bpt (x; y) t
��1(1� t)����1dt:

Whence the result.

Theorem 2 For the following representation holds true for the GGHF:

F (�;�)p (a; b; c; z) =
�(�)

�(�)�(� � �)

1Z
0

Fpt (a; b; c; z) t
��1(1� t)����1dt:

3
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Proof. Since

F (�;�)p (a; b; c; z) =
1X
n=0

(a)n
B
(�;�)
p (b+ n; c� b)
B (b; c� b)

zn

n!

we have from the above theorem that

F (�;�)p (a; b; c; z) =
�(�)

�(�)�(� � �)

1X
n=0

(a)n
B (b; c� b)

1Z
0

Bpt (b+ n; c� b) t��1(1� t)����1dt
zn

n!
:

From the uniform convergence of the series involved and the absolute convergence of the integral, inter-
changing the order of series and the integral, we get

F (�;�)p (a; b; c; z) =
�(�)

�(�)�(� � �)

1Z
0

( 1X
n=0

(a)n
Bpt (b+ n; c� b)
B (b; c� b)

zn

n!

)
t��1(1� t)����1dt:

Whence the result.
In a similar manner, we are led fairly easily to the theorem below:

Theorem 3 For the GGCF, we have the foolowing integral representation:

1F
(�;�;p)
1 (b; c; z) :=

�(�)

�(�)�(� � �)

1Z
0

�pt (b; c; z) t
��1(1� t)����1dt:

3 Mellin Transform Representation of the GEGF

In this section, we obtain the Mellin transform representations of the GEGF.

Theorem 4 For the GEGF, we have the following Mellin transform representation:

M
n
�(�;�)p (y) : s

o
:=
�(�)�(s)�(s+ y)B(�� 2s� y; � � �)

�(�)�(� � �) :

Proof. Using the integral representation of con�uent hypergeometric function, we have

�(�;�)p (s) =
�(�)

�(�)�(� � �)

1Z
0

1Z
0

us�1e�ut�
pt
u t��1(1� t)����1dtdu: (7)

Multiplying both sides of (7) by ps�1 and integrate with respect to p over the interval [0;1); we get

M
n
�(�;�)p (s) : s

o
:=

Z 1

0

ps�1�(�;�)p (s)dp =
�(�)

�(�)�(� � �)

1Z
0

ps�1
1Z
0

1Z
0

uy�1e�ut�
pt
u t��1(1�t)����1dtdudp:

4
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Since the integrals involved are absolutely convergent, we get by interchanging the order of integrals that

M
n
�(�;�)p (s) : s

o
=

�(�)

�(�)�(� � �)

1Z
0

1Z
0

8<:
1Z
0

ps�1 e�
pt
u dp

9=;uy�1t��1(1� t)����1e�ut dtdu
=

�(�)

�(�)�(� � �)

1Z
0

1Z
0

ust�s�(s)uy�1e�utt��1(1� t)����1dtdu

=
�(�)�(s)

�(�)�(� � �)

1Z
0

t��s�1(1� t)����1
1Z
0

us+y�1e�utdudt

=
�(�)�(s)

�(�)�(� � �)

1Z
0

t��2s�y�1(1� t)����1
1Z
0

vs+y�1e�vdvdt

=
�(�)�(s)�(s+ y)

�(�)�(� � �)

1Z
0

t��2s�y�1(1� t)����1dt = �(�)�(s)�(s+ y)

�(�)�(� � �) B(�� 2s� y; � � �):

Corollary 5 By Mellin inversion formula, we have the following complex integral representation for
�
(�;�)
p :

�(�;�)p (y) =
1

2�i

Z i1

�i1

�(�)�(s)�(s+ y)

�(�)�(� � �) B(�� 2s� y; � � �) p�sds:

Corollary 6 Taking s = 1 in the above theorem, we getZ 1

0

�(�;�)p (s)dp =
�(�)�(y + 1)�(�� 2� y)

�(�)�(� � 2� y) :

4 Recurrence Relations for GEBF, GGHF and GCHF

In this section we obtain new recurrence relations for GEBF, GEGF, GGHF and GCHF by using their
Mellin transform representation. We start with the following theorem.

Theorem 7 We have the following di¤erence formula for B(�;�)p (x; y) :

xB(�;�)p (x; y + 1)� yB(�;�)p (x+ 1; y) = ��p
�
B(�+1;�+1)p (x� 1; y + 1) + �p

�
B(�+1;�+1)p (x+ 1; y � 1) :

(Re(p) > 0)

Proof. Recalling that the Mellin transform operator is de�ned by

M ff(t) : sg :=
1Z
0

ts�1f(t)dt;

we observe that B(�;�)p (x; y) is the Mellin transform of the function

f(t : y;�; �; p) = H(1� t) (1� t)y�1 1F1
�
�;�;

�p
t(1� t)

�
dt;

where

H(t) =

�
1 if t > 0
0 if t < 0

5
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is the Heaviside unit function. Hence B(�;�)p (x; y) has the Mellin transform representation

B(�;�)p (x; y) =M ff(t : y;�; �; p) : xg :

Taking derivative of f(t : y;�; �; p); we get

@

@t
(f(t : y;�; �; p)) = �

h
�(1� t) (1� t)y�1 + (y � 1)H(1� t) (1� t)y�2

i
1F1

�
�;�;

�p
t(1� t)

�
dt

��p
�
H(1� t) (1� t)y�1

�
�1
t2
+

1

(1� t)2

�
1F1

�
�+ 1;� + 1;

�p
t(1� t)

�
;

where

�(t� t0) =
�
1 if t = t0
0 if t 6= t0

is the Dirac delta function. Since

M ff 0(t) : xg = (1� x)M ff(t) : x� 1g

we have

(x� 1)B(�;�)p (x� 1; y) =M
�h
�(1� t) (1� t)y�1 + (y � 1) (1� t)y�2

i
1F1

�
�;�;

�p
t(1� t)

�
: x

�
+M

�
�p

�
H(1� t) (1� t)y�1

�
�1
t2
+

1

(1� t)2

�
1F1

�
�+ 1;� + 1;

�p
t(1� t)

�
: x

�
= (y � 1)B(�;�)p (x; y � 1)� �p

�
B(�+1;�+1)p (x� 2; y) + �p

�
B(�+1;�+1)p (x; y � 2) :

This completes the proof.

Remark 8 For � = �; we get the recurrence obtained in [[12], pp.222, Eq(5.65)]

xBp (x; y + 1)� yBp (x+ 1; y) = p [Bp (x+ 1; y � 1)�Bp (x� 1; y + 1)] :
(Re(p)> 0)

Theorem 9 We have the following di¤erence formula for �(�;�)p (s) :

(s� 1)�(�;�)p (s� 1) = �

�
�(�+1;�+1)p (s)� p�

�
�(�+1;�+1)p (s� 2):

Proof. By (3), �(�;�)p (s) is the Mellin transform of the function

f(t : �; �; p) = 1F1(�;�;�t� pt�1):

Hence
�(�;�)p (s) =M ff(t : �; �; p) : sg :

Taking derivative of f(t : �; �; p); we get

@

@t
(f(t : �; �; p)) =

�
�1 + pt�2

� �
�

1F1(�+ 1;� + 1;�t�
p

t
)

Since
M ff 0(t) : sg = (1� s)M ff(t) : s� 1g

we get
(1� s)�(�;�)p (s� 1) = ��

�
�(�+1;�+1)p (s) +

p�

�
�(�+1;�+1)p (s� 2):

This completes the proof.

6
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Remark 10 When p = 0 and � = �, we have the well known identity

�(s) = (s� 1)�(s� 1):

Theorem 11 We have the following di¤erence formula for F (�;�)p (a; b; c; z) :

(b� 1)B(b� 1; c� b� 1)F (�;�)p (a; b� 1; c; z)
= (c� b� 1)B(b; c� b� 1)F (�;�)p (a; b; c� 1;x) + azB(b; c� b)F (�;�)p (a+ 1; b; c;x)

��p
�
B(b� 2; c� b)F (�+1;�+1)p (a; b� 2; c� 2; z) + �p

�
B(b; c� b� 2)F (�+1;�+1)p (a; b; c� 2; z) :

Proof. Observe from (5) that B(b; c� b)F (�;�)p (a; b; c; z) is the Mellin transform of the function

fa;b;c(t : z;�; �; p) = H(1� t) (1� t)c�b�1 1F1
�
�;�;

�p
t (1� t)

�
(1� zt)�a :

Hence B(b; c� b)F (�;�)p (a; b; c; z) has the Mellin transform representation

B(b; c� b)F (�;�)p (a; b; c; z) =M ffa;b;c(t : z;�; �; p) : bg :

Taking derivative of fa;b(t : y;�; �; p); we get

@

@t
(fa;b(t : z;�; �; p)) = �

h
�(1� t) (1� t)c�b�1 (1� zt)�a + (c� b� 1)H(1� t) (1� t)c�b�2 (1� zt)�a

+azH(1� t) (1� t)c�b�1 (1� zt)�a�1
i
1F1

�
�;�;

�p
t(1� t)

�
dt

��p
�
H(1� t) (1� t)c�b�1 (1� zt)�a

�
�1
t2
+

1

(1� t)2

�
1F1

�
�+ 1;� + 1;

�p
t(1� t)

�
:

Since
M ff 0(t) : bg = (1� b)M ff(t) : b� 1g

we get

(b� 1)B(b� 1; c� b� 1)F (�;�)p (a; b� 1; c; z) = (c� b� 1)B(b; c� b� 1)F (�;�)p (a; b; c� 1;x)

+ azB(b; c� b)F (�;�)p (a+ 1; b; c;x)� �p
�
B(b� 2; c� b)F (�+1;�+1)p (a; b� 2; c� 2; z)

+
�p

�
B(b; c� b� 2)F (�+1;�+1)p (a; b; c� 2; z) :

This completes the proof.

Similarly, using (6), we get:

Theorem 12 We have the following di¤erence formula for 1F
(�;�;p)
1 (b; c; z) :

(b� 1)B(b� 1; c� b� 1)1F (�;�;p)1 (b� 1; c; z)

= (c� b� 1)B(b; c� b� 1)1F (�;�;p)1 (b; c� 1; z) + zB(b; c� b)1F (�;�;p)1 (b; c; z)

� �p
�
B(b� 2; c� b)1F (�+1;�+1;p)1 (b� 2; c� 2; z) + �p

�
B(b; c� b� 2)1F (�+1;�+1;p)1 (b; c� 2; z) :

Proof. Observe from (6) that B(b; c� b)1F (�;�;p)1 (b; c; z) is the Mellin transform of the function

fa;b;c(t : z;�; �; p) = H(1� t) (1� t)c�b�1 ezt 1F1
�
�;�;

�p
t (1� t)

�
:

7
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Hence B(b; c� b)1F (�;�;p)1 (b; c; z) has the Mellin transform representation

B(b; c� b)1F (�;�;p)1 (b; c; z) =M ffa;b;c(t : z;�; �; p) : bg :

Taking derivative of fa;b(t : y;�; �; p); we get

@

@t
(fa;b(t : z;�; �; p)) = �

h
�(1� t) (1� t)c�b�1 ezt + (c� b� 1)H(1� t) (1� t)c�b�2 ezt

+zH(1� t) (1� t)c�b�1 ezt
i
1F1

�
�;�;

�p
t(1� t)

�
dt

��p
�
H(1� t) (1� t)c�b�1 ezt

�
�1
t2
+

1

(1� t)2

�
1F1

�
�+ 1;� + 1;

�p
t(1� t)

�
:

Since
M ff 0(t) : bg = (1� b)M ff(t) : b� 1g

we get

(b� 1)B(b� 1; c� b� 1)1F (�;�;p)1 (b� 1; c; z) = (c� b� 1)B(b; c� b� 1)1F (�;�;p)1 (b; c� 1; z)

+ zB(b; c� b)1F (�;�;p)1 (b; c; z)� �p
�
B(b� 2; c� b)1F (�+1;�+1;p)1 (b� 2; c� 2; z)

+
�p

�
B(b; c� b� 2)1F (�+1;�+1;p)1 (b; c� 2; z) :

This completes the proof.
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A modified AOR iterative method for new
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Abstract

In this paper, a preconditioned AOR iterative method is presented with
a new preconditioner, and the corresponding convergence and comparison
results are given. The optimum parameters and spectral radius for strictly
diagonally dominant L-matrices are found. Numerical examples are given to
illustrate the efficiency of our method.

Keywords: AOR− iteration method; L− matrix; Spectral radius; Opti-
mum parameters; Preconditioner.
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1 Introduction

Consider the following linear system

Ax = b, (1.1)

where A ∈ Rn×n , b, x ∈ Rn. For any splitting, A = M −N with det(M) 6= 0, the
basic iterative scheme for solving (1.1) is as follows

xk+1 = M−1Nxk + M−1b, k = 0, 1, · · ·.
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For simplicity, without loss of generality, we assume throughout this paper that

A = I − L− U,

where I is the identity matrix, L and U are strictly lower and upper triangular
matrices obtained from A, respectively. Thereby the iterative matrix of the classical
AOR iterative method in [1] is defined as

Lrω = (I − rL)−1[(1− ω)I + (ω − r)L + ωU ], (1.2)

where ω and r are real parameters with ω 6= 0.
The spectral radius of the iterative matrix determines the convergence and sta-

bility of the method, and the smaller it is, the faster the method converges when
the spectral radius is smaller than 1. In order to accelerate the convergence of the
iterative method solving (1.1), preconditioned methods are often utilized, which is,
which is,

PAx = Pb, (1.3)

where P is the nonsingular preconditioner.
Construct P = (I + Ŝ) with

Ŝ =




0 0 · · · 0 0
−α2a2,1 0 · · · 0 0
−α3a3,1 0 · · · 0 0

...
...

...
...

...
−αnan,1 0 · · · 0 0




, and αi ∈ R, i = 2, · · · , n.

The Equation (1.3) transform to
Âx = b̂, (1.4)

where Â = (I + Ŝ)A and b̂ = (I + Ŝ)b. The coefficient matrix of (1.4) is splited as

Â = D̂ − L̂− Û , (1.5)

where D̂ = diag(Â), L̂ and Û are strictly lower and upper triangular matrices
obtained from Â, respectively. Through some trivial calculation, we obtain that

D̂ = diag(1, 1− α2a2,1a1,2, · · · , 1− αnan,1a1,n),

and

L̂ = −




0 0 · · · 0 0
a2,1 − α2a2,1 0 · · · 0 0
a3,1 − α3a3,1 a3,2 − α3a3,1a1,2 · · · 0 0

...
...

...
. . .

...
an,1 − αnan,1 an,2 − αnan,1a1,2 an,3 − αnan,1a1,3 . . . 0




,
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and

Û = −




0 a1,2 a1,3 · · · a1,n

0 0 a2,3 − α2a2,1a1,3 · · · a2,n − α2a2,1a1,n

0 0 0 · · · a3,n − α3a3,1a1,n
...

...
...

. . .
...

0 0 0 · · · 0




.

Applying the AOR method to the preconditioned linear system (1.4), the corre-
sponding preconditioned AOR iterative method is obtained with iterative matrix

L̂rω = (D̂ − rL̂)−1[(1− ω)D̂ + (ω − r)L̂ + ωÛ ], (1.6)

where ω and r are real parameters with ω 6= 0.
The rest of the article is organized as follows. In Section 2, we briefly explain

some notation and some Lemma which are used to state and to prove our results.
In Section 3, we sate our result with its proof. Examples are given to illustrate our
main theorem in Section 4.

2 Preliminaries

Some notation and Lemmas as follows are needed in this article.
A matrix A is nonnegative(positive) if each entry of A is nonnegative(positive),

respectively, which is denoted by A ≥ 0, (A > 0). Let ρ(A) be the spectral radius
of A. In addition, A matrix A is irreducible if the directed graph associated to A is
strongly connected. Lastly, A matrix A is an L−matrix if ai,i > 0, i = 1, 2, · · · , n
and ai,j ≤ 0, for all i, j = 1, 2, · · · , n such that i 6= j.

The following Lemma will be useful to prove the main results.

Lemma 2.1a([5]). Let A ∈ Rm×n, A = M −N is a splitting of A. Then
(a). If M−1 ≥ 0 and N ≥ 0, then A = M −N is a regular splitting;
(b). If M−1 ≥ 0 and M−1N ≥ 0, then A = M −N is a weak regular splitting.

Lemma 2.1b([5]). Let A = M1 − N1 = M2 − N2 are two regular splitting for
matrix A and suppose that A−1 and N2 ≥ N1 ≥ 0. Then

0 ≤ ρ(M−1
1 N1) ≤ ρ(M−1

2 N2) < 1.

Lemma 2.2a([6]). Let A ∈ Cn×n be a non-negative and irreducible n×n matrix.
Then

(a). A has a positive real eigenvalue equal to its spectral radius ρ(A);
(b). There exists an eigenvector x > 0 corresponding to ρ(A),
(c). ρ(A) is a simple eigenvalue of A;
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(d). ρ(A) increases when any entry of A increases.

Lemma 2.2b([6]). Let A be a non-negative matrix. Then
(a). If αx ≤ Ax for some non-negative vector x, x 6= 0, then α ≤ ρ(A).
(b). If Ax ≤ βx for some positive vector x, then ρ(A) ≤ β. Moreover, if A is

irreducible and if 0 6= αx ≤ Ax ≤ βx, αx 6= Ax, Ax 6= βx for non-negative vector
x, then α < ρ(A) < β and x is a positive vector.

3 Main results

Our main goal in this section is to establish the following results with proof.

Lemma 3.1. Let A and Â be the coefficient matrices of the linear systems (1.1)
and (1.4), where A is an L−matrix for which there exists i such that ai,1 6= 0, i =
2, · · · , n, with ai+1,iai,i+1 6= 0, i = 1, · · · , n − 1. If 0 ≤ r ≤ ω ≤ 1 (ω 6= 0, r 6= 1)
and one of the following conditions is also satisfied simultaneously

(a). 0 < αi ≤ 1 if 0 < a1,iai,1 < 1, or ai,1 6= 0 and a1,i = 0;
(b). 0 < αi ≤ 1 if a1,iai,1 = 1;
(c). 0 < αi < 1

a1,iai,1
if a1,iai,1 > 1;

(d). αi > 0 if ai,1 = 0, i = 1, 2, · · · , n.

Then the iterative matrices Lr,ω and L̂r,ω are nonnegative and irreducible.
Proof. From (1.2) we have

Lr,ω = (1− ω)I + ω(1− r)L + ωU + T, (3.1)

where

T = rL[ω−r)L+ωU ]+(r2L2+ · · ·+rn−1Ln−1)[(1−ω)I +(ω−r)L+ωU ] ≥ 0. (3.2)

Then Lr,ω and L̂r,ω are nonnegative and irreducible according to lemma 1 of [4]. 2

Theorem 3.2. Under the assumptions of Lemma 3.1, and let Lr,ω and L̂r,ω be
the iterative matrices of the AOR method obtained from (1.1) and (1.4), respectively.
Then we have

(a) ρ(L̂r,ω) < ρ(Lr,ω) < 1, if ρ(Lr,ω) < 1;

(b) ρ(L̂r,ω) = ρ(Lr,ω) = 1, if ρ(Lr,ω) = 1;

(c) ρ(L̂r,ω) > ρ(Lr,ω) > 1, if ρ(Lr,ω) > 1.

Proof. From Lemma 3.1 it is obvious that Lr,ω and L̂r,ω are nonnegative and
irreducible. Therefore, according to Lemma 2.2a there is a positive vector x, such
that

Lr,ωx = λx, (3.3)
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where λ = ρ(Lr,ω), (3.3) can equivalently to

[(1− ω)I + (ω − r)L + ωU ]x = λ(I − rL)x. (3.4)

Now consider

L̂rωx− λx = (D̂ − rL̂)−1[(1− ω)D̂ + (ω − r)L̂ + ωÛ ]x− λx

= (D̂ − rL̂)−1[(1− ω)D̂ + (ω − r)L̂ + ωÛ − λ(D̂ − rL̂)]x

= (D̂ − rL̂)−1[(1− ω − λ)D1 + ωU1 − (ω − r + λr)L1]x

= (λ− 1)(D̂ − rL̂)−1(0, η2, η3, · · · , , ηn)T , (3.5)

where ηi = αiai,1[r
∑

1<j<i a1,jxj + a1,ixi + (r − 1)x1] ≥ 0, i = 2, · · · , n.
In the following, we give the comparison results based on the three cases of λ.
(a) If 0 < λ < 1, then L̂rωx − λx ≤ 0 without the equality holding constantly.

Therefore, L̂rωx ≤ λx. Furthermore, we get ρ(L̂rω) < λ = ρ(Lrω) by Lemma 2.2b.
(b) If λ = 1, then L̂rωx − λx = 0, we get ρ(L̂rω) = λ = ρ(Lrω) still by Lemma

2.2b.
(c) If λ > 1, then L̂rωx−λx ≥ 0 without the equality holding constantly. There-

fore, L̂rωx ≥ λx. Furthermore, we get ρ(L̂rω) > λ = ρ(Lrω) by Lemma 2.2b again.
The proof of Theorem 3.2 is completed. 2

According to our main result, we have the following corollary.
Corollary 3.3. Let Lr,ω and L̄r,ω be the iterative matrices of the AOR method

obtained from (1.1) and (1.4), respectively. Under the same conditions in Theorem
3.2 except for the ones for αi, i = 2, · · · , n, we have

(a) ρ(L̄r,ω) < ρ(Lr,ω) < 1, if ρ(Lr,ω) < 1;
(b) ρ(L̄r,ω) = ρ(Lr,ω) = 1, if ρ(Lr,ω) = 1;
(c) ρ(L̄r,ω) > ρ(Lr,ω) > 1, if ρ(Lr,ω) > 1.

Now we show how the Modified AOR optimum parameters and spectral radius
are found. For convenience, let Ã = ŜA = IŜ − LŜ − UŜ. We redefine (1.5),

D̂ = I + IŜ, L̂ = L + LŜ, Û = U + UŜ.

Lemma 3.4 Under the assumptions of Lemma 3.1, and A is a strictly diagonally
dominant L−matrix. Then Â is a strictly diagonally dominant L−matrix.
Proof. We first prove Â is an L−matrix.

Â = (I + Ŝ)A = D̂ − L̂− Û
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=




1 a1,2 a1,3 · · · a1,n

a2,1 − α2a2,1 1− α2a1,2a2,1 a2,3 − α2a2,1a1,3 · · · a2,n − α2a2,1a1,n

a3,1 − α3a3,1 a3,2 − α3a3,1a1,2 1− α3a1,3a3,1 · · · a3,n − α3a3,1a1,n
...

...
...

. . .
...

an,1 − αnan,1 an,2 − αnan,1a1,2 an,3 − αnan,1a1,3
... 1− αna1,nan,1




.

Since A is a strictly diagonally dominant L−matrix, the non-diagonal elements of
the first line of Â are non-positive. For all the lines from the second line for Â, we
have

âi,j =

{
ai,j − αiai,1a1,j ≤ 0, if i 6= j

1− αiai,1a1,j > 0, if i = j

Thus Â is an L-matrix.
Below we prove Â is a strictly diagonally dominant matrix.

For the first line of Â, |a1,2 + a1,3 + · · ·+ a1,n| < 1| holds, and for the i−th line

|(ai,1 − αiai,1) + (ai,i−1 − αiai,1a1,i−1) + (ai,i+1 − αiai,1a1,i+1) + · · ·+ (ai,n − αiai,1a1,n)|
= −(ai,1 + · · ·+ ai,i−1 + ai,i+1 + · · ·+ ai,n) + αiai,1(1 + · · ·+ a1,i−1 + a1,i+1 + · · ·+ a1,n)

≤ 1− αiai,1a1,i

holds too. Then, Â is a strictly diagonally dominant L−matrix. 2

Theorem 3.5. Under the assumptions of Lemma 3.4, ρ(Lr,ω) < 1, 0 ≤ r ≤ ω ≤
1 and ω > 0. Then

ρ(L̂1,1) ≤ ρ(L̂r,ω) < 1. (3.6)

If r = 1, ω = 1 and α = [1, 1, · · · , 1], then equality holds in (3.6).
Proof. From Equation (1.6), we get

L̂r,ω =[(I + IŜ)− r(L + LŜ)]−1

× [(1− ω)(I + IŜ) + (ω − r)(L + LŜ) + ω(U + UŜ)],

let
′
s denote

M2 = [(I + IŜ)− r(L + LŜ)],

N2 = [(1− ω)(I + IŜ) + (ω − r)(L + LŜ) + ω(U + UŜ)],

according to Lemma 3.4, we known that Â = (I + Ŝ)A is a strictly diagonally
dominant L−matrix. Hence,

(I + IŜ)−1 ≥ 0 and ρ[(I + IŜ)−1(L + LŜ)] < 1.
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Moreover,

M−1
2 = {I + [r(I + IŜ)−1(L + LŜ)] + [r(I + IŜ)−1(L + LŜ)]2 + · · · } × (I + IŜ)−1 ≥ 0,

(3.7)

N2 = [(1− ω)(I + IŜ) + (ω − r)(L + LŜ) + ω(U + UŜ)] ≥ 0, (3.8)

and

M2 −N2 =[(I + IŜ)− r(L + LŜ)]−
[(1− ω)(I + IŜ) + (ω − r)(L + LŜ) + ω(U + UŜ)]

=ω[(I + IŜ)− (L + LŜ)− (U + UŜ)]

=ωÂ. (3.9)

Therefore, ωÂ = M2 −N2 is a regular splitting.
On the other hand,

L̂1,1 =[(I + IŜ)− (L + LŜ)]−1(U + UŜ)

=[ω(I + IŜ)− ω(L + LŜ)]−1ω(U + UŜ).

Let
M1 = ω(I + IŜ)− ω(L + LŜ), N1 = ω(U + UŜ),

since (I + IŜ)−1 ≥ 0 and ρ[(I + IŜ)−1(L + LŜ)] < 1, we have

M−1
1 =

1

ω
{I + [(I + IŜ)−1(L + LŜ)]

+ [(I + IŜ)−1(L + LŜ)]2 + · · · } × (I + IŜ)−1 ≥ 0, (3.10)

N1 = ω(U + UŜ) ≥ 0, (3.11)

and

M1 −N1 =ω(I + IŜ)− ω(L + LŜ)− ω(U + UŜ)

=ω[(I + IŜ)− (L + LŜ)− (U + UŜ)]

=ωÂ. (3.12)

According to (3.7-12), ωÂ = M2 −N2 = M1 −N1 are two different regular splitting
of ωÂ, and N2 = (1−ω)(I+IŜ)+(ω−r)(L+LŜ)+ω(U+UŜ) ≥ ω(U+UŜ) = N1 ≥ 0,
we can obtain ρ(M−1

1 N1) ≤ ρ(M−1
2 N2) < 1 by Lemma 2.1b. Hence,

ρ(L̂1,1) ≤ ρ(L̂r,ω) < 1.

In particular, if r = 1, ω = 1 and α = [1, 1, · · · , 1], then ρ(L̂r,ω) = ρ(L̂1,1) hold. 2
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4 Numerical experiments

In this section we give some numerical examples to illustrate the results obtained in
Section 3.

Example 4.1. Consider the matrix A of (1.1), and given by

A =




1 −0.01 −0.5 −0.3 −0.05 −0.3
−0.2 1 −0.1 −0.15 −0.12 −0.14
−0.1 −0.14 1 −0.05 −0.4 −0.2
−0.2 −0.05 −0.11 1 −0.2 −0.1
−0.4 −0.03 −0.05 −0.15 1 −0.2
−0.08 −0.3 −0.1 −0.1 −0.3 1




.

For the modified AOR iterative method, we have the following results. The dig-
ital of following table is formed by Matlab R2010a program.

Table 1. Numerical illustration of our main results

(α2, α3, · · · , α6) ω r ρ(Lr,ω) ρ(L̂r,ω)
(0.5, 0.5, 0.5, 0.5, 0.5) 0.8 0.2 0.8890 0.8745
(0.6, 0.6, 0.6, 0.6, 0.6) 0.75 0.65 0.8674 0.8462
(0.8, 0.8, 0.8, 0.8, 0.8) 0.8 0.6 0.8629 0.8317
(0.9, 0.9, 0.9, 0.9, 0.9) 0.95 0.9 0.7999 0.7471

(1, 1, 1, 1, 1) 1 1 0.7710 0.7009

Remark 4.1. From the above table, we know ρ(L̂r,ω) < ρ(Lr,ω) when ρ(Lr,ω) < 1.

In particular, if r = 1, ω = 1 and α = [1, 1, · · · , 1], then ρ(L̂r,ω) = ρ(L̂1,1) hold. So
the results are in concord with our main results.

Example 4.2. Consider the matrix A of (1.1), and given by

A =




1 −0.01 −0.5 −0.3 −0.05 −0.3
−0.4 1 −0.2 −0.15 −0.12 −0.3
−0.5 −0.14 1 −0.5 −0.6 −0.2
−0.2 −0.05 −0.11 1 −0.2 −0.1
−0.6 −0.05 −0.06 −0.15 1 −0.2
−0.7 −0.3 −0.1 −0.1 −0.3 1




.

For the modified AOR iterative method, we have the following results.
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Table 2. Numerical illustration of Theorem 3.2

(α2, α3, · · · , α6) ω r ρ(Lr,ω) ρ(L̂r,ω)
(0.9, 0.1, 0.5, 0.2, 0.8) 0.05 0.05 1.0121 1.0151
(0.4, 0.7, 0.8, 0.3, 0.6) 0.7 0.3 1.1970 1.2686
(0.7, 0.2, 0.8, 0.3, 0.3) 0.75 0.65 1.2706 1.3252
(0.2, 0.4, 0.6, 0.7, 0.3) 0.8 0.6 1.2778 1.3568
(0.2, 0.4, 0.6, 0.7, 0.3) 0.95 0.9 1.4209 1.5515

Remark 4.2. From the above table, it is easy to know that ρ(L̂r,ω) > ρ(Lr,ω) when
ρ(Lr,ω) > 1. The results are also in concord with Theorem 3.2 and Corollary 3.3.
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1 Inverse Transform Method

We shall describe a method of simulating a discrete random variable that
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X :

(
a1 · · · ak · · · am
p1 · · · pk · · · pm

)
,

where

m∑
k=1

pk = 1.

Its distribution function is:

FX (x) =



0, x ≤ a1

p1, x ∈ (a1, a2]

p1 + p2, x ∈ (a2, a3]
...

p1 + p2 + · · ·+ pk, x ∈ (ak, ak+1]
...
1 x > am

(1)

and the inverse function will be:

F−1X (u) = ak, x ∈ (FX (ak−1) , FX (ak)] , (∀) k = 1,m,

where

a0 = −∞, FX (a0) = 0.

The algorithm for simulating the random variable X consists of:

— generating a value u uniformly distributed in [0, 1];
—finding the index k for which

FX (ak−1) < u ≤ FX (ak) . (2)

The relation (2) results from the fact that the relation:

ak−1 < X ≤ ak
involves

FX (ak−1) < FX (x) ≤ FX (ak)

and using that

FX (x) = u.

We shall construct the corresponding Matlab program:
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function x=simdiscrv(F,a,m)
u=rand;
k=1;
while (u>F(k))
k=k+1;
end
x=a(k);
end

We shall apply the previous Matlab function to generate a discrete ran-
dom variable that gives the number of points obtained in the experience
when we roll a die and the possible outcomes are 1, 2, 3, 4, 5, 6 correspond-
ing to the side that turns up.
Thereby

X :

(
1 2 3 4 5 6
1
6
1
6
1
6
1
6
1
6
1
6

)
,

where

6∑
k=1

pk = 1

and

FX (x) =



0, x ≤ 1
1/6, x ∈ (1, 2]
2/6, x ∈ (2, 3]
3/6, x ∈ (3, 4]
4/6, x ∈ (4, 5]
5/6, x ∈ (5, 6]
1, x > 6.

In the command line of Matlab we shall write:
>> a = 1 : 7;
>> F = 0 : 1=6 : 1;
>> x = simdiscrv(F; a; 7)
It will display:
u =
0.6557
x =
5
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2 Simulation of a random variable having a geometric
distribution

Let X be a random variable signifying the number of failures until
a certain success in a number of independent Bernoulli samples. So,
X has the distribution:

X :

(
0 1 2 · · · k · · · n
p pq pq2 · · · pqk · · · pqn

)
and with the mean and respectively the variance:

{
M (X) = q

p

V ar (X) = q
p2 ,

where p is the probability the probability of having a success, i.e the prob-
ability that a random event observable A to occur in a random experience
and q = 1− p is the probability to achieve a failure, i.e the probability that
the event contrary A to occur.
The distribution function of X is:

F (x) = P (X < x) =

x∑
k=0

pqk = 1− qx+1, x = 0, 1, 2, · · · , n,

namely it is a discrete distribution function.
The name of geometric distribution comes from the fact that

P (X = x) = pqx

is thew term of a geometric progression.
The simulation the random variable X, which has a geometric distribu-

tion can be also achieved by means of the inverse transform method, using
the formula:

X =

[
log (U)

log (q)

]
, (3)

where:

— [a] is the integer part of a,
—U is a random variable, uniformly distributed in [0, 1].
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3 Simulation of a random variable with a exponential and a
Weibull distribution

A exponential variable X ∼ Exp(λ) has the probability density function:

f (x) =

{
λe−λx, x > 0
0, x ≤ 0

(∀) λ ∈ R, the distribution function:

FX (x) =

∫ x

−∞
f (t) dt = 1− e−λx, x > 0

and {
M (X) = 1

λ
V ar (X) = 1

λ2
.

To simulate a random variable X, which has an exponential distribu-
tion we shall use the inverse transform method, hence the algorithm for
simulating the random variable X consists in:

— generating a value u uniformly distributed in [0, 1],
—finding of

X = F−1 (u) = − 1
λ
ln (1− u) .

A Weibull variable (denoted W (α, λ, γ)) is a random variable, closely
related to the exponential random variable and which has the probability
density function:

f (x) =

{
γλ (x− α)γ−1 e−λ(x−α)γ , x > α

0, x ≤ α

(∀) α ∈ R, γ, λ > 0.
If X ∼ Exp(1) then the Weibull variable is generated using the formula

W = α+

(
X

λ

) 1
γ

. (4)

Indeed, we have:

P (W < w) = P (X < λ (w − α)γ) =
∫ λ(w−α)γ

−∞
e−tdt

and further, using the change of variable

u = α+

(
t

λ

) 1
γ
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it will result:

P (W < w) =

∫ w

−∞
γλ (u− α)γ−1 e−λ(u−α)γdu.

The Weibull variable is used in reliability, it representing the service life
without failures of a equipment or a industrial product.

4 Simulation of a random variable with a χ2 distribution

Let Zi, 1 ≤ i ≤ γ independent normal variables N(0, 1). A random variable
χ2 with γ degrees of freedom is a variable of the form

Xχ2 =

γ∑
i=1

Z2i , γ ∈ N∗. (5)

A random variable χ2 is continuous and admits the probability density
function:

f (x) =
1

2
γ
2 Γ
(
γ
2

) · x γ2−1 · e− x2 , x > 0,
where

Γ (γ) =

∫ ∞
0

xγ−1e−xdx (6)

signifies the Euler Gamma function, Γ : (0, 1) → R, which has the proper-
ties: 

Γ
(
1
2

)
=
√
π

Γ (1) = 1
Γ (a+ 1) = aΓ (a) , (∀) a > 0
Γ (n+ 1) = n!, (∀) n ∈ N

and {
M
(
χ2
)
= γ

V ar
(
χ2
)
= 2γ.

For the simulation in Matlab of a random variable χ2 we shall use the
formula (5):
function x=hip(n)
z=randn(n,1);
x=sum(z.^2);
end
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5 Simulation of a random variable with a Gamma distribution

A random variable X has has the distribution G(α, λ, γ) if it has the prob-
ability density function:

f (x) =

{
λγ

Γ (γ) (x− α)
γ−1

e−λ(x−α) x > α

0, x ≤ α

where (∀) α ∈ R, γ, λ > 0 are respectively the parameters of location,
scale and form of the variable.
We can notice that an exponential variable is a gamma variableG(0, λ, 1)

and χ2 is a gamma variable G(0, 12 ,
γ
2 ).

If Y ∼ G(α, λ, γ2 ) and Z ∼ G(0,
1
2 ,

γ
2 ) then we have:

Y = α+
Z

2λ
. (7)

The relation (7) can be justified as follows:

FZ (z) = P (Z < z) = P (2λ (Y − α) < z) = P
(
Y < α+

z

2λ

)
= FY

(
α+

z

2λ

)
=

∫ α+ z
2λ

−∞

λ
γ
2

Γ
(
γ
2

) (t− α) γ2−1 e−λ(t−α)dt
and further, using the change of variable

w = 2λ (t− α)

we shall achieve:

FZ (z) =

∫ z

−∞

λ
γ
2

Γ
(
γ
2

) ( w
2λ

) γ
2−1

e−λ·
w
2λ
dw

2λ
=

∫ z

−∞

λ
γ
2

Γ
(
γ
2

) · w γ
2−1e−

w
2 dw.

For the simulation in Matlab of a random variable Y , whose distribution
is G

(
α, λ, γ2

)
we proceed as follows:

— one generates Z = χ2;
— one determines Y using (7).

Hence, we have:
function y =gam(al,la,n)
z=hip(n);
y=al+z/(2*la);
end
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6 Validation of the Generators

The validation of the generators one refers both to the formal correctness of
the programs and to the checking of the statistical hypothesis of concordance

H : X ∼ F (x) (8)

with regard to distribution function F (x) of the random variable X, over
which the simulated selection X1, X2, · · · , Xn, of volume n big enough has
been made.
The validation of the generators involves the following two steps:

A) Building the graphical histogram and comparing it with the probability
density of X.

B) Application of the concordance test χ2 to verify the hypothesis (8).

The histogram construction is done using the following algorithm:
Step 1.We simulate a number n1 << n of selection valuesX1, X2, · · · , Xn1and

we store them.
Step 2. We choose a number k, which means the number of the histogram

intervals: I1, I2, · · · , Ik.

Fig. 1. Histogram

The dashed line suggests the probability density form of the variable X.
Step 3. We determine on the basis of the selection, the following limits

of the histogram intervals:{
a2 = min {X1, X2, · · · , Xn1}
ak = max {X1, X2, · · · , Xn1} .

Then we form the intervals Ii = (ai, ai+1], (∀) i = 2, k − 1, where

ai = a2 + (i− 2)h, h =
ak − a2
k − 2 , (∀) i = 3, k − 1.

Step 4. We compute the relative frequencies fi = ni
n , (∀) i = 2, k − 1,

where ni represents the absolute frequencies, namely the number of selection
values that belong to the interval Ii. One makes the initializations:
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 f1 = fk = 0
a1 = a2

ak+1 = ak.

Step 5. We simulate every one of the other n − n1 selection values and for
each X such simulated we shall achieve the following operations:

a) if X ≤ a2 then then we set: a1 = min {a1, X} and f1 = f1 + 1;
b) if X > ak then then we set: ak+1 = max {ak+1, X} and fk = fk + 1;
c) if a2 < X ≤ ak then we set: p =

[
X−a2
h

]
+ 2 and fp+1 = fp+1 + 1.

Step 6. We represent graphically the selection histogramX1, X2, · · · , Xn,
as follows: we take on the abscissa the intervals Ii, then we build some
rectangles having these intervals as their bases and the relative frequencies
fi as their heights.

Remark 1 For a discrete random variableX, which takes the values a1, a2, · · · , am
with the probabilities p1, p2, · · · , pm, the probability density function f(x)
is defined by:

f (x) =

{
pi, if x = xi, i = 1,m
0, otherwise

(9)

and the and distribution function is given in (1).

With the built histogram, we can apply the test χ2 to verify the hypoth-
esis (8). Therefore, we have to compute the statistics

χ2 =

k∑
i=1

(ni − npi)2

npi
,

which has a distribution χ2, with k−1 degrees of freedom (see Karl Pearson’s
theorem), where:

— k is the number of intervals in the histogram,
— ni (∀) i = 1, k represent the absolute frequencies,
— pi (∀) i = 1, k are the probabilities that an observation to belong to the
interval Ii and they are expressed by:


p1 = P (a1 < X ≤ a2) = F (a2) ,

pi = P (ai < X ≤ ai+1) = F (ai+1)− F (ai) , (∀) i = 2, k − 1,
pk = P (ak < X ≤ ak+1) = 1− F (ak) .

(10)

Hypothesis H is accepted if

χ2 ≤ χ2k−s−1, α
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and is reject otherwise, α being the probability of type I error(it is also called
level of significance or risk or probability of transgression) and s meaning
the number of estimated parameters.

The next figures show the graphic representation of the histogram and
respectively of the probability density function, in the case of validation of
the algorithm for the simulation of a random variable, which has a normal
distribution (see Fig. 2) or an exponential distribution (see Fig. 3) and
respectively a geometric distribution (see Fig. 4).

Fig. 2. A normal distribution

Fig. 3. An exponential distribution
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Fig. 4. A geometric distribution

7 Conclusion

We have built some algorithms for generating both continuous and discrete
random variables.
We performed the the implementation of the Inverse Transform Method,

according to which we can simulate any random variable X if we know its
distribution function F and we can calculate the inverse function F−1.
One simulates a discrete random variable having a geometric distribu-

tion, which is used in reliability. We also create some algorithms for gen-
erating: a normal continuous variable, other continuous variables having
exponential distribution, Weibull distribution, gamma distribution.
Our goal is to see that if we have random numbers generated according to

some distribution, we may perform a transformation to generate the desired
distribution.
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programming involving Second order (C, α, ρ, d)-convexity ∗
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Abstract

In this paper, we introduce a class of second order (C,�, �, d)-convexity. Under the (C,�, �, d)-

convexity assumptions on the functions involved, weak, strong and strict converse duality

theorems are established for a second order Mond-Weir type multiobjective dual. Our re-

sults generalize these existing dual results which were discussed by Ahmad et al [Second-

order (F, �, �, d)-convexity and duality in multiobjective programming, Information Science,

176(2006)3094-3103].

Keywords. Multiobjective programming; Second order duality; Efficient; (C,�, �, d)-convexity

MR(2000)Subject Classification: 49N15,90C30

1. Introduction

It is well known that the convex functions are very important in optimization theory. But for many

mathematical models in desision sciences, economics, management sciences, stochastics, applied

mathematics and engineering, the notion of convexity does no longer suffice. So it is necessary

to generalize the notion of convexity and to extend the corresponding results to larger classes

of optimization problems. In the last decades, various generalization of convex functions have

been introduced in the literature. Preda [16] introduced the concept of (F, �)-convexity, which

is an extension of F -convexity defined by Hanson and Mond [8] and �-convexity given by Vial

[17]. Gulati and Islam [7] and Ahmad [2] established optimality conditions and duality results for

multiobjective programming involving F -convexity and (F, �)-convexity assumptions, respectively.

Mangasarian [13] introduced the notation of second-order duality for nonlinear programs. He

has indicated a possible computational advantage of the second-order dual over the first order dual.

Mond[14] reproved second order duality theorems under simpler assumptions than those previously
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given by [13]. Yang et al. [18] proposed several second order duals for nonlinear programming

problem and discussed duality results under generalized F -convexity.

In [20], Zhang and Mond extended the class of (F, �)-convex functions to second order (F, �)-

convex functions and obtained duality results for three types of multiobjective dual problems.

Aghezzaf [1] formulated a mixed type dual for multiobjective programming problem and discussed

various duality results by defining new classes of generalized second order (F, �)-convexity. Liang

et al. [10, 11] introduced (F, �, �, d)-convexity and obtained some optimality conditions and duality

results for the single objective fractional problems and multiobjective problems. Ahmad and Hu-

sian [5] introduced a class of second order (F, �, �, d)-convex functions, and established some duality

theorems for a second order Mond-Weir type multiobjective dual by using the assumptions on the

functions involved (F, �, �, d)-convexity. Recently, Yuan et al.[19] introduced a class of functions,

which called (C,�, �, d)-convex functions. They obtained sufficient optimality conditions for nondif-

ferentiable minimax fractional problems. Chinchuluun et ai. [6] studied nonsmooth multiobjective

fractional programming problems in the framework of (C,�, �, d)-convexity. Long [12] derive some

sufficient optimality conditions and duality results for weakly efficient solutions of nondifferentiable

multiobjective fractional programming problems under the assumptions of (C,�, �, d)-convexity.

In this paper, we introduce a class of second order (C,�, �, d)-convexity. Under the (C,�, �, d)-

convexity assumptions on the functions involved, weak, strong and strict converse duality theorems

are established for a second order Mond-Weir type multiobjective dual. Our results generalize these

existing dual results which were discussed by Ahmad et al. in [5].

2. Preliminaries

Throughout the paper, the following convention for vectors in Rn will be necessary: x 5 y if and

only if xi 5 yi, i = 1, 2, · · · , n, x ≤ y if and only if x 5 y and x ̸= y, x > y if and only if

xi > yi, i = 1, 2, · · · , n.
In this paper, we consider the following multiobjective programming problem:

(P ) Minimize f(x)

s.t. g(x) 5 0, x ∈ X,

where f = (f1, f2, · · · , fk) : X → Rk, g = (g1, g2, · · · , gm) : X → Rm are assumed to be twice

differentiable functions over X, an open subset of Rn.

Definition 2.1 A feasible point x is said to be an efficient solution of the vector minimum problem

(P) if there exists no other feasible point x such that f(x) ≤ f(x).

Assume that � : X ×X → R+ \ {0}, � ∈ R and d : X ×X → R+ satisfies d(x, x0) = 0 ⇔ x = x0.

Let C : X ×X ×Rn → R be a function which satisfies C(x,x0)(0) = 0 for any (x, x0) ∈ X ×X.

Definition 2.2 [19]A function C : X ×X × Rn → R is said to be convex on Rn iff for any fixed

(x, x0) ∈ X ×X and for any y1, y2 ∈ Rn, one has

C(x,x0)(�y1 + (1− �)y2) ≤ �C(x,x0)(y1) + (1− �)C(x,x0)(y2), ∀� ∈ (0, 1).
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Definition 2.3 [19]A differentiable function ℎ : X → R is said to be (C,�, �, d)-convex at x0 iff

for any x ∈ X
ℎ(x)− ℎ(x0)

�(x, x0)
≥ C(x,x0)(∇ℎ(x0)) + �

d(x, x0)

�(x, x0)
.

The function ℎ is said to be (C,�, �, d)-convex on X iff ℎ is (C,�, �, d)-convex at every point in X.

In the sequel, we introduce a class of second order (C,�, �, d)-convexity.

Definition 2.4 A twice differentiable function fi over X is said to be (strict) second order (C,�, �, d)-

convex at x0 if for all x ∈ X and for all p ∈ Rn,

fi(x)− fi(x0) +
1
2p

T∇2fi(x0)p

�(x, x0)
(>) ≥ C(x,x0)(∇fi(x0) +∇2fi(x0)p) + �

d(x, x0)

�(x, x0)
.

A twice differentiable vector function f : X → Rk is said to be second order (C,�, �, d)-convex at

x0 if each of its components fi is second order (C,�, �, d)-convex at x0.

Remark 2.1 From the above definition, second order (F, �, �, d)-convexity[5] is a special case of

(C,�, �, d)-convexity, since any linear function is also a convex function.

The following convention will be followed. If f is an k-dimensional vector function, then f(u) −
∇f(u)r− 1

2p
T∇2f(u)p denotes the vector of components f1(u)−∇f1(u)r− 1

2p
T∇2f1(u)p, · · · , fk(u)−

∇fk(u)r − 1
2p

T∇2fk(u)p.

In order to prove the strong duality theorem, we need the following Kuhn-Tucker type necessary

conditions [9].

Theorem 2.1 (Kuhn-Tucker type necessary conditions)Assume that x∗ is an efficient solution for

(P) at which Kuhn-Tucker constraint qualification is satisfied. Then there exist �∗ ∈ Rk and

y∗ ∈ Rm such that

�∗T∇f(x∗) + y∗T∇g(x∗) = 0,

y∗T g(x∗) = 0,

y∗ = 0, �∗ ≥ 0.

3. Second order Mond-Weir type duality

In this section, we consider the following Mond-Weir type second order dual associated with multi-

objective problem (P) and establish weak, strong and strict converse duality theorems under second
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order (C,�, �, d)-convexity.

(MD) Maximize f(u)−∇f(u)T r − 1
2p

T∇2f(u)p,

s.t.
k∑

i=1
�i∇fi(u) +

k∑
i=1

�i∇2fi(u)p+
m∑
i=1

yi∇gi(u) +
m∑
i=1

yi∇2gi(u)p = 0,

m∑
i=1

yigi(u)−
m∑
i=1

yi∇gi(u)T r −
m∑
i=1

yi
1
2p

T∇2gi(u)p ≥ 0,

k∑
i=1

�i∇fi(u)T r ≥ 0,

m∑
i=1

yi∇gi(u)T r ≥ 0,

y = 0, � = 0,

r ∈ Rn, y ∈ Rm, � ∈ Rk.

Remark 3.1 If r = 0, then (MD) becomes the dual considered in [5].

Theorem 3.1 (Weak duality)Suppose that for all feasible x in (P) and all feasible (u, y, �, r, p)

in (MD). If gi(·)(i = 1, 2, · · · ,m) is second order (C,�1, �1, d1)-convex and fi(·)(i = 1, 2, · · · , k) is

second order (C,�2, �2, d2)-convex, and

�1
d1
α1

m∑
i=1

yi + �2
d2
α2

k∑
i=1

�i ≥ 0, (3.1)

then the following cannot hold:

f(x) ≤ f(u)−∇f(u)T r − 1

2
pT∇2f(u)p.

Proof. Suppose the conclusion is not true, i.e.,

f(x) ≤ f(u)−∇f(u)T r − 1

2
pT∇2f(u)p.

In view of (C,�2, �2, d2)-convexity of fi(·) at u, we obtain

−
k∑

i=1

λi
α2
∇fi(u)T r >

k∑
i=1

�i
fi(x)−fi(u)+

1
2
pT∇2fi(u)p

α2

≥
k∑

i=1
�iC(x,u)(∇fi(u) +∇2fi(u)p) + �2

d2
α2

k∑
i=1

�i.

(3.2)

Let x be any feasible solution in (P) and (u, y, �, r, p) be any feasible solution in (MD). Then we

have
m∑
i=1

yigi(x) ≤ 0 ≤
m∑
i=1

yigi(u)−
1

2

m∑
i=1

yip
T∇2gi(u)p−

m∑
i=1

yi∇gi(u)T r.

Using second order (C,�1, �1, d1)-convexity of gi(·) at u and the above inequality, we get

−
m∑
i=1

yi
α1
∇gi(u)T r ≥

m∑
i=1

yi
gi(x)−gi(u)+

1
2
pT∇2gi(u)p

α1

≥
m∑
i=1

yiC(x,u)(∇gi(u) +∇2gi(u)p) + �1
d1
α1

m∑
i=1

yi.
(3.3)
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Taking into account convexity of C(x,u)(·), (3.2) and (3.3), one gets

−
k∑

i=1

λi
α2
∇fi(u)T r −

m∑
i=1

yi
α1
∇gi(u)T r

> (
k∑

i=1
�i +

m∑
i=1

yi)C(x,u){

k∑
i=1

λi

k∑
i=1

λi+
m∑
i=1

yi

(∇fi(u) +∇2fi(u)p)

+

m∑
i=1

yi

k∑
i=1

λi+
m∑
i=1

yi

(∇gi(u) +∇2gi(u)p)}

+ �2
d2
α2

k∑
i=1

�i + �1
d1
α1

m∑
i=1

yi.

(3.4)

From the first, third, fourth dual constraint in (MD) and C(x,u)(0) = 0, we obtain

0 > �2
d2
�2

k∑
i=1

�i + �1
d1
�1

m∑
i=1

yi,

which contradicts the condition (3.1). Hence the following cannot hold:

f(x) ≤ f(u)−∇f(u)T r − 1

2
pT∇2f(u)p.

Theorem 3.2 (Strong duality) Let x be an efficient solution of (P) at which the Kuhn-Tucker

constraint qualification is satisfied. Then there exist y ∈ Rm and � ∈ Rk, such that (x, y, �, r =

0, p = 0) is feasible for (MD) and the objective values of (P) and (D) are equal. Furthermore, if

the assumptions of Weak duality hold for all feasible solutions of (P) and (MD), then (x, y, �, r =

0, p = 0) is an efficient solution of (MD).

Proof. Since x is an efficient solution of (P) at which the Kuhn-Tucker constraint qualification is

satisfied, then by Theorem 2.1, there exist y ∈ Rm and � ∈ Rk such that

�T∇f(x) + yT∇g(x) = 0,

yT g(x) = 0,

y = 0, � ≥ 0.

Therefore (x, y, �, r = 0, p = 0) is feasible for (MD) and the objective values of (P) and (MD) are

equal. The efficiency of this feasible solution for (MD) follows from the weak duality theorem.

Theorem 3.3 (Strict Converse duality) Let x and (u, y, �, r, p) be the efficient solution of (P) and

(MD), respectively, such that

f(x) = f(u)−∇f(x)T r − 1
2p

T∇2f(u)p. (3.5)

If gi(·)(i = 1, 2, · · · ,m) is strict second order (C,�1, �1, d1)-convex and fi(·)(i = 1, 2, · · · , k) is

second order (C,�2, �2, d2)-convex, and

�1
d1
α1

m∑
i=1

yi + �2
d2
α2

k∑
i=1

�i ≥ 0. (3.6)

Then x = u; that is, u is an efficient solution of (P).
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Proof. Suppose the conclusion is not true, i.e.,x ̸= u. In view of (C,�2, �2, d2)-convexity of fi(·)
at u and (3.5), we obtain

−
k∑

i=1

λi
α2
∇fi(u)T r =

k∑
i=1

�i
fi(x)−fi(u)+

1
2
pT∇2fi(u)p

α2

≥
k∑

i=1
�iC(x,u)(∇fi(u) +∇2fi(u)p) + �2

d2
α2

k∑
i=1

�i.

(3.7)

Let x be any feasible solution in (P) and (u, y, �, r, p) be any feasible solution in (MD). Then we

have
m∑
i=1

yigi(x) ≤ 0 ≤
m∑
i=1

yigi(u)−
1

2

m∑
i=1

yip
T∇2gi(u)p−

m∑
i=1

yi∇gi(u)T r.

Using strict second order (C,�1, �1, d1)-convexity of gi(·) at u and the above inequality, we get

−
m∑
i=1

yi
α1
∇gi(u)T r ≥

m∑
i=1

yi
gi(x)−gi(u)+

1
2
pT∇2gi(u)p

α1

>
m∑
i=1

yiC(x,u)(∇gi(u) +∇2gi(u)p) + �1
d1
α1

m∑
i=1

yi.
(3.8)

Taking into account convexity of C(x,u)(·), (3.7) and (3.8), one gets

−
k∑

i=1

λi
α2
∇fi(u)T r −

m∑
i=1

yi
α1
∇gi(u)T r

> (
k∑

i=1
�i +

m∑
i=1

yi)C(x,u){

k∑
i=1

λi

k∑
i=1

λi+
m∑
i=1

yi

(∇fi(u) +∇2fi(u)p)

+

m∑
i=1

yi

k∑
i=1

λi+
m∑
i=1

yi

(∇gi(u) +∇2gi(u)p)}

+ �2
d2
α2

k∑
i=1

�i + �1
d1
α1

m∑
i=1

yi.

(3.9)

From the first, third, fourth dual constraint in (MD) and C(x,u)(0) = 0, we obtain

0 > �2
d2
�2

k∑
i=1

�i + �1
d1
�1

m∑
i=1

yi,

which contradicts the condition (3.6). Hence x = u.

4. Conclusions

In this paper, we introduce a class of second order (C,�, �, d)-convexity, which includes many

other generalized convexity concepts in mathematical programming as special cases. Using the

(C,�, �, d)-convexity assumptions on the functions involved, weak, strong and strict converse duality

theorems are established for a second order Mond-Weir type multiobjective dual. Our results

generalize these existing dual results which were discussed by Ahmad et al. in [5], These results

can be further generalized to a class of nondifferentiable multiobjective programming.
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Abstract

Here we introduce the normalized bell and squashing type neural net-
work operators of one hidden layer. Based on fractional calculus theory we
derive fractional Voronovskaya type asymptotic expansions for the error
of approximation of these operators to the unit operator.
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1 Background

We need

De�nition 1 Let f : R ! R; � > 0, n = d�e (d�e is the ceiling of the num-
ber), such that f 2 ACn ([a; b]) (space of functions f with f (n�1) 2 AC ([a; b]),
absolutely continuous functions), 8 [a; b] � R. We call left Caputo fractional
derivative (see [8], pp. 49-52) the function

D�
�af (x) =

1

� (n� �)

Z x

a

(x� t)n���1 f (n) (t) dt; (1)

8 x � a, where � is the gamma function � (�) =
R1
0
e�tt��1dt, � > 0. Notice

D�
�af 2 L1 ([a; b]) and D�

�af exists a.e.on [a; b], 8 b > a.
We set D0

�af (x) = f (x), 8 x 2 [a;+1):

1
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We also need

De�nition 2 (see also [2], [9], [10]). Let f : R! R; such that f 2 ACm ([a; b]),
8 [a; b] � R; m = d�e, � > 0. The right Caputo fractional derivative of order
� > 0 is given by

D�
b�f (x) =

(�1)m

� (m� �)

Z b

x

(J � x)m���1 f (m) (J) dJ; (2)

8 x � b. We set D0
b�f (x) = f (x), 8 x 2 (�1; b]: Notice that D�

b�f 2 L1 ([a; b])
and D�

b�f exists a.e.on [a; b], 8 a < b:

We mention the left Caputo fractional Taylor formula with integral remain-
der.

Theorem 3 ([8], p. 54) Let f 2 ACm ([a; b]), 8 [a; b] � R, m = d�e, � > 0.
Then

f (x) =
m�1X
k=0

f (k) (x0)

k!
(x� x0)k +

1

� (�)

Z x

x0

(x� J)��1D�
�x0f (J) dJ; (3)

8 x � x0:

Also we mention the right Caputo fractional Taylor formula.

Theorem 4 ([2]) Let f 2 ACm ([a; b]), 8 [a; b] � R, m = d�e, � > 0. Then

f (x) =
m�1X
k=0

f (k) (x0)

k!
(x� x0)k +

1

� (�)

Z x0

x

(J � x)��1D�
x0�f (J) dJ; (4)

8 x � x0:

Convention 5 We assume that

D�
�x0f (x) = 0, for x < x0;

and
D�
x0�f (x) = 0, for x > x0;

for all x; x0 2 R:

We mention

Proposition 6 (by [3]) i) Let f 2 Cn (R), where n = d�e, � > 0. Then
D�
�af (x) is continuous in x 2 [a;1):
ii) Let f 2 Cm (R), m = d�e, � > 0. Then D�

b�f (x) is continuous in
x 2 (�1; b]:
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We also mention

Theorem 7 ([5]) Let f 2 Cm (R), f (m) 2 L1 (R), m = d�e, � > 0, � =2 N,
x; x0 2 R. Then D�

�x0f (x), D
�
x0�f (x) are jointly continuous in (x; x0) from R2

into R.

For more see [4], [6].
We need the following (see [7]).

De�nition 8 A function b : R ! R is said to be bell-shaped if b belongs to L1

and its integral is nonzero, if it is nondecreasing on (�1; a) and nonincreasing
on [a;+1), where a belongs to R. In particular b (x) is a nonnegative number
and at a b takes a global maximum; it is the center of the bell-shaped function.
A bell-shaped function is said to be centered if its center is zero. The function
b (x) may have jump discontinuities. In this work we consider only centered
bell-shaped functions of compact support [�T; T ], T > 0.

Example 9 (1) b (x) can be the characteristic function over [�1; 1] :
(2) b (x) can be the hat function over [�1; 1], i.e.,

b (x) =

8<:
1 + x, � 1 � x � 0;
1� x; 0 < x � 1
0, elsewhere.

Here we consider functions f 2 C (R) :
We study the following �normalized bell type neural network operators�(see

also related [1], [7])

(Hn (f)) (x) :=

Pn2

k=�n2 f
�
k
n

�
b
�
n1��

�
x� k

n

��Pn2

k=�n2 b
�
n1��

�
x� k

n

�� ; (5)

where 0 < � < 1 and x 2 R, n 2 N.
We �nd a fractional Voronovskaya type asymptotic expansion forHn (f) (x) :
The terms in Hn (f) (x) are nonzero i¤����n1���x� k

n

����� � T , i.e. ����x� k

n

���� � T

n1��

i¤
nx� Tn� � k � nx+ Tn�: (6)

In order to have the desired order of numbers

�n2 � nx� Tn� � nx+ Tn� � n2; (7)

it is su¢ cient enough to assume that

n � T + jxj : (8)

When x 2 [�T; T ] it is enough to assume n � 2T which implies (7).

3
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Proposition 10 (see [1]) Let a � b, a; b 2 R. Let card (k) (� 0) be the
maximum number of integers contained in [a; b]. Then

max (0; (b� a)� 1) � card (k) � (b� a) + 1: (9)

Remark 11 We would like to establish a lower bound on card (k) over the
interval [nx� Tn�; nx+ Tn�]. From Proposition 10 we get that

card (k) � max (2Tn� � 1; 0) :

We obtain card (k) � 1, if

2Tn� � 1 � 1 i¤ n � T� 1
� :

So to have the desired order (7) and card (k) � 1 over [nx� Tn�; nx+ Tn�],
we need to consider

n � max
�
T + jxj ; T� 1

�

�
: (10)

Also notice that card (k)! +1, as n! +1.
Denote by [�] the integral part of a number.

Remark 12 Clearly we have that

nx� Tn� � nx � nx+ Tn�: (11)

We prove in general that

nx� Tn� � [nx] � nx � dnxe � nx+ Tn�: (12)

Indeed we have that, if [nx] < nx � Tn�, then [nx] + Tn� < nx; and [nx] +
[Tn�] � [nx], resulting into [Tn�] = 0, which for large enough n is not true.
Therefore nx � Tn� � [nx]. Similarly, if dnxe > nx + Tn�, then nx + Tn� �
nx + [Tn�], and dnxe � [Tn�] > nx, thus dnxe � [Tn�] � dnxe, resulting into
[Tn�] = 0, which again for large enough n is not true.
Therefore without loss of generality we may assume that

nx� Tn� � [nx] � nx � dnxe � nx+ Tn�: (13)

Hence dnx� Tn�e � [nx] and dnxe � [nx+ Tn�] : Also if [nx] 6= dnxe, then
dnxe = [nx] + 1. If [nx] = dnxe, then nx 2 Z; and by assuming n � T� 1

� , we
get Tn� � 1 and nx+ Tn� � nx+ 1, so that [nx+ Tn�] � nx+ 1 = [nx] + 1:

We need also

De�nition 13 Let the nonnegative function S : R! R, S has compact support
[�T; T ], T > 0, and is nondecreasing there and it can be continuous only on
either (�1; T ] or [�T; T ], S can have jump discontinuites. We call S the
�squashing function�, see [1], [7].

4
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Let f 2 C (R). For x 2 R we de�ne the following �normalized squashing
type neural network operators�(see also related [1])

(Kn (f)) (x) :=

Pn2

k=�n2 f
�
k
n

�
S
�
n1��

�
x� k

n

��Pn2

k=�n2 S
�
n1��

�
x� k

n

�� ; (14)

0 < � < 1 and n 2 N : n � max
�
T + jxj ; T� 1

�

�
:

It is clear that

(Kn (f)) (x) :=

P[nx+Tn�]
k=dnx�Tn�e f

�
k
n

�
S
�
n1��

�
x� k

n

��
P[nx+Tn�]

k=dnx�Tn�e S
�
n1��

�
x� k

n

�� : (15)

We �nd a fractional Voronovskaya type asymptotic expansion for (Kn (f)) (x) :

2 Main Results

We present our �rst main result.

Theorem 14 Let � > 0, N 2 N, N = d�e ; f 2 ACN ([a; b]), 8 [a:b] � R,
with

D�
x0�f


1
,
D�

�x0f

1
� M , M > 0, x0 2 R: Let T > 0, n 2 N : n �

max
�
T + jx0j ; T�

1
�

�
Then

(Hn (f)) (x0)� f (x0) =
N�1X
j=1

f (j) (x0)

j!
Hn

�
(� � x0)j

�
(x0) + o

�
1

n(1��)(��")

�
;

(16)
where 0 < " � �:
If N = 1, the sum in (16) disappears.
The last (16) implies that

n(1��)(��")

24(Hn (f)) (x0)� f (x0)� N�1X
j=1

f (j) (x0)

j!
Hn

�
(� � x0)j

�
(x0)

35! 0;

(17)
as n!1, 0 < " � �.
When N = 1, or f (j) (x0) = 0, j = 1; :::; N � 1; then we derive

n(1��)(��") [(Hn (f)) (x0)� f (x0)]! 0

as n!1, 0 < " � �. Of great interest is the case of � = 1
2 :

Proof. From [8], p. 54; (3), we get by the left Caputo fractional Taylor
formula that

f

�
k

n

�
=

N�1X
j=0

f (j) (x0)

j!

�
k

n
� x0

�j
+

1

� (�)

Z k
n

x0

�
k

n
� J

���1
D�
�x0f (J) dJ;

(18)

5
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for all x0 � k
n � x0 + Tn

��1, i¤ dnx0e � k � [nx0 + Tn�], where k 2 Z:
Also from [2]; (4), using the right Caputo fractional Taylor formula we get

f

�
k

n

�
=

N�1X
j=0

f (j) (x0)

j!

�
k

n
� x0

�j
+

1

� (�)

Z x0

k
n

�
J � k

n

���1
D�
x0�f (J) dJ;

(19)
for all x0 � Tn��1 � k

n � x0, i¤ dnx0 � Tn
�e � k � [nx0], where k 2 Z: Notice

that dnx0e � [nx0] + 1:
Call

V (x0) :=

[nx0+Tn
�]X

k=dnx0�Tn�e

b

�
n1��

�
x0 �

k

n

��
:

Hence we have

f
�
k
n

�
b
�
n1��

�
x0 � k

n

��
V (x0)

=

N�1X
j=0

f (j) (x0)

j!

�
k

n
� x0

�j b �n1�� �x0 � k
n

��
V (x0)

+

(20)
b
�
n1��

�
x0 � k

n

��
V (x0) � (�)

Z k
n

x0

�
k

n
� J

���1
D�
�x0f (J) dJ;

and

f
�
k
n

�
b
�
n1��

�
x0 � k

n

��
V (x0)

=
N�1X
j=0

f (j) (x0)

j!

�
k

n
� x0

�j b �n1�� �x0 � k
n

��
V (x0)

+

(21)
b
�
n1��

�
x0 � k

n

��
V (x0) � (�)

Z x0

k
n

�
J � k

n

���1
D�
x0�f (J) dJ;

Therefore we obtainP[nx0+Tn
�]

k=[nx0]+1
f
�
k
n

�
b
�
n1��

�
x0 � k

n

��
V (x0)

=

N�1X
j=0

f (j) (x0)

j!

0@P[nx0+Tn
�]

k=[nx0]+1

�
k
n � x0

�j
b
�
n1��

�
x0 � k

n

��
V (x0)

1A+ (22)

[nx0+Tn
�]X

k=[nx0]+1

b
�
n1��

�
x0 � k

n

��
V (x0) � (�)

Z k
n

x0

�
k

n
� J

���1
D�
�x0f (J) dJ;

and P[nx0]
k=dnx0�Tn�e f

�
k
n

�
b
�
n1��

�
x0 � k

n

��
V (x0)

=

6
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N�1X
j=0

f (j) (x0)

j!

P[nx0]
k=dnx0�Tn�e

�
k
n � x0

�j
b
�
n1��

�
x0 � k

n

��
V (x0)

+ (23)

P[nx0]
k=dnx0�Tn�e b

�
n1��

�
x0 � k

n

��
V (x0) � (�)

Z x0

k
n

�
J � k

n

���1
D�
x0�f (J) dJ:

We notice here that

(Hn (f)) (x) :=

Pn2

k=�n2 f
�
k
n

�
b
�
n1��

�
x� k

n

��Pn2

k=�n2 b
�
n1��

�
x� k

n

�� (24)

=

P[nx+Tn�]
k=dnx�Tn�e f

�
k
n

�
b
�
n1��

�
x� k

n

��
P[nx+Tn�]

k=dnx�Tn�e b
�
n1��

�
x� k

n

�� ; 8 x 2 R:

Adding the two equalities (22), (23) and rewriting it, we obtain

T (x0) := (Hn (f)) (x0)� f (x0)�
N�1X
j=1

f (j) (x0)

j!
Hn

�
(� � x0)j

�
(x0) = �

�
n (x0) ;

(25)
where

��n (x0) :=

P[nx0]
k=dnx0�Tn�e b

�
n1��

�
x0 � k

n

��
V (x0) � (�)

Z x0

k
n

�
J � k

n

���1
D�
x0�f (J) dJ

+

[nx0+Tn
�]X

k=[nx0]+1

b
�
n1��

�
x0 � k

n

��
V (x0) � (�)

Z k
n

x0

�
k

n
� J

���1
D�
�x0f (J) dJ: (26)

We observe that
j��n (x0)j �

1

V (x0) � (�)
�8<:

[nx0]X
k=dnx0�Tn�e

b

�
n1��

�
x0 �

k

n

��Z x0

k
n

�
J � k

n

���1 ���D�
x0�f (J)

��� dJ (27)

+

[nx0+Tn
�]X

k=[nx0]+1

b

�
n1��

�
x0 �

k

n

��Z k
n

x0

�
k

n
� J

���1 ��D�
�x0f (J)

�� dJ
9=; �

M

V (x0) � (�)

8<:
[nx0]X

k=dnx0�Tn�e

b

�
n1��

�
x0 �

k

n

�� �
x0 � k

n

��
�

+

[nx0+Tn
�]X

k=[nx0]+1

b

�
n1��

�
x0 �

k

n

�� � k
n � x0

��
�

9=; �

7
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M

V (x0) � (� + 1)

8<:
0@ [nx0]X
k=dnx0�Tn�e

b

�
n1��

�
x0 �

k

n

��1A� T

n1��

��
+

0@[nx0+Tn
�]X

k=[nx0]+1

b

�
n1��

�
x0 �

k

n

��1A� T

n1��

��9=; =
M

� (� + 1)

T �

n(1��)�
: (28)

So we have proved that

jT (x0)j = j��n (x0)j �
�

MT �

� (� + 1)

��
1

n(1��)�

�
; (29)

resulting to

jT (x0)j = O
�

1

n(1��)�

�
; (30)

and
jT (x0)j = o (1) : (31)

And, letting 0 < " � �, we derive
jT (x0)j�

1
n(1��)(��")

� � MT �

� (� + 1)

�
1

n(1��)"

�
! 0; (32)

as n!1:
I.e.

jT (x0)j = o
�

1

n(1��)(��")

�
; (33)

proving the claim.
Our second main result follows

Theorem 15 Same assumptions as in Theorem 14. Then

(Kn (f)) (x0)� f (x0) =
N�1X
j=1

f (j) (x0)

j!
Kn

�
(� � x0)j

�
(x0) + o

�
1

n(1��)(��")

�
;

(34)
where 0 < " � �:
If N = 1, the sum in (34) disappears.
The last (34) implies that

n(1��)(��")

24(Kn (f)) (x0)� f (x0)�
N�1X
j=1

f (j) (x0)

j!
Kn

�
(� � x0)j

�
(x0)

35! 0;

(35)
as n!1, 0 < " � �.
When N = 1, or f (j) (x0) = 0, j = 1; :::; N � 1; then we derive

n(1��)(��") [(Kn (f)) (x0)� f (x0)]! 0 (36)

as n!1, 0 < " � �. Of great interest is the case of � = 1
2 :

Proof. As in Theorem 14.

8
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ITERATES OF MULTIVARIATE CHENEY-SHARMA
OPERATORS

TEODORA CĂTINAŞ AND DIANA OTROCOL

Abstract. Using the weakly Picard operators technique, we study the convergence
of the iterates of some bivariate and trivariate Cheney-Sharma operators. Also, we
generalize the procedure for the multivariate case.
Keywords: Cheney-Sharma operators, contraction principle, weakly Picard oper-
ators.
2000 Mathematics Subject Classification: 41A36, 41A05, 41A25, 39B12,
47H10.

1. Preliminaries

We recall some results regarding weakly Picard operators that will
be used in the sequel (see, e.g., [17], [20]).

Let (X, d) be a metric space and A : X → X an operator. We denote
by

FA := {x ∈ X | A(x) = x}-the fixed point set of A;

I(A) := {Y ⊂ X | A(Y ) ⊂ Y, Y 6= ∅}-the family of the nonempty invariant

subset of A

A0 := 1X , A1 := A, ..., An+1 := A ◦ An, n ∈ N.

Definition 1.1. The operator A : X → X is a Picard operator if there
exists x∗ ∈ X such that:

(i) FA = {x∗};
(ii) the sequence (An(x0))n∈N converges to x∗ for all x0 ∈ X.

Definition 1.2. The operator A is a weakly Picard operator if the
sequence (An(x))n∈N converges, for all x ∈ X, and the limit (which
may depend on x) is a fixed point of A.

Definition 1.3. We define the operator A∞, A∞ : X → X, by

A∞(x) := lim
n→∞

An(x).

Theorem 1.4. [17] An operator A is a weakly Picard operator if and
only if there exists a partition of X, X =

⋃
λ∈Λ

Xλ, such that
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TEODORA CĂTINAŞ AND DIANA OTROCOL

(a) Xλ ∈ I(A), ∀λ ∈ Λ;
(b) A|Xλ

: Xλ → Xλ is a Picard operator, ∀λ ∈ Λ.

2. Cheney-Sharma operator

In [21] there was given an extension to two variables of the second
univariate operator of Cheney-Sharma introduced in [5].

Let f be a real-valued function defined on D = [0, 1] × [0, 1]. The
bivariate Cheney-Sharma operator is defined by

(Sm,nf) (x, y; β, b) =
m∑

i=0

n∑
j=0

pm,i (x; β) qn,j(y; b)f
(

i
m

, j
n

)
, (1)

with

pm,i (x; β) =

(
m
i

)
x(x + iβ)i−1(1− x) [1− x + (m− i)β]m−i−1

(1 + mβ)m−1
,

and

qn,j (y; b) =

(
n
j

)
y(y + jb)j−1(1− y) [1− y + (n− j)b]n−j−1

(1 + nb)n−1
,

where β and b are nonnegative parameters.
For a function f defined on D1 = [0, 1]× [0, 1]× [0, 1], the trivariate

operator Cheney-Sharma is defined by [22]

(Sm,n,lf) (x, y, z; β, γ, δ) =
m∑

i=0

n∑
j=0

l∑

k=0

pm,i (x; β) qn,j(y; γ)rl,k(z; δ)f
(

i
m

, j
n
, k

r

)
,

(2)
with

pm,i (x; β) =

(
m
i

)
x(x + iβ)i−1(1− x) [1− x + (m− i)β]m−i−1

(1 + mβ)m−1
,

qn,j (y; γ) =

(
n
j

)
y(y + jγ)j−1(1− y) [1− y + (n− j)γ]n−j−1

(1 + nγ)n−1
,

and

rl,k (z; δ) =

(
l
k

)
z(z + kδ)k−1(1− z) [1− z + (l − k)δ]l−k−1

(1 + lδ)l−1

where β, γ and δ are nonnegative parameters. This operator represents
an extension to three variables of the second univariate operator of
Cheney-Sharma [5].
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Theorem 2.1. [21] If f is a real-valued function defined on D then we
have

(Sm,neij) (x, y) = xiyj, i, j = 0, 1,

and therefore, span{e00, e10, e01, e11} ⊂ FSm,n , where FSm,n denotes the
fixed points set of Sm,n.

Theorem 2.2. [22] If f is a real-valued function defined on D1 then
we have

(Sm,n,leijk) (x, y, z) = xiyjzk, i, j, k ∈ {0, 1},
and therefore, span{e000, e100, e001, e001, e110, e011, e101, e111} ⊂ FSm,n,l

,
where FSm,n,l

denotes the fixed points set of Sm,n,l.

3. Iterates of Cheney-Sharma operator

Using the weakly Picard operators technique and the contraction
principle, we study the convergence of the iterates of the bivariate
Cheney-Sharma operator given in (1).

A similar approach for the univariate case was given in [4]. Some
other linear and positive operators lead to similar results in [1], [2],
[7], [18] and [19]. The limit behavior for the iterates of some classes of
positive linear operators were also studied, for example, in [3], [8]-[16].

Let f be a real-valued function defined on D.

Theorem 3.1. The operator Sm,n is a weakly Picard operator and
(
S∞m,nf

)
(x, y; β, b) =(1− x)(1− y)f (0, 0) + (1− x)yf(1, 0) (3)

+ x(1− y)f(0, 1) + xyf(1, 1).

Proof. Taking into account the interpolation properties (Theorem 2.1),
of Sm,n, consider

Xα1,α2,α3,α4 = {f ∈ C(D) | f (0, 0) = α1, f(1, 0) = α2, f(0, 1) = α3, f(1, 1) = α4},
(4)

and denote by

f ∗α1,α2,α3,α4
(x, y) := (1− x)(1− y)α1 + (1− x)yα2 + x(1− y)α3 + xyα4,

with α1, α2, α3, α4 ∈ R.
We have the following properties:

(i) Xα1,α2,α3,α4 is closed subset of C(D);
(ii) Xα1,α2,α3,α4 is an invariant subset of Sm,n , for α1, α2, α3, α4 ∈

R, m, n ∈ N+;
(iii) C(D) = ∪

α1,α2,α3,α4∈R
Xα1,α2,α3,α4 is a partition of C(D);

(iv) Xα1,α2,α3,α4 ∩ FSm,n = {f ∗α1,α2,α3,α4
}.
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The statements (i) and (iii) are obvious.
(ii) By interpolation properties of Sm,n we have that Xα1,α2,α3,α4 is

an invariant subset of Sm,n, for any α1, α2, α3, α4 ∈ R, m, n ∈ N+;
(iv) We prove that

Sm,n|Xα1,α2,α3,α4
:Xα1,α2,α3,α4→ Xα1,α2,α3,α4

is a contraction for α1, α2, α3, α4 ∈ R, m, n ∈ N+.
Let f, g ∈ Xα1,α2,α3,α4 . From (1) and (4) we obtain

|Sm,n(f)(x, y)− Sm,n(g)(x, y)| =
= |Sm,n(f − g)(x, y)| ≤
≤ |pm,0 (x; β) qn,0(y; b) [f (0, 0)− g(0, 0)]|

+

∣∣∣∣∣
m∑

i=1

n∑
j=1

pm,i (x; β) qn,j(y; b)
[
f

(
i
m

, j
n

)− g
(

i
m

, j
n

)]
∣∣∣∣∣

=
m∑

i=1

n∑
j=1

pm,i (x; β) qn,j(y; b)
∣∣f (

i
m

, j
n

)− g
(

i
m

, j
n

)∣∣

≤
m∑

i=1

pm,i (x; β)
n∑

j=1

qn,j(y; b) ‖f − g‖∞

=

[
m∑

i=0

pm,i (x; β)− pm,0 (x; β)

][
n∑

j=0

qn,j(y; b)− qn,0(y; b)

]
‖f − g‖∞

=

[
1−

(
1− x

1+mβ

)m−1
] [

1− (
1− y

1+nb

)n−1
]
‖f − g‖∞

≤
[
1−

(
1− 1

1+mβ

)m−1
] [

1− (
1− 1

1+nb

)n−1
]
‖f − g‖∞ .

where ‖·‖∞ denotes the Chebyshev norm.
From [2, Lemma 8] it follows that

|Sm,n(f)(x, y)− Sm,n(g)(x, y)| =

≤
[
1−

(
1− 1

1+mβ

)m−1 (
1− 1

1+nb

)n−1
]
‖f − g‖∞ .

So,

‖Sm,n(f)(x, y)− Sm,n(g)(x, y)‖∞
≤

[
1−

(
1− 1

1+mβ

)m−1 (
1− 1

1+nb

)n−1
]
‖f − g‖∞ , ∀f, g ∈ Xα1,α2,α3,α4 ,

i.e., Smn|Xα1,α2,α3,α4
is a contraction for α1, α2, α3, α4 ∈ R.
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On the other hand, we have that

f ∗α1,α2,α3,α4
(x, y) := (1− x)(1− y)α1 + (1− x)yα2 + x(1− y)α3 + xyα4

and

Sm,n ((1− x)(1− y)α1 + (1− x)yα2 + x(1− y)α3 + xyα4) =

= (1− x)(1− y)α1 + (1− x)yα2 + x(1− y)α3 + xyα4.

From the contraction principle we have that f ∗α1,α2,α3,α4
is the unique

fixed point of Sm,n in Xα1,α2,α3,α4 and Sm,n|Xα1,α2,α3,α4
is a Picard oper-

ator, so (3) holds. Consequently, taking into account (ii), by Theorem
1.4 it follows that the operator Sm,n is a weakly Picard operator. We
remark that FSm,n = span{e00, e10, e01, e11}. ¤

Next, we study the convergence of the iterates of the trivariate
Cheney-Sharma operator given in (2).

Let f be a real-valued function defined on D1.

Theorem 3.2. The operator Sm,n,l is a weakly Picard operator and
(
S∞m,n,lf

)
(x, y, z; β, γ, δ) = (5)

= (1− x)(1− y)(1− z)f (0, 0, 0) + x(1− y)(1− z)f(1, 0, 0)

+ (1− x)y(1− z)f(0, 1, 0) + (1− x)(1− y)zf(0, 0, 1) + xy(1− z)f(1, 1, 0)

+ x(1− y)zf(1, 0, 1) + (1− x)yzf(0, 1, 1) + xyzf(1, 1, 1).

Proof. The proof follows the same steps as in Theorem 3.1. Using the
following inequality

|Sm,n,l(f)(x, y, z)− Sm,n,l(g)(x, y, z)| ≤

≤
[
1−

(
1− 1

1+mβ

)m−1
] [

1−
(
1− 1

1+nγ

)n−1
] [

1− (
1− 1

1+lδ

)l−1
]
‖f − g‖∞ ,

and further [2, Lemma 8]

‖Sm,n,l(f)(x, y, z)− Sm,n,l(g)(x, y, z)‖∞ ≤

≤
[
1−

(
1− 1

1+mβ

)m−1 (
1− 1

1+nγ

)n−1 (
1− 1

1+lδ

)l−1
]
‖f − g‖∞ ,

∀f, g ∈ Xα1,α2,α3,α4 , we prove that Sm,n,l is a contraction. ¤

We generalize these results to multivariate case.

Theorem 3.3. Consider a function f ∈ C(Dp), with Dp = [0, 1] ×
...

p times
×[0, 1]. The p-variate Cheney-Sharma operator, denoted by Si1,...,ip ,
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is a weakly Picard operator and(
S∞i1,...,ipf

)
(x1, ..., xp) =

∑

αi∈{0,1},i=1,p

s∞i1,...,ip (x1, ..., xp) f(α1, ..., αp),

(6)
where αi ∈ {0, 1}, i = 1, ..., p and

s∞i1,...,ip (x1, ..., xp) = xα1
1 · ... · xαp

p (1− x1)
(1−α1) · ... · (1− xp)

(1−αp).

Proof. The proof follows the same steps as in Theorem 3.1. ¤

References

[1] O. Agratini, I.A. Rus, Iterates of a class of discrete linear operators via con-
traction principle, Comment. Math. Univ. Caroline, 44(2003), 555-563.

[2] O. Agratini, I.A. Rus, Iterates of some bivariate approximation process via
weakly Picard operators, Nonlinear Analysis Forum, 8(2)(2003), 159-168.

[3] F. Altomare, M. Campiti, Korovkin-type Approximation Theory and its Ap-
plications, de Gruyter Studies in Mathematics, 17, Walter de Gruyter & Co.,
Berlin, 1994.

[4] A.M. Bica, On iterates of Cheney-Sharma operator, J. Comput. Anal. Appl.,
11(2009), No. 2, 271-273.

[5] E.W. Cheney, A. Sharma, On a generalization of Bernstein polynomials, Riv.
Mat. Univ. Parma, 5(1964), 77-84.

[6] G. Coman, T. Cătinaş, Interpolation operators on a triangle with one curved
side, BIT Numerical Mathematics, 50(2010), No. 2, 243-267.
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Convergence Analysis of the Over-relaxed Proximal Point Algorithms
with Errors for Generalized Nonlinear Random Operator Equations1
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Abstract. The purpose of this paper is to introduce and study the
over-relaxed proximal point algorithms with errors for generalized nonlinear
random operator equations with H-maximal monotonicity framework.
Further, by using the generalized proximal operator technique associated
with the H-maximal monotone operators, we discuss the approximation
solvability of generalized nonlinear random operator equations in Hilbert
spaces and the convergence analysis of iterative sequences generated by
the over-relaxed proximal point algorithms with errors under some suit
conditions, which generalize and improve the the over-relaxed proximal
point algorithms due to Verma [R.U. Verma, The over-relaxed proximal
point algorithm based on H-maximal monotonicity design and applications,
Computers and Mathematics with Applications 55 (2008) 2673-2679].

Key words and phrases: H-maximal monotonicity, generalized proximal
operator technique, over-relaxed proximal point algorithms with errors,
generalized nonlinear random operator equation, convergence analysis.
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1 Introduction

In 2008, Verma [1] developed the general framework for a generalized over-relaxed prox-
imal point algorithm using the notion of H-maximal monotonicity (also referred to as
H-monotonicity), and examined the convergence analysis for this algorithm in the con-
text of solving the following general class of nonlinear inclusion problems along with some
auxiliary results on the resolvent operators corresponding to H-maximal monotonicity:

0 ∈ M(x), (1.1)

where M : X → 2X is a multi-valued mapping on a real Hilbert space X .
1This work was supported by the Opening Project of Shanghai Key Laboratory of Complex Prescrip-

tion (Shanghai University of Traditional Chinese Medicine) (10DZ2270900), Sichuan Province Youth
Fund project (2011JTD0031), the Scientific Research Fund of Sichuan Provincial Education Department
(10ZA136) and the Cultivation Project of Sichuan University of Science and Engineering (2011PY01).

2The corresponding author. E-mail: clc@suse.edu.cn(L.C. Cai), hengyoulan@163.com (H.Y. Lan)
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However, in [2], Huang illustrated that the conditions and the main proof of two
main theorems of [1] concerning the strong convergence of the over-relaxed proximal
point algorithm for H-maximal monotone mappings in Hilbert spaces are incorrect.
Furthermore, Huang [2] provided the following open question:

Does the strong convergence hold for the sequence {xn} generated by the over-relaxed
proximal point algorithm for H-maximal monotone mappings in the setting of Hilbert
spaces?

Very recently, Verma [3] also pointed out “the over-relaxed proximal point algorithm
is of interest in the sense that it is quite application-oriented, but nontrivial in nature”.
Agarwal and Verma [4] explored the approximation solvability of a general class of varia-
tional inclusion problems (1.1) based on the relative maximal monotonicity frameworks,
while generalizing most of the investigations on weak convergence using the proximal
point algorithm in a real Hilbert space setting. Furthermore, it seems that the obtained
results can be used to generalize the Yosida approximation, which, in turn, can be ap-
plied to first-order evolution inclusions, and the obtained results can further be applied
to the Douglas-Rachford splitting method for finding the zero of the sum of two relatively
monotone mappings as well.

On the other hand, it is well known that the random equations involving the random
operators in view of their need in dealing with probabilistic models in applied sciences is
very important. In recent years, many researchers introduced and studied the research
works in these fascinating areas, the random variational inequality problems, random
quasi-variational inequality problems, random variational inclusion problems and ran-
dom quasi-complementarity problems, respectively. For more literature, we recommend
to the reader [5-11] and the references therein.

Motivated and inspired by the above works, we shall introduce and study the over-
relaxed proximal point algorithms with errors for the following generalized nonlinear
random operator equations: find a solution x : Ω → X to

ft(x)− JMt

ρ(t),Ht
(Ht(x)) = 0, (1.2)

where (Ω,A, µ) is a complete σ-finite measure spaces, X is a real Hilbert space, ft(x) =
f(t, x(t)) for (t, x) ∈ Ω×X , JMt

ρ(t),Ht
= (Ht+ρ(t)Mt)−1, M : Ω×X → 2X is a multi-valued

mapping.
We remark that the determinate form of the problem (1.2) includes the problem (1.1)

by using the generalized proximal operator technique associated with the H-maximal
monotone operators. Indeed, based on the definition of the generalized resolvent operator
associated with the H-maximal monotone operators, Eqn. (1.2) can be written as

0 ∈ Ht(ft(x))−Ht(x) + ρ(t)Mt(ft(x)),

which is reduced to (1.1) when ft(x) ≡ x and Mt(x) ≡ M(x) for all (t, x) ∈ Ω×X .
Further, the problem (1.2) provide us a general and unified framework for studying

a wide range of interesting and important problems arising in mathematics, physics,
engineering sciences and economics finance, etc. For more details, see [1, 3-12] and the
following determinate example.

Example 1.1. ([13]) Let V : Rn → R be a local Lipschitz continuous function, and
let K be a closed convex set in Rn. If x∗ ∈ Rn is a solution to the following problem:

min
x∈K

V (x),
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then
0 ∈ ∂V (x∗) +NK(x∗),

where ∂V (x∗) denotes the subdifferential of V at x∗, and NK(x∗) the normal cone of K
at x∗.

Moreover, by using the generalized proximal operator technique associated with the
H-maximal monotone operators, we will discuss the approximation solvability of gen-
eralized nonlinear random operator equations in Hilbert spaces and the convergence
analysis of iterative sequences generated by the over-relaxed proximal point algorithms
with errors under some suit conditions.

2 Preliminaries

Throughout this paper, we suppose that (Ω,A, µ) is a complete σ-finite measure space
and X is a separable real Hilbert space endowed with the norm ‖·‖ and an inner product
〈·, ·〉. We denote by B(X ) the class of Borel σ-fields in X . Let 2X denote the family of
all the nonempty subsets of X .

In this paper, we will use the following definitions and lemmas.
Definition 2.1. An operator x : Ω → X is said to be measurable if for any X ∈

B(X ), {t ∈ Ω : x(t) ∈ X} ∈ A.
Definition 2.2. An operator f : Ω × X → X is called a random operator if for

any x ∈ X , f(t, x) = h(t) is measurable. A random operator f is said to be continuous
(resp. linear, bounded) if for any t ∈ Ω, the operator f(t, ·) : X → X is continuous
(resp. linear, bounded).

It is well known that a measurable operator is necessarily a random operator.
Definition 2.3. A multi-valued operator G : Ω → 2X is said to be measurable if for

any X ∈ B(X ), G−1(X ) = {t ∈ Ω : G(t) ∩ X 6= ∅} ∈ A.
Definition 2.4. A operator u : Ω → X is called a measurable selection of a multi-

valued measurable operator Γ : Ω → 2X if u is measurable and for any t ∈ Ω, u(t) ∈ Γ(t).
Definition 2.5. Let X be a separable real Hilbert space. Then a random operator

g : Ω×X → X is said to be
(i) s-cocoercive in the second argument, if there exists a real-valued random variable

s(t) > 0 such that

〈gt(x)− gt(y), x(t)− y(t)〉 ≥ s(t)‖gt(x)− gt(y)‖2, ∀x(t), y(t) ∈ X , t ∈ Ω;

(ii) γ-relaxed cocoercive in the second argument, if there exists a positive real-valued
random variable γ(t) such that

〈gt(x)− gt(y), x(t)− y(t)〉 ≥ −γ(t)‖gt(x)− gt(y)‖2, ∀x(t), y(t) ∈ X , t ∈ Ω;

(iii) (β, ε)-relaxed cocoercive in the second argument, if there exist positive real-valued
random variables α(t) and ε(t) such that

〈gt(x)− gt(y), x(t)− y(t)〉 ≥ −β(t)‖gt(x)− gt(y)‖2 + ε(t)‖x(t)− y(t)‖2,

for all x(t), y(t) ∈ X , t ∈ Ω;
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(iv) µ-Lipschitz continuous in the second argument if there exists a real-valued random
variable µ(t) > 0 such that

‖gt(x)− gt(y)‖ ≤ µ(t)‖x(t)− y(t)‖, ∀x(t), y(t) ∈ X , t ∈ Ω.

Definition 2.6. Let H : Ω × X → X be a nonlinear (in general) operators. A
multi-valued operator M : Ω×X → 2X is said to be

(i) monotone in the second argument if

〈u(t)− v(t), x(t)− y(t)〉 ≥ 0, ∀(x(t), u(t)), (y(t), v(t)) ∈ Graph(Mt),

where Graph(Mt) = {(z(t), w(t)) ∈ X × X : w(t) ∈ M(t, x(t)), t ∈ Ω};
(ii) r-strongly monotone in the second argument if there exists a measurable function

r : Ω → (0,+∞) such that for any t ∈ Ω,

〈u(t)− v(t), x(t)− y(t)〉 ≥ r(t)‖x(t)− y(t)‖2, ∀(x(t), u(t)), (y(t), v(t)) ∈ Graph(Mt);

(iii) m-relaxed monotone in the second argument if, there exists a real-valued random
variable m(t) > 0 such that for any t ∈ Ω,

〈u(t)− v(t), x(t)− y(t)〉 ≥ −m(t)‖x(t)− y(t)‖2, ∀(x(t), u(t)), (y(t), v(t)) ∈ Graph(Mt);

(iv) H-maximal monotone if M is monotone in the second argument and R(Ht +
ρ(t)Mt) = X for every t ∈ Ω and ρ(t) > 0.

Lemma 2.1. ([1]) Let X be a separable real Hilbert space, H : Ω × X → X be
r-strongly monotone in the second argument, and M : Ω × X → 2X be H-maximal
monotone. Then the generalized resolvent operator associated with M is defined by

JMt

ρ(t),Ht
(x) = (Ht + ρ(t)Mt)−1(x), ∀x ∈ X , t ∈ Ω

and is 1
r(t) -Lipschitz continuous for any t ∈ Ω. Moreover,

‖JMt

ρ(t),Ht
(Ht(x))− JMt

ρ(t),Ht
(Ht(y))‖ ≤ 1

r(t)− ρ(t)
‖Ht(x)−Ht(y)‖,∀x, y ∈ X , t ∈ Ω,

where r(t)− ρ(t) > 1 for all t ∈ Ω.
Lemma 2.2. Let H, f, M and X be the same as in the problem (1.2). If It(x) =

Ht(ft(x)) − Ht(JMt

ρ(t),Ht
(Ht(x))) for x ∈ X , and for all x1(t), x2(t) ∈ X , ρ(t) > 0 and

γ(t) > 1
2 , t ∈ Ω,

〈Ht(JMt

ρ(t),Ht
(Ht(x1)))−Ht(JMt

ρ(t),Ht
(Ht(x2))),Ht(ft(x1))−Ht(ft(x2))〉

≥ γ(t)‖Ht(JMt

ρ(t),Ht
(Ht(x1)))−Ht(JMt

ρ(t),Ht
(Ht(x2)))‖2,

then

(2γ(t)− 1)‖Ht(JMt

ρ(t),Ht
(Ht(x1)))−Ht(JMt

ρ(t),Ht
(Ht(x2)))‖2

+‖It(x1)− It(x2)‖2 ≤ ‖Ht(ft(x1))−Ht(ft(x2))‖2.
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Proof. By the assumption, now we know

‖It(x1)− It(x2)‖2

≤ ‖Ht(JMt

ρ(t),Ht
(Ht(x1)))−Ht(JMt

ρ(t),Ht
(Ht(x2)))‖2 + ‖Ht(ft(x1))−Ht(ft(x2))‖2

−2〈Ht(JMt

ρ(t),Ht
(Ht(x1)))−Ht(JMt

ρ(t),Ht
(Ht(x2))),Ht(ft(x1))−Ht(ft(x2))〉

≤ −(2γ(t)− 1)‖Ht(JMt

ρ(t),Ht
(Ht(x1)))−Ht(JMt

ρ(t),Ht
(Ht(x2)))‖2

+‖Ht(ft(x1))−Ht(ft(x2))‖2.

This completes the proof. ¤

3 Main Results

In this section, we shall introduce a new class of the over-relaxed proximal point al-
gorithms with errors to approximate solvability of the generalized nonlinear random
operator equation (1.2) with H-maximal monotonicity framework.

Definition 3.1. An operator M−1, the inverse of M : X → 2X , is (s, c)-Lipschitz
continuous at 0 if for any c ≥ 0, there exist a constant s ≥ 0 and a solution x∗ of
0 ∈ M(x) (equivalently x∗ ∈ M−1(0)) such that

‖x− x∗‖ ≤ s‖w − 0‖, ∀x ∈ M−1(w),

where w ∈ Bt = {w : ‖w‖ ≤ c, w ∈ X , c > 0}.
Algorithm 3.1. Step 1. For all t ∈ Ω, choose an arbitrary initial point x0(t) ∈ X .
Step 2. Choose sequences {αn}, {δn(t)} and {ρn(t)} such that for n ≥ 0 and t ∈ Ω,

sequence real-value {αn} ⊂ [0,∞) and real-value random sequences {δn(t)} and {ρn(t)}
are in [0,∞) satisfying

∞∑

n=0

δn(t) < ∞, ρn(t) ↑ ρ(t), ∀t ∈ Ω.

Step 3. Let {xn(t)} ⊂ X be generated by the following iterative procedure

Ht(ft(xn+1)) = (1− αn)Ht(ft(xn)) + αnyn(t) + en(t), ∀n ≥ 0, (3.1)

where {en(t)} is a random error sequence in X to take into account a possible inexact
computation of the operator point, which satisfies

∑∞
n=0 ‖en(t)‖ < ∞, and yn(t) satisfies

‖yn(t)−Ht(JMt

ρn(t),Ht
(Ht(xn)))‖ ≤ δn(t)‖yn(t)−Ht(ft(xn))‖, ∀t ∈ Ω.

Step 4. If xn(t) and yn(t) satisfy (3.1) to sufficient accuracy, stop; otherwise, set
n := n + 1 and return to Step 2.

Algorithm 3.2. For any t ∈ Ω and an arbitrary initial point x0(t) ∈ X , sequence
{xn(t)} ⊂ X is generated by the following iterative procedure

Ht(xn+1) = (1− αn)Ht(xn) + αnyn(t) + en(t), ∀n ≥ 0,
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where {en(t)} is a random error sequence in X to take into account a possible inexact
computation of the operator point, which satisfies

∑∞
n=0 ‖en(t)‖ < ∞, and yn(t) satisfies

‖yn(t)−Ht(JMt

ρn(t),Ht
(Ht(xn)))‖ ≤ δn(t)‖yn(t)−Ht(xn)‖,

and JMt

ρ(t),Ht
= (Ht +ρn(t)Mt)−1, {αn}, {δn(t)} and {ρn(t)} are three sequences in [0,∞)

satisfying
∞∑

n=0

δn < ∞, ρn(t) ↑ ρ(t),∀t ∈ Ω.

Remark 3.1 If en(t) ≡ 0 for all t ∈ Ω, then the determinate form of Algorithm 3.2
is reduced to the generalized proximal point algorithm in Theorem 3.2 of [1].

Next, we apply the over-relaxed proximal point algorithm 3.1 to approximate the
solution of the problems (1.1) and (1.2), and as a result, we end up showing linear
convergence.

Theorem 3.1. Let X be a separable real Hilbert space, H : Ω × X → X be r-
strongly monotone and κ-Lipschitz continuous in the second argument, f : Ω× X → X
is σ-Lipschitz continuous and (β, ε)-relaxed cocoercive in the second argument with the
inverse f−1 is µ-expanding and M : Ω × X → 2X be H-maximal monotone. If, in
addition,

(i) (Ht ◦ ft −Ht + ρ(t)Mt)−1 is (s, c)-Lipschitz continuous in the second argument at
0, where Ht ◦ ft is defined by Ht ◦ ft(x) = H(t, f(t, x(t))) for (t, x) ∈ Ω×X ;

(ii) for any t ∈ Ω and x1(t), x2(t) ∈ X , there exists a real-value random variable
γ(t) > 1

2 such that

〈Ht(JMt

ρ(t),Ht
(Ht(x1)))−Ht(JMt

ρ(t),Ht
(Ht(x2))),Ht(ft(x1))−Ht(ft(x2))〉

≥ γ(t)‖Ht(JMt

ρ(t),Ht
(Ht(x1)))−Ht(JMt

ρ(t),Ht
(Ht(x2)))‖2;

(iii) there exists a real-value random variable ρ(t) > 0 such that





r(t)
√

1− 2ε(t) + β(t)σ2(t) + σ2(t) + κ(t) < r(t),
2β(t)κ(t)σ(t)ϑ(t) < r(t)(

√
1 + 4β(t)ε(t)− 1),

ϑ(t) =
√

(1− α)2 + κ2(t)ε2(t)[α2 − 2γ(t)α(α− 1)] < 1,

ε(t) = s(t)√
µ2(t)ρ2(t)+s2(t)r2(t)(2γ(t)−1)

< 1,

(3.2)

then (1) the generalized nonlinear random operator equation (1.2) has a unique solution
x∗(t) in X .

(2) the sequence {xn(t)} generated by Algorithm 3.1 converges linearly to the solution
x∗(t) with convergence rate

2β(t)κ(t)σ(t)ϑ(t)
r(t)(

√
1 + 4β(t)ε(t)− 1)

< 1,

where ϑ(t) =
√

(1− α)2 + κ2(t)ε2(t)[α2 − 2γ(t)α(α− 1)], α = lim supn→∞ αn > 1,
ε(t) = s(t)√

µ2(t)ρ2(t)+s2(t)r2(t)(2γ(t)−1)
, ρn(t) ↑ ρ(t) for all t ∈ Ω.

1252



Convergence Analysis of the Over-relaxed Proximal Point Algorithms with Errors

Proof. Firstly, for any given positive real-valued random variable ρ(t), define F :
Ω×X → X by

Ft(x) = x(t)− ft(x) + JMt

ρ(t),Ht
(Ht(x)), ∀x ∈ H.

By the assumptions of the theorem and Lemma 2.1, for all x(t), y(t) ∈ X we have

‖Ft(x)− Ft(y)‖
≤ ‖x(t)− y(t)− [ft(x)− ft(y)]‖+ ‖JMt

ρ(t),Ht
(Ht(x))− JMt

ρ(t),Ht
(Ht(y))‖

≤ θ(t)‖x(t)− y(t)‖,

where θ(t) =
√

1− 2ε(t) + β(t)σ2(t) + σ2(t) + κ(t)
r(t) . It follows from condition (3.2) that

0 < θ(t) < 1 and so F (t, ·) is a contractive mapping for any t ∈ Ω, which shows that
F (t, ·) has a unique fixed point in X .

Now, we prove the conclusion (2). Let x∗(t) be a solution of Eqn. (1.2). Then for
any given positive real-valued random variable ρn(t) and n ≥ 0, we have

Ht(ft(x∗)) = (1− αn)Ht(ft(x∗)) + αnHt(JMt

ρn(t),Ht
(Ht(x∗))). (3.3)

For It = Ht ◦ ft − Ht(JMt

ρ(t),Ht
) and under the assumptions, it follows that It(xn) →

0(n → ∞). Since ρ−1
n (t)It(xn) ∈ (Ht ◦ ft − Ht + ρn(t)Mt)(f−1

t (JMt

ρ(t),Ht
(Ht(xn)))), this

implies f−1
t (JMt

ρ(t),Ht
(Ht(xn))) ∈ (Ht◦ft−Ht +ρn(t)Mt)−1(ρ−1

n (t)It(xn)). Then, applying
Lemma 2.2, the strong monotonicity of H, and the Lipschitz continuity of H (and hence,
H being expanding), and the Lipschitz continuity at 0 of (Ht ◦ ft −Ht + ρn(t)Mt)−1 by
setting w = ρ−1

n (t)It(xn) and x(t) = H−1
t (JMt

ρ(t),Ht
(Ht(xn))), we know

µ2‖JMt

ρn(t),Ht
(Ht(xn))− JMt

ρn(t),Ht
(Ht(x∗))‖2

≤ ‖H−1
t (JMt

ρn(t),Ht
(Ht(xn)))−H−1

t (JMt

ρn(t),Ht
(Ht(x∗)))‖2

≤ s2(t)‖ρ−1
n (t)It(xn)− ρ−1

n (t)It(x∗)‖2

≤ s2(t)ρ−2
n (t){‖Ht(ft(xn))−Ht(ft(x∗))‖2

−r2(t)(2γ(t)− 1)‖JMt

ρ(t),Ht
(Ht(xn))− JMt

ρ(t),Ht
(Ht(x∗))‖2},

which implies

‖JMt

ρ(t),Ht
(Ht(xn))− JMt

ρ(t),Ht
(Ht(x∗))‖ ≤ εn(t)‖Ht(ft(xn))−Ht(ft(x∗))‖, (3.4)

where εn(t) = s(t)√
µ2(t)ρ2

n(t)+s2(t)r2(t)(2γ(t)−1)
< 1.

For n ≥ 0, let

Ht(ft(zn+1)) = (1− αn)Ht(ft(xn)) + αnHt(JMt

ρn(t),Ht
(Ht(xn))).
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Thus, by the assumptions of the theorem, (3.3) and and (3.4), now we find the estimate

‖Ht(ft(zn+1))−Ht(ft(x∗))‖2

= ‖(1− αn)(Ht(ft(xn))−Ht(ft(x∗)))‖2

+α2
n‖Ht(JMt

ρn(t),Ht
(Ht(xn)))−Ht(JMt

ρn(t),Ht
(Ht(x∗)))‖2

+2〈αn[Ht(JMt

ρn(t),Ht
(Ht(xn)))−Ht(JMt

ρn(t),Ht
(Ht(x∗)))],

(1− αn)(Ht(ft(xn))−Ht(ft(x∗)))〉
≤ (1− αn)2‖Ht(ft(xn))−Ht(ft(x∗))‖2

+[α2
n + 2γ(t)αn(1− αn)]κ2(t)‖JMt

ρn(t),Ht
(Ht(xn))− JMt

ρn(t),Ht
(Ht(x∗))‖2

≤ ϑ2
n(t)‖Ht(ft(xn))−Ht(ft(x∗))‖2, (3.5)

where ϑn(t) =
√

(1− αn)2 + κ2(t)ε2
n(t)[α2

n − 2γ(t)αn(αn − 1)].
Since

Ht(ft(xn+1)) = (1− αn)Ht(ft(xn)) + αnyn + en(t),

we have Ht(ft(xn+1))−Ht(ft(xn)) = αn[yn −Ht(ft(xn))] + en(t) and

‖Ht(ft(xn+1))−Ht(ft(zn+1))‖ = αn‖yn −Ht(JMt

ρn(t),Ht
(Ht(xn)))‖+ ‖en(t)‖

≤ αnδn(t)‖yn −Ht(ft(xn))‖+ ‖en(t)‖
≤ δn(t)‖Ht(ft(xn+1))−Ht(ft(x∗))‖

+δn(t)‖Ht(ft(xn))−Ht(ft(x∗))‖+ ‖en(t)‖. (3.6)

In the sequel, we estimate using (3.5) and (3.6) that

‖Ht(ft(xn+1))−Ht(ft(x∗))‖
≤ ‖Ht(ft(xn+1))−Ht(ft(zn+1))‖+ ‖Ht(ft(zn+1))−Ht(ft(x∗))‖
≤ δn(t)‖Ht(ft(xn+1))−Ht(ft(x∗))‖+ ‖en(t)‖

+(δn(t) + ϑn(t))‖Ht(ft(xn))−Ht(ft(x∗))‖,
which implies

‖Ht(ft(xn+1))−Ht(ft(x∗))‖
≤ ϑn(t) + δn(t)

1− δn(t)
‖Ht(ft(xn))−Ht(ft(x∗))‖+

1
1− δn(t)

‖en(t)‖. (3.7)

It follows from (3.7), the strong monotonicity and the Lipschitz continuity of H and
f that for any t ∈ Ω and all x(t), y(t) ∈ X ,

r(t)(
√

1 + 4β(t)ε(t)− 1)
2β(t)

‖x(t)− y(t)‖ ≤ ‖Ht(ft(x))−Ht(ft(y))‖
≤ κ(t)σ(t)‖x(t)− y(t)‖,

and

‖xn+1 − x∗‖ ≤ 2β(t)κ(t)σ(t)
r(t)(

√
1 + 4β(t)ε(t)− 1)

· ϑn(t) + δn(t)
1− δn(t)

‖xn − x∗‖

+
2β(t)

r(t)(
√

1 + 4β(t)ε(t)− 1)
· 1
1− δn(t)

‖en(t)‖. (3.8)
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By (3.8), we know that the {xn} converges linearly to a solution x∗ for

2β(t)κ(t)σ(t)ϑn

r(t)(
√

1 + 4β(t)ε(t)− 1)
.

Hence, we have

lim sup
n→∞

2β(t)κ(t)σ(t)
r(t)(

√
1 + 4β(t)ε(t)− 1)

· ϑn + δn

1− δn
=

2β(t)κ(t)σ(t)ϑ(t)
r(t)(

√
1 + 4β(t)ε(t)− 1)

,

where t ∈ Ω,

ϑ(t) = lim sup
n→∞

ϑn(t) =
√

(1− α)2 + κ2(t)ε2(t)[α2 − 2γ(t)α(α− 1)],

ε(t) = lim supn→∞ εn(t) = s(t)√
µ2(t)ρ2(t)+s2(t)r2(t)(2γ(t)−1)

, ρn(t) ↑ ρ(t), α = lim supn→∞ αn.

This completes the proof. ¤
Remark 3.2. The conditions (3.2) in Theorem 3.1 hold for some suitable value of

constant or real-valued random variable, for example, α = 1.35, and r(t) = 1.25, ε(t) =
0.4, β(t) = 0.15, σ(t) = 0.025, s(t) = 0.25, κ(t) = 0.98, γ(t) = 1.5262, µ(t) = 0.6, ρ(t) =
0.7348 and the convergence rate θ(t) = 0.0220 < 1 for all t ∈ Ω.

From Theorem 3.1, we have the following results as an application of Theorem 3.1.
Theorem 3.2. Let H, M and X be the same as in Theorem 3.1. If, in addition,
(i) M−1

t is (s, c)-Lipschitz continuous in the second argument at 0;
(ii) for any t ∈ Ω and x1(t), x2(t) ∈ X , there exists a real-value random variable

γ(t) > 1
2 such that

〈Ht(JMt

ρ(t),Ht
(Ht(x1)))−Ht(JMt

ρ(t),Ht
(Ht(x2))),Ht(x1)−Ht(x2)〉

≥ γ(t)‖Ht(JMt

ρ(t),Ht
(Ht(x1)))−Ht(JMt

ρ(t),Ht
(Ht(x2)))‖2;

(iii) there exists a real-value random variable ρ(t) > 0 such that




κ(t)ϑ(t) < r(t),
ϑ(t) =

√
(1− α)2 + κ2(t)ε2(t)[α2 − 2γ(t)α(α− 1)] < 1,

εn(t) = s(t)√
ρ2

n(t)+s2(t)r2(t)(2γ(t)−1)
< 1,

then the sequence {xn(t)} generated by Algorithm 3.2 converges linearly to the solution
x∗(t) of the problem (1.1) with convergence rate

κ(t)
r(t)

√
1− α{2(1− γ(t)κ2(t)ε2(t))− α[1− (2γ(t)− 1)κ2(t)ε2(t)]} < 1,

where α = lim supn→∞ αn > 1, ε(t) = s(t)√
ρ2(t)+s2(t)r2(t)(2γ(t)−1)

, ρn(t) ↑ ρ(t) for all t ∈ Ω.

Theorem 3.3. Let H, M and X be the same as in Theorem 3.1. If, in addition,
condition (ii) of Theorem 3.2 holds and there exists a real-value random variable ρ(t) ∈
(0, r(t)− 1) such that

κ(t)

√
(1− αn)2 +

κ2(t)αn[αn − 2γ(t)(αn − 1)]
(r(t)− ρ(t))2

< r(t),
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then the sequence {xn(t)} generated by Algorithm 3.2 converges linearly to the solution
x∗(t) of the problem (1.1) with convergence rate

κ(t)
r(t)

√
1− α{2(1− γ(t)κ2(t)ε2(t))− α[1− (2γ(t)− 1)κ2(t)ε2(t)]} < 1,

where α = lim supn→∞ αn > 1, ε(t) = 1
r(t)−ρ(t) with r(t) − ρ(t) > 1, ρn(t) ↑ ρ(t) for all

t ∈ Ω.
Remark 3.3. In Theorem 3.3, we apply Lemma 2.1, the Lipschitz continuity of the

generalized resolvent operator associated with M instead, it seems that the conditions in
Theorem 3.3 is less than that in Theorem 3.2. Further, if real-valued random variables
γ(t) = 1 or en(t) ≡ 1 or κ(t) = 1 (that is, H is nonexpansive) for all t ∈ Ω, then we
can obtain corresponding results of Theorems 3.1-3.3. Therefore, the results presented
in this paper improve, generalize and unify the corresponding results of recent works.
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Abstract. A fixed point theorem in generalized quasi-metric spaces is proved. The 

obtained result extends in generalized quasi-metric spaces the Ciric’s fixed point theorem 

on quasi-contraction mapping. An example shows that the main theorem of this paper 

provides a larger class of mappings than the Ciric’s fixed point theorem. 
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1. Introduction and Preliminaries  
 

The concept of metric space, as an ambient space in fixed point theory, has been 
generalized in several directions. Some of such generalizations are: the quasi-metric 
spaces, the generalized metric spaces and the generalized quasi-metric spaces. 
      The concept of quasi-metric space is treated differently by many authors. In [2], [8], 
[14], [15], [18], [19], etc the quasi-metric space is in line of metric space in which the 
triangular inequality ( , ) ( , ) ( , )d x y d x z d z y≤ +   is replaced by quasi- triangular inequality  

( , ) [ ( , ) ( , )], 1d x y k d x z d z y k≤ + ≥ . 
       In 2000 Branciari [3] introduced the concept of generalized metric spaces (gms) (The 
triangular inequality ( , ) ( , ) ( , )d x y d x z d z y≤ +  is replaced by tetrahedral 
inequality ( , ) ( , ) ( , ) ( , )d x y d x z d z w d w y≤ + + ). Starting with the paper of Branciari, some 
classical metric fixed point theorems have been transferred to gms (see [1], [4], [5], [6], 
[7], [10], [11], [12], [16], [17]) 

Recently L. Kikina and K. Kikina [9] introduced the concept of generalized quasi-
metric space (gqms) replacing the tetrahedral inequality 

( , ) ( , ) ( , ) ( , )d x y d x z d z w d w y≤ + +  with the quasi-tetrahedral inequality 
( , ) [ ( , ) ( , ) ( , )]d x y k d x z d z w d w y≤ + + . The metric spaces are a special case of 

generalized metric spaces and generalized metric spaces are a special case of generalized 
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 2 

quasi-metric spaces (for 1k = ). Also, every qms is a gqms, while the converse is not true 
[9]. 

 
Firstly, we will give some known definitions and notations.   

     
  Let ( , )X d  be a metric space. A mapping :T X X→ is said to be a quasi-contraction if 
there exists 0 1h≤ <  such that  

( , ) max{ ( , ), ( , ), ( , ), ( , ), ( , )}d Tx Ty h d x y d x Tx d y Ty d x Ty d y Tx≤      
for all ,x y X∈ . In 1974, Ciric [4] introduced these mappings and proved the following 
fixed point result: 
      Theorem 1.1 (Ciric [4]) Let T be a quasi-contraction on a metric space ( , )X d and let 
X be T-orbitally complete metric space. Then 

(a) T has a unique fixed point α in X , 
(b) lim n

n
T x α

→∞
= , and  

(c) ( , ) ( /(1 )) ( , )n nd T x h h d x Txα ≤ −  for every x X∈      
 
      In this paper we extend in generalized quasi-metric spaces the above theorem. 

 
Definition 1.1 [3] Let X be a set and 2:d X R+→ a mapping such that for all 

,x y X∈  and for all distinct points ,z w X∈ , each of them different from x and y, one has  
( ) ( , ) 0a d x y = if and only if x y= , 
( ) ( , ) ( , )b d x y d y x= , 
( ) ( , ) ( , ) ( , ) ( , )c d x y d x z d z w d w y≤ + +  (Tetrahedral inequality) 
Then d is called a generalized metric and ( , )X d  is a generalized metric space (or 

shortly gms). 
     
       Definition 1.2 [9] Let X be a set. A nonnegative symmetric function d defined on  
X X×  is called a generalized quasi-distance on X if and only if there exists a constant 

1k ≥  such that for all ,x y X∈  and for all distinct points,z w X∈ , each of them different 
from x and y the following conditions hold: 

      ( ) ( , ) = 0 = ;i d x y x y⇔   
      ( ) ( , ) = ( , );ii d x y d y x   
      ( ) ( , ) [ ( , ) ( , ) ( , )]iii d x y k d x z d z w d w y≤ + + .   

Inequality (3) is often called quasi-tetrahedral inequality and k  is often called the 
coefficient ofd . A pair ( , )X d is called a generalized quasi-metric space (or shortly 
gqms) if X is a set and d is a generalized quasi-distance on X. 

The set ( , ) { : ( , ) }B a r x X d x a r= ∈ < is called “open” ball with center a X∈ and 
radius 0r > . 

The family { : , 0, ( , ) }Q X a Q r B a r Qτ = ⊂ ∀ ∈ ∃ > ⊂  is a topology on X and it is 
called induced topology by the generalized quasi-distanced . 

 
        The following example illustrates the existence of the generalized quasi-metric 
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space for an arbitrary constant 1k ≥ : 

Example 1.3 [9]  Let { }1
1 : 1,2,... 1,2X n

n
 = − = ∪ 
 

, Define :d X X R× → as follow: 

 
{ } { }

0

1 1 1
1,2 1 1,2 1 ,

( , )
3 , {1,2},

1

for x y

for x and y or y and x x y
d x y n n n

k for x y x y

otherwise

=

 ∈ = − ∈ = − ≠= 
 ∈ ≠



 

Then it is easy to see that ( , )X d  is a generalized quasi-metric space and is not a 
generalized metric space (for 1k > ) .   

Note that the sequence 
1

{ } {1 }nx
n

= −  converges to both 1 and 2 and it is not a Cauchy 

sequence: 
1 1

( , ) (1 ,1 ) 1, ,n md x x d n m N
n m

= − − = ∀ ∈  

Since (1, ) (2, )B r B r φ∩ ≠  for all 0r > , the ( , )X d  is non a Hausdorff generalized 
quasi-metric space.   

The function d is not continuous: 
1 1 1 1

1 lim (1 , ) (1, )
2 2 2n

d d
n→∞

= − ≠ = . 

The above example shows that: in a gqms (and for 1k = in a gms) , contrary to the 
case of a metric space, the “open” balls ( , ) { : ( , ) }B a r x X d x a r= ∈ <  are not always 
open sets and, moreover, the generalized quasi-metric d is not always necessarily 
continuous with respect to its variables. Also, the generalized quasi-metric space is not 
always a Hausdorff space and a convergent sequence { }nx  in gqms is not always a 

Cauchy sequence. Under these circumstances, not every theorem of fixed points for 
metric spaces, can be extended in gqms as well. Even in the cases it may be done, the 
proof of theorem is more complicated and it may requires additional conditions.   

 
In [9] is proved: 
Proposition 1.4 If ( , )X d  is a quasi-metric space, then ( , )X d is a generalized quasi-
metric space. The converse proposition doesn’t hold true. 
Definition 1.5   A sequence{ }nx  in a generalized quasi-metric space( , )X d  is called 

Cauchy sequence if   
,
lim ( , ) 0n m

n m
d x x

→∞
= . 

 Definition 1.6    Let ( , )X d  be a generalized quasi-metric space. Then: 

(1) A sequence { }nx  in X  is said to be convergent to a point x X∈ (denoted 

by lim n
n

x x
→∞

= )   if lim ( , ) 0n
n

d x x
→∞

= . 

(2) It is called compact if every sequence contains a convergent subsequence.  
 
Definition 1.7   A generalized quasi-metric space( , )X d  is called complete, if every 
Cauchy sequence is convergent. 
 Definition 1.8   Let ( , )X d be a gqms and the coefficient ofd is k.  
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 4 

 A map :T X X→  is called contraction if there exists 
1

0 c
k

≤ < such that  

( , ) ( , )d Tx Ty cd x y≤   for all ,x y X∈ . 
Definition 1.9   Let :T X X→  be a mapping where X is a gqms. For eachx X∈ , let  

2O(x)={x,Tx,T ,...}x  
which will be called the orbit of T at x. The space X is said to be T-orbitally complete if 
and only if every Cauchy sequence which is contained in O(x)  converges to a point in X. 
 

2. MAIN RESULTS 
       
   Similarly to Ciric definition of quasi-contraction on metric spaces [4], we introduce the 
concept of quasi-contraction in generalized quasi-metric spaces. 
Definition 2.1. Let ( , )X d  be a generalized quasi-metric space and the coefficient ofd is 

1k ≥ . The mapping :T X X→ is said to be quasi-contraction if there exists a number 
h, 1[0, )kh∈ such that    

( , ) max{ ( , ), ( , ), ( , ), ( , ), ( , )}d Tx Ty h d x y d x Tx d y Ty d x Ty d y Tx≤         (1) 
holds for all ,x y X∈ .  
       Before stating the main fixed point theorem for quasi-contractions in gqms, we give 
three lemmas for these mappings.  
       First, let T as in the above definition. For each x X∈ , let  

2( ) { , , ,...}O x x Tx T x=  

the orbit of T at x and  2( , ) { , , ,..., }nO x n x Tx T x T x= . We denote by ( ( ))O xδ the diameter 
of the set ( )O x : 

( ( )) sup{ ( , ) : , }n mO x d T x T x n m Nδ = ∈                   (2) 
and by ( ( , ))O x nδ  the diameter of the set ( , )O x n .  
To obtain the main theorem, we require the following lemmas. 
Lemma 2.2. Let :T X X→ be a quasi-contraction on generalized quasi-metric 
space( , )X d . Then for eachx X∈ , n ≥ 1 and , {1,2,..., }i j n∈  implies  

( , ) ( ( , ))i jd T x T x h O x nδ≤                   (3) 
and for each n, there exists 1 p n≤ ≤  such that   

( , ) ( ( , ))pd x T x O x nδ=                         (4) 
The proof is the same as in case of metric spaces (see [4]). 
Lemma 2.3 If  :T X X→ is a quasi-contraction on generalized metric space ( , )X d  and 
the coefficient ofd is k., then n N∀ ∈ and x X∀ ∈ , 

2

(1 ) 2

1
( ( , )) max{ ( , ), ( , )}k h

kh
O x n d x Tx d x T xδ +

−
≤         (5) 

holds for all x X∈ . 
 Moreover,  

2

(1 ) 2

1
( ( )) max{ ( , ), ( , )}k h

kh
O x d x Tx d x T xδ +

−
≤              (6) 

holds for all x X∈  
 

Proof. From the Lemma 2.2, we have ( , ) ( ( , ))pd x T x O x nδ= for some p with1 p n≤ ≤ . 
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If 1p =  or 2p = , then  
2 2

2

(1 ) ( ( , )) (1 ) ( , )

( , ) (1 )max{ ( , ), ( , )}

p

p

kh O x n kh d x T x

d x T x k h d x Tx d x T x

δ− = −
≤ ≤ +

 

Therefore,  

2

(1 ) 2

1
( ( , )) max{ ( , ), ( , )}k h

kh
O x n d x Tx d x T xδ +

−
≤  

 
Let p such that 3 p n≤ ≤ . If 2 2,x Tx x T x or Tx T x= = = , then the result follows trivially.  

So we can assume that 2,x Tx and T x are all distinct. Let pT x  a point other than 
2Tx and T x. Then from quasi-tetrahedral inequality and lemma 2.2 we have:  

2 2

1

2

2

( ( , )) ( , ) [ ( , ) ( , ) ( , )]

( , ) ( ( ,2)) ( , )]

( , ) max{ ( , ), ( , )} ( ( , 1))

(1 )max{ ( , ), ( , )} ( , ), (1 1)

(1 )max{ (

p p

p

m

O x n d x T x k d x Tx d Tx T x d T x T x

kd x Tx kh O x kd TTx T Tx

kd x Tx kh d x Tx d x T x kh O Tx p

k h d x Tx d x T x khd Tx T Tx m p

k h d x

δ
δ

δ

−

= ≤ + +
≤ + +
≤ + + −

≤ + + ≤ ≤ −
≤ + 2 2

2 2

, ), ( , )} ( ( , 1))

(1 )max{ ( , ), ( , )} ( ( , ))

Tx d x T x kh O x m

k h d x Tx d x T x kh O x n

δ
δ

+ +
≤ + +

 

 
Therefore,  

2 2(1 ) ( ( , )) (1 )max{ ( , ), ( , )}kh O x n k h d x Tx d x T xδ− ≤ +  

Hence, since 2(1 ) 0kh− > , 

2

(1 ) 2

1
( ( , )) max{ ( , ), ( , )}k h

kh
O x n d x Tx d x T xδ +

−
≤  

Moreover, since  
( ( ,1)) ( ( ,2)) ... ( ( , )) ...O x O x O x nδ δ δ≤ ≤ ≤ ≤  

we can write  

2

(1 ) 2

1
( ( )) max{ ( , ), ( , )}k h

kh
O x d x Tx d x T xδ +

−
≤  

This completes the proof of the Lemma.         
 

Remark 2.4 If T is a quasi-contraction, note that, in view of Lemma 2.3, ( )O x  is 
bounded set: ( ( )) ,O x x Xδ < ∞ ∀ ∈   
Lemma 2.5 Let T be a quasi-contraction on generalized quasi-metric space( , )X d . Then, 
for any n ≥ 1, one has 

( ( )) ( ( ))n nO T x h O xδ δ≤                    
where h  is the constant associated with the quasi-contraction definition of T. Moreover, 
we have  

2

(1 ) 2

1
( , )) max{ ( , ), ( , )}k hn n m n

kh
d T x T x h d x Tx d x T x++

−
≤                

for any n ≥ 1 and m N∈ .   
Proof.  Let and ( )n m n m<  be any positive integers. Since T is a quasi-contraction, by 
condition (1), we have    
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1 1 1 1 1 1

( , )

max{ ( , ), ( , ), ( , ), ( , ), ( , )}

n m

n m n n m m n m m n

d T x T y

h d T x T y d T x T x d T y T y d T x T y d T y T x− − − − − −

≤

≤
  (*) 

 
From the remark to previous lemma we have( ( )) ,O x x Xδ < ∞ ∀ ∈ . Then it follows from 
(*) and (2) that  

1( ( )) ( ( )),n nO T x h O T x n Nδ δ −≤ ∈                     
Inductively we get  

( ( )) ( ( ))n nO T x h O xδ δ≤              
Moreover, for any 1n ≥  and m N∈ , we have 

( , )) ( ( )) ( ( ))n n m n nd T x T x O T x h O xδ δ+ ≤ ≤     
And so, by (6), we get 

2

(1 ) 2

1
( , )) max{ ( , ), ( , )}k hn n m n

kh
d T x T x h d x Tx d x T x++

−
≤  

This completes the proof of the Lemma.         
Now we can state our main theorem. 
Theorem 2.6 Let ( , )X d  be an T-orbitally complete gqms with the coefficient 1k ≥  and 

:T X X→ a quasi-contraction with constant h. on a generalized quasi-metric space 
( , )X d  with the coefficient k and ( , )X d  be T-orbitally complete. Then 
         (a)   T has a unique fixed point α  in X,  
         (b)  lim n

n
T x α

→∞
= , for every x X∈  and 

         (c)   
2

2

(1 ) 2

1
( , )) max{ ( , ), ( , )}k hn n

kh
d T x h d x Tx d x T xα +

−
≤ , for all n N∈   

Proof.  Define the sequence { }nx  as follows: ,n
nx T x n N= ∈ .  

We divide the proof into two cases: 
Case I: Suppose for some , , .p qx x p q N p q= ∈ ≠  Let .p q>  Then  

p p q q qT x T T x T x−= =  i.e. nT α α=  wheren p q= − and qT x α= . Now, if  1n > , then we 

have ,n rnT T r Nα α α= = ∈  and by Lemma 2.5, we get 

     
1 1 1( , ) ( , ) ( , ) ( , )

( ( )) ( ( )),

n n rn rn rn q rn q

rn q rn q

d T d T T d T T d T x T x

O T x h O x r N

α α α α α α
δ δ

+ + + + +

+ +

= = = ≤
≤ ≤ ∀ ∈

   

Sincelim 0rn q

r
h +

→∞
= , ( , ) 0d Tα α = . So Tα α=  and hence α is a fixed point of T. 

Case II: Assume that n mx x≠  for all n m≠ . Then { } = { }n
nx T x  is a sequence of distinct 

point. By lemma 2.5, we have  

2

(1 ) 2

1
( , ) ( , ) max{ ( , ), ( , )}k hn n m n

n n m kh
d x x d T x T x h d x Tx d x T x++

+ −
= ≤  

Therefore,  
lim ( , ) 0n n m
n

d x x +→∞
=                             (7) 

 It implies that { }nx  is a Cauchy sequence in X. Since ( , )X d is T-orbitally complete, 

there exists a Xα ∈ such that  
lim n
n

x α
→∞

=                                          (8) 

We now prove that the limitα  is unique. Suppose to the contrary, that is α α′ ≠  is 
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alsolim n
n

x
→∞

. 

Since n mx x≠  for alln m≠ , there exists a subsequence { }
pnx  of { }nx  such that 

pnx α≠ and '
pnx α≠ for all p N∈ . Without loss of generality, assume that { }nx  is this 

subsequence. Then, by quasi-tetrahedral inequality, we obtain 

1 1( , ') [ ( , ) ( , ) ( , ')]n n n nd k d x d x x d xα α α α+ +≤ + +  

Letting n tend to infinity, by (7) and (8), we get ( , ') 0d α α =  and so 'α α= . 
Let we prove now that α  is a fixed point of T . In contrary, if Tα α≠ , then there  exists 
a subsequence { }

pnx  such that 
pnx Tα≠ and 

pnx α≠ for all p N∈ .  

By quasi-tetrahedral inequality, we obtain 

1 1
( , ) [ ( , ) ( , ) ( , )]

p p p pn n n nd T k d x d x x d x Tα α α α
− −

≤ + +  

Then, ifp → ∞ , we get  

               
___

( , ) lim ( , )
pn

p
d T k d x Tα α α

→∞
≤                                     (9) 

From (1),  

1

1 1 1 1 1

1 1 1

( , ) ( , )

max{( ( , ), ( , ), ( , ), ( , ), ( , )}

max{( ( , ), ( , ), ( , ), ( , ), ( , )}

n n

n n n n n

n n n n n

d x T d Tx T

h d x d x Tx d T d x T d Tx

h d x d x x d T d x T d x

α α
α α α α α
α α α α α

−

− − − − −

− − −

= ≤
≤ =
=

 

Letting n tend to infinity, by 
___ ___

1lim ( , ) lim ( , )n n
n n

d x T d x Tα α−→∞ →∞
= , we get 

___ ___

1lim ( , ) max{(0,0, ( , ), lim ( , ),0} ( , )n n
n n

d x T h d T d x T hd Tα α α α α α−→∞ →∞
≤ ≤               (10) 

From (9) and (10),  
___ ___

( , ) lim ( , ) lim ( , ) ( , )
pn n

p n
d T k d x T k d x T khd Tα α α α α α

→∞ →∞
≤ ≤ ≤  

Since 0 1kh≤ < , we have ( , ) 0d Tα α = . So α  is a fixed point of T.  
Let we prove now the uniqueness (for case I and II in the same time). Assume that 
α α′ ≠  is also a fixed point of T .  From (1) we get    

( , ') ( , ') max{( ( , '),0,0, ( , '), ( ', )} ( , ')d d T T h d d d hdα α α α α α α α α α α α= ≤ ≤  
Since 0 1h≤ < , we have 'α α= . So we have proved (a) and (b). By quasi-tetrahedral 
inequality and by Lemma 2.5 we obtain  

2

2

1 1

(1 ) 2
1 11

( , ) [ ( , ) ( , ) ( , )]

max{ ( , ), ( , )} ( , ) ( , )

n n n m n m n m n m

k hn
n m n m n mkh

d x k d x x d x x d x

h d x Tx d x T x kd x x kd x

α α

α
+ + + + + +

+
+ + + + +−

≤ + + ≤

≤ + +
 

Letting m tend to infinity, by (7) and (8), we obtain the inequality (c).This completes the 
proof of the theorem.  
Corollary 2.7 By the theorem 2.6, in special case 1k = , we obtain  an extension of the 
Cirich's quasi-contraction principle in a generalized metric space presented by B. K. 
Lahiri and P. Das [12]. We note that in [12] the proof of the main theorem is not correct 
since it relies in the continuity of the generalized distance d, that it is not true always. 
 
We end this paper with an example: 

KIKINA ET AL: FIXED POINT THEOREM

1263



 8 

 

Example 2.8 Let 31
2 4{0, , ,1}X =  and :T X X→  be a mapping such that        

1 1
2 2( ) 1 and ( ) 0 for { }T T x x X= = ∈ − .  

       In the ordinary metric space, the inequality (1) is not satisfied for 1
2x = and 0y = : 

1 1 1 1 1 1
2 2 2 2 2 2

1 1 1
2 2 2

1 ( , 0) max{ ( ,0), ( , ), (0, 0), ( , 0), (0, )}

max{ , ,0, ,1}

d T T h d d T d T d T d T

h h

= ≤ =
= =

 

While for the mapping T, it can not be applied the Theorem Ciric [5], although there is 
unique fixed point, the Theorem 2.7 can be applied in gqms ( , )X d  with generalized 
quasi-distance as follows: 

1
2

0

( , ) 6 , { ,1},

1

for x y

d x y for x y x y

otherwise

=
= ∈ ≠



 

Then it is easy to see that ( , )X d  is a generalized quasi-metric space and is not a 
metric space because it lacks the triangular inequality: 

1 1
2 26 ( ,1) ( ,0) (0,1) 1 1 2d d d= > + = + = .  

       In this generalized quasi-metric with the coefficient 2k = , the inequality (1) is 
satisfied for all ,x y X∈ : 

      If x y=  or 1
2, { }x y X∈ − , the left side of the inequality (1’) is zero and consequently 

it is true for any 1
2[0, )h∈ . 

If 1
2x =  and 1

2y ≠ ,  inequality (1’) takes the form  
1 1 1 1 1 1
2 2 2 2 2 2

1 1 1
2 2 2

1 ( , ) max{ ( , ), ( , ), ( , ), ( , ), ( , )}

max{ ( , ),6, ( , ), ( , ), ( , )} 6

d T Ty h d y d T d y Ty d Ty d y T

h d y d y Ty d Ty d y T h

= ≤ =
= =

 

which is true for 1 1 1
6 2[ , )kh∈ = . 

If 1
2x ≠  and 1

2y = ,  inequality (1’) takes the form of above case.  

All the conditions of Theorem 2.7 are satisfied with 1 1 1
6 2[ , )kh = = . The mapping T has 

unique fixed point: ( ) {0}Fix T =  and, for anyx X∈ , the Picard iteration{ }nx defined by 

, 1,2,...n
nx T x n= = , converges to 0. 

         The example given above, show that the Theorem 2.7 provides a larger class  

 of mappings than the Theorem 1.1 (Ciric’s Theorem [4]). 
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Explicit formulas on the second kind q-Euler numbers and
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Abstract : In [3], we introduced the second kind q-Euler numbers En,q and polynomials En,q(x).
From these numbers and polynomials, we establish some interesting identities and explicit formulas.

Key words : the second kind Euler numbers and polynomials, the second kind q-Euler numbers
and polynomials.
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1. Introduction

Throughout this paper, we always make use of the following notations: N = {1, 2, 3, · · · } denotes
the set of natural numbers, R denotes the set of real numbers, C denotes the set of complex numbers,
Zp denotes the ring of p-adic rational integers, Qp denotes the field of p-adic rational numbers, and
Cp denotes the completion of algebraic closure of Qp.

Let νp be the normalized exponential valuation of Cp with |p|p = p−νp(p) = p−1. When one
talks of q-extension, q is considered in many ways such as an indeterminate, a complex number
q ∈ C, or p-adic number q ∈ Cp. If q ∈ C one normally assume that |q| < 1. If q ∈ Cp, we normally
assume that |q − 1|p < p−

1
p−1 so that qx = exp(x log q) for |x|p ≤ 1.Throughout this paper we use

the notation:
[x]q =

1 − qx

1 − q
, cf. [1,2,3,4,5] .

Hence, limq→1[x] = x for any x with |x|p ≤ 1 in the present p-adic case.
For

g ∈ UD(Zp) = {g|g : Zp → Cp is uniformly differentiable function},
Kim[1] defined the p-adic integral on Zp as follows:

I1(g) =
∫

Zp

g(x)dμ−1(x) = lim
N→∞

∑

0≤x<pN

g(x)(−1)x. (1.1)

From (1.1), we obtain

I−1(gn) = (−1)nI−1(g) + 2
n−1∑

l=0

(−1)n−1−lg(l), (see [1-3]). (1.2)

where gn(x) = g(x + n).
First, we introduce the second kind Euler numbers En and polynomials En(x)(see [4]). The

second kind Euler numbers En are defined by the generating function:

F (t) =
2et

e2t + 1
=

∞∑

n=0

En
tn

n!
. (1.3)

We introduce the second kind Euler polynomials En(x) as follows:

F (x, t) =
2et

e2t + 1
ext =

∞∑

n=0

En(x)
tn

n!
. (1.4)
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In this paper, we give some interesting identities of the second kind q-Euler numbers and
polynomials. By using the fermionic p-adic integral on Zp, we give recurrence identities the second
kind q-Euler numbers and polynomials.

2. The second kind q-Euler numbers and polynomials

In this section, we introduce the second kind q-Euler numbers En,q and polynomials En,q(x)
and investigate their properties. Let Z+ = N ∪ {0}. In [3], we introduced the second kind q-Euler
numbers En,q and polynomials En,q(x).

For q ∈ Cp with |1 − q|p < 1, the second kind q-Euler numbers En,q are defined by

En,q =
∫

Zp

[2x + 1]nq dμ−1(x). (2.1)

We consider the second kind q-Euler polynomials En,q(x) as follows:

En,q(x) =
∫

Zp

[x + 2y + 1]nq dμ−1(y). (2.2)

The following elementary properties of the second kind q-Euler numbers En,q and polynomials
En,q(x) are readily derived from (2.1) and (2.2). We, therefore, choose to omit the details involved.
More studies and results in this subject we may see references [3], [4].

Proposition 1. For q ∈ Cp with |q − 1|p < 1, we have

En,q = 2
(

1
1 − q

)n n∑

l=0

(
n

l

)
(−1)lql 1

1 + q2l

= 2
∞∑

m=0

(−1)m[2m + 1]nq .

Proposition 2. For q ∈ Cp with |q − 1|p < 1 and n ∈ Z+, we have

En,q(x) =
∫

Zp

[x + 2y + 1]nq dμ−1(y)

=
n∑

l=0

(
n

l

)
[x]n−l

q qxlEl,q

= ([x]q + qxEq)
n

= 2
∞∑

m=0

(−1)m[x + 2m + 1]nq ,

Proposition 3(Property of complement).

En,q−1(−x) = (−1)nqnEn,q(x)

Proposition 4. For n ∈ Z+, we have

En,q−1(2) = (−1)nqnEn,q(−2)
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Proposition 5. For n ∈ Z+, we have

En,q(2) + En,q = 2.

Proposition 6. For n ∈ Z+, we have
(
q2Eq + [2]q

)n
+ En,q = 2,

with the usual convention of replacing (Eq)n by En,q.

3. Explicit formulas on the second kind q-Euler numbers and polynomials

In this section, we give some interesting identities of the second kind q-Euler numbers En,q and
polynomials En,q(x).

From (2.1) and (1.1), we have

∫

Zp

[1 − 2x]nq−1dμ−1(x) = (−1)nqn

∫

Zp

[2x − 1]nq dμ−1(x)

= (−1)nqnEn,q(−2).
(3.1)

Therefore, by (3.1) and Proposition 4, we obtain the following theorem.

Theorem 7. For n ∈ Z+, we get
∫

Zp

[1 − 2x]nq−1dμ−1(x) = En,q−1(2).

Let n ∈ N. Then, by Proposition 5 and Theorem 7, we obtain the following corollary.

Corollary 8. For n ∈ N, we have
∫

Zp

[1 − 2x]nq−1dμ−1(x) = En,q−1(2)

= 2 − En,q−1 .

By Corollary 8, we get
∫

Zp

[2x + 1]kq [1 − 2x]n−k
q−1 dμ−1(x)

=
k∑

l=0

(
k

l

)
(−1)k−l[2]lqq

k−l

∫

Zp

[1 − 2x]n−l
q−1 dμ−1(x)

=
k∑

l=0

(
k

l

)
(−1)k−l[2]lqq

k−l
(
2 − En−l,q−1

)
.

(3.2)

Let n, k ∈ Z+ with n > k. Then, by (3.2) and Corollary 8, we have
∫

Zp

[2x + 1]kq [1 − 2x]n−k
q−1 dμ−1(x)

=
n−k∑

l=0

(
n − k

l

)
(−1)n−k−l[2]lq−1qk+l−n

∫

Zp

[2x + 1]n−l
q dμ−1(x)

=
n−k∑

l=0

(
n − k

l

)
(−1)n−k−l[2]lq−1qk+l−nEn−l,q.

(3.3)
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Therefore, by comparing the coefficients on the both sides of (3.2) and (3.3), we obtain the following
theorem.

Theorem 9. For n, k ∈ Z+ with n > k, we have

k∑

l=0

(
k

l

)
(−1)k−l[2]lqq

k−l
(
2 − En−l,q−1

)

=
n−k∑

l=0

(
n − k

l

)
(−1)n−k−l[2]lq−1qk+l−nEn−l,q.

By Theorem 9, we have the following corollary.

Corollary 10. For n, k ∈ Z+ with n > k, we have

qn
k∑

l=0

(
k

l

)
(−1)l[2]lq−1

(
2 − En−l,q−1

)
=

n−k∑

l=0

(
n − k

l

)
(−1)n+l[2]lqEn−l,q.

By Corollary 8, we have
∫

Zp

[2x + 1]kq [1 − 2x]n1−k
q−1 [2x + 1]kq [1 − 2x]n2−k

q−1 dμ−1(x)

=
∫

Zp

[2x + 1]2k
q [1 − 2x]n1+n2−2k

q−1 dμ−1(x)

=
2k∑

l=0

(
2k

l

)
(−1)2k−l[2]lqq

2k−l

∫

Zp

[1 − 2x]n1+n2−l
q−1 dμ−1(x)

=
2k∑

l=0

(
2k

l

)
(−1)l[2]lqq

2k−l
(
2 − En1+n2−l,q−1

)
.

(3.4)

Let n1, n2, k ∈ Z+ with n1 + n2 > 2k. Then we see that
∫

Zp

[2x + 1]kq [1 − 2x]n1−k
q−1 [2x + 1]kq [1 − 2x]n2−k

q−1 dμ−1(x)

=
∫

Zp

[2x + 1]2k
q [1 − 2x]n1+n2−2k

q−1 dμ−1(x)

=
n1+n2−2k∑

l=0

(
n1 + n2 − 2k

l

)
(−1)n1+n2−l[2]lq−1q2k+l−n1−n2

∫

Zp

[2x + 1]n1+n2−l
q dμ−1(x)

=
n1+n2−2k∑

l=0

(
n1 + n2 − 2k

l

)
(−1)n1+n2−l[2]lq−1q2k+l−n1−n2En1+n2−l,q.

(3.5)

By comparing the coefficients on the both sides of (3.4) and (3.5), we obtain the following
theorem.

Theorem 11. Let n1, n2, k ∈ Z+ with n1 + n2 > 2k. Then we have

qn1+n2

2k∑

l=0

(
2k

l

)
(−1)l[2]lq−1

(
2 − En1+n2−l,q−1

)

=
n1+n2−2k∑

l=0

(
n1 + n2 − 2k

l

)
(−1)n1+n2+l[2]lqEn1+n2−l,q.
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Let s ∈ N with s ≥ 2. For n1, n2, . . . , ns, k ∈ Z+ with n1 + · · · + ns > sk, we have
∫

Zp

[2x + 1]kq [1 − 2x]n1−k
q−1 · · · [2x + 1]kq [1 − 2x]ns−k

q−1
︸ ︷︷ ︸

s−times

dμ−1(x)

=
n1+···+ns−sk∑

l=0

(
n1 + · · · + ns − sk

l

)
(−1)n1+···+ns−sk−l[2]lq−1qsk+l−n1−···−ns

×
∫

Zp

[2x + 1]n1+···+ns−l
q dμ−1(x)

=
n1+···+ns−sk∑

l=0

(
n1 + · · · + ns − sk

l

)
(−1)n1+···+ns−sk−l[2]lq−1qsk+l−n1−···−ns

× En1+···+ns−l,q.

(3.6)

From the binomial theorem, we note that

∫

Zp

[2x + 1]kq [1 − 2x]n1−k
q−1 · · · [2x + 1]kq [1 − 2x]ns−k

q−1
︸ ︷︷ ︸

s−times

dμ−1(x)

=
∫

Zp

[2x + 1]sk
q [1 − 2x]n1+···+ns−sk

q−1 dμ−1(x)

=
sk∑

l=0

(
sk

l

)
(−1)sk−l[2]lqq

sk−l

∫

Zp

[1 − 2x]n1+···+ns−l
q−1 dμ−1(x)

=
sk∑

l=0

(
sk

l

)
(−1)sk−l[2]lqq

sk−l
(
2 − En1+···+ns−l,q−1

)
.

(3.7)

Therefore, by (3.6) and (3.7), we obtain the following theorem.

Theorem 12. Let s ∈ N with s ≥ 2. For n1, n2, . . . , ns, k ∈ Z+ with n1 + · · · + ns > sk, we
have

n1+···+ns−sk∑

l=0

(
n1 + · · · + ns − sk

l

)
(−1)n1+···+ns+l[2]lqEn1+···+ns−l,q

= qn1+···+ns

sk∑

l=0

(
sk

l

)
(−1)l[2]lq−1

(
2 − En1+···+ns−l,q−1

)
.
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Second order α-univexity and duality for nondifferentiable minimax

fractional programming ∗
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410205, Changsha, P.R. China

Abstract

In this paper, we introduce the concept of second order α-univexity by generalizing α-

univexity and present a second-order dual for a nondifferentiable minimax fractional program-

ming. Under the assumptions on the functions involving second order α-univexity, weak, strong

and strict converse duality theorems are obtained in order to establish a connection between the

primal problems and dual problems. Our results extend some existing dual results which were

discussed previously in the literature [11, 12, 14, 15, 16].

Keywords. Nondifferentiable minimax fractional programming; Second order duality; sec-

ond order α-univexity
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1. Introduction

In this paper, we consider the following nondifferentiable minimax fractional programming problem:

(P ) Minimize sup
y∈Y

f(x, y) + (xTBx)
1
2

h(x, y)− (xTDx)
1
2

s.t. g(x) ≤ 0, x ∈ Rn,

where Y is a compact subset of Rm, f, h : Rn × Rm → R, g : Rn → Rp are twice continuously

differentiable. B and D are n× n symmetric positive semidefinite matrices. It is assumed that for

each (x, y) in Rn ×Rm, f(x, y) + (xTBx)
1
2 ≥ 0 and h(x, y)− (xTDx)

1
2 > 0.
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Since Schmitendorf [1] introduced necessary and sufficient optimality conditions for generalized

minimax programming, much attention has been paid to optimality conditions and duality theo-

rems for the minimax fractional programming problems in recent years. Yadav and Mukherjee [2]

formulated two dual models for (P) and derived duality theorems for the case of convex differen-

tiable minimax fractional programming. Chandra and Kumar [3] pointed out some omissions in

the dual formulation of Yadav and Mukherjee and constructed two modified dual problems for min-

imax fractional programming problem and proved duality results. Liu and Wu [12, 4], and Ahmad

[5] obtained sufficient optimality conditions and duality theorems for (P) assuming the functions

involved to be generalized convex.Yang and Hou [6] discussed optimality conditions and duality

results for (P) involving generalized convexity assumptions. Bector et al [7] discussed second order

duality results for minimax programming problems under generalized binvexity. Later on, Liu [8]

extended these results involving second order generalized B-invexity. Husain et al [9] formulated

two types of second order dual models for minimax fractional programming problems, and derived

weak, strong and strict converse duality theorems under η-bonvexity assumptions. Lai and Lee

[10] obtained duality theorems for two parameter-free dual models of nondifferentiable minimax

fractional programming problem which involve pseudo-quasi convex functions by using optimality

conditions given in [11]. Noor,M.A.[17], Noor,M.A. and Noor,K.I. [18], Mishra and Noor,M.A.[13]

introduced some classes of α-invex function by relaxing the definition of an invex function. Mishra,

Pant and Rautela [14] introduced the concept of strict pseudo α-invex and quasi α-invex functions.

Pant and Rautela [19], and Rautela and Pant [20] introduced various generalizations of α-invex and

α-univex functions. Recently, Mishra, Pant and Rautela [16] introduced the concepts of α-univex,

pseudo α-univex, strict pseudo α-univex and quasi α-univex functions respectively by unifying

the notions of α-invex and univex functions, and derived the sufficient optimality conditions and

established duality theorems for three different dual models of problem (P).

In this paper, a new concept of second order α-univexity is introduced by generalizing α-

univexity. Under the assumptions on the functions involving second order α-univexity, weak, strong

and strict converse duality theorems about a second-order dual for a nondifferentiable minimax

fractional programming are established. Our results extend some existing dual results which were

discussed previously in the literature [11, 12, 14, 15, 16].

2. Preliminaries

Let S = {x ∈ Rn : g(x) ≤ 0} denote the set of all feasible solutions of (P). For each (x, y) ∈ Rn×Rm,

we define

J(x) = {j ∈M = {1, 2, · · · ,m} : gj(x) = 0},

Y (x) = {y ∈ Y :
f(x, y) + (xTBx)

1
2

h(x, y)− (xTDx)
1
2

= sup
z∈Y

f(x, z) + (xTBx)
1
2

h(x, z)− (xTDx)
1
2

},

and

K(x) = {(s, t, ỹ) ∈ N ×Rs
+ ×Rms : 1 ≤ s ≤ n+ 1, t = (t1, t2, · · · , ts) ∈ Rs

+,
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s∑
t=1

ti = 1, ỹ = (y1, y2, · · · , ys), yi ∈ Y (x), i = 1, 2, · · · , s}.

In our discussion we shall need the following generalized Schwartz inequality

⟨x,Av⟩ ≤ ⟨x,Ax⟩
1
2 ⟨v,Av⟩

1
2 , for x, v ∈ Rn, (2.1)

the equality holds when Ax = λAv, for some λ ≥ 0.

Let X(α-invex set) be a subset of Rn, η : X × X → Rn be an n-dimensional vector-valued

function and α(x, a) : X × X → R+ \ {0} be a bifunction. Assume that ϕ0, ϕ1 : R → R, b0, b1 :

X ×X × [0, 1] → R+ \ {0}, b(x, a) = lim
λ→0

b(x, a, λ) ≥ 0, and b does not depend on λ if the function

is differentiable.

In the sequel, we introduce a class of second order α-univexity.

Definition 2.1 A twice differentiable function f : X → R is said to be second order α-univex at

a with respect to b0, ϕ0, α and η if there exist functions b0, ϕ0, α and η such that, for every x ∈ X,

p ∈ Rn, we have

b0(x, a)ϕ0[f(x)− f(a) +
1

2
pT∇2f(a)p] ≥ ⟨α(x, a)(∇f(a) +∇2f(a)p), η(x, a)⟩.

Definition 2.2 A twice differentiable function f : Rn → R over X is said to be second order

(strictly) pseudo α-univex at a with respect to b0, ϕ0, α and η if there exist functions b0, ϕ0, α and

η such that, for all x ∈ X, p ∈ Rn,

⟨α(x, a)(∇f(a) +∇2f(a)p), η(x, a)⟩ ≥ 0 ⇒ b0(x, a)ϕ0[f(x)− f(a) +
1

2
pT∇2f(a)p] ≥ (>)0.

Definition 2.3 A twice differentiable function f : Rn → R over X is said to be second order quasi

α-univex at x0 with respect to b0, ϕ0, α and η if there exist functions b0, ϕ0, α and η such that, for

all x ∈ X, p ∈ Rn,

b0(x, a)ϕ0[f(x)− f(a) +
1

2
pT∇2f(a)p] > 0 ⇒ ⟨α(x, a)(∇f(a) +∇2f(a)p), η(x, a)⟩ > 0.

Remark 2.1 It is obvious that the second order α-univexity generalizes the α-univexity in [16].

The following theorem will be needed in the proofs of strong duality theorems:

Theorem 2.1 (Necessary conditions)[11]Let x∗ be a solution of (P) satisfying x∗TBx∗ > 0, x∗TDx∗ >

0, and let ∇gj(x∗), j ∈ J(x∗) be linearly independent. There exist (s∗, t∗, y∗) ∈ K(x∗), λ0 ∈
R+, w, v ∈ Rn and µ∗ ∈ Rp

+ such that

s∗∑
i=1

t∗i {∇f(x∗, y∗i ) +Bw − λ0(∇h(x∗, y∗i )−Dv)}+∇
m∑
j=1

µ∗jgj(x
∗) = 0,

f(x∗, y∗i ) + (x∗TBx∗)
1
2 − λ0(h(x

∗, y∗i )− (x∗TDx∗)
1
2 ) = 0, i = 1, 2, · · · , s∗,
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m∑
j=1

µ∗jgj(x
∗) = 0,

t∗i ≥ 0,

s∗∑
i=1

t∗i = 1, i = 1, 2, · · · , s∗.

wTBw ≤ 1, vTDv ≤ 1,

(x∗TBx∗)
1
2 = x∗TBw, (x∗TDx∗)

1
2 = x∗TDv.

3. Second order duality

By utilizing the optimality conditions of the previous section, we formulate the second order dual

to (P)as follows:

(D) max
(s,t,y)∈K(z)

sup
(z,µ,λ,w,v,p)∈H1(s,t,y)

λ,

where H1(s, t, y) denotes the set of all (z, µ, λ, w, v, p) ∈ Rn ×Rm
+ ×R+ ×Rn ×Rn ×Rn satisfying

s∑
i=1

ti[∇f(z, yi) + Bw − λ(∇h(z, yi)−Dv)] +∇2
s∑

i=1
ti(f(z, yi)− λh(z, yi))p

+ ∇
m∑
j=1

µjgj(z) +∇2
m∑
j=1

µjgj(z)p = 0,
(3.1)

s∑
i=1

ti[f(z, yi) + zTBw − λ(h(z, yi)− zTDv)]− 1
2p

T∇2
s∑

i=1
ti(f(z, yi)− λh(z, yi))p ≥ 0, (3.2)

m∑
j=1

µjgj(z)− 1
2p

T∇2
m∑
j=1

µjgj(z)p ≥ 0, (3.3)

wTBw ≤ 1, vTDv ≤ 1, (zTBz)
1
2 = zTBw, (zTDz)

1
2 = zTDv. (3.4)

If, for a triplet (s, t, y) ∈ K(z), the set H1(s, t, y) = ∅, then we define the supremum over

it to be −∞. Let Z denote the set of all feasible solutions of (D). In this section, we denote

ψ(.) =
s∑

i=1
ti[f(., yi) + (.)TBw − λ(h(., yi)− (.)TDv)].

Theorem 3.1 (Weak Duality)Let x and (z, µ, λ, s, t, w, v, p) be feasible solutions of (P) and (D),

respectively. If, for each (z, µ, λ, s, t, w, v, p) ∈ Z, one of the following conditions holds:

(i)µT g(.) is second order α-univex at z with respect to b1, ϕ1, α, η and ψ(.) is second order α-univex

at z with respect to b0, ϕ0, α, η with ϕ0(V ) ≥ 0 ⇒ V ≥ 0 and ϕ1(V ) ≤ V ,

(ii)µT g(.) is second order quasi α-univex at z with respect to b1, ϕ1, α, η and ψ(.) is second order

pseudo α-univex at z with respect to b0, ϕ0, α, η with V < 0 ⇒ ϕ0(V ) < 0 and V ≤ 0 ⇒ ϕ1(V ) ≤ 0,

(iii)µT g(.) is second order strictly pseudo α-univex at z with respect to b1, ϕ1, α, η and ψ(.) is second

order quasi α-univex at z with respect to b0, ϕ0, α, η with V < 0 ⇒ ϕ0(V ) < 0 and V ≤ 0 ⇒ ϕ1(V ) ≤
0,

then

sup
y∈Y

f(x, y) + (xTBx)
1
2

h(x, y)− (xTDx)
1
2

≥ λ.
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Proof. Suppose the conclusion is not true, i.e.,

sup
y∈Y

f(x, y) + (xTBx)
1
2

h(x, y)− (xTDx)
1
2

< λ.

Then, we have

f(x, y) + (xTBx)
1
2 − λ{h(x, y)− (xTDx)

1
2 } < 0, ∀y ∈ Y.

That is

ti[f(x, yi) + (xTBx)
1
2 − λ{h(x, yi)− (xTDx)

1
2 }] ≤ 0, i = 1, 2, · · · , s.

From (2.1),(3.4) and the above inequality, we obtain

s∑
i=1

ti[f(x, yi) + xTBw − λ{h(x, yi)− xTDv}] ≤
s∑

i=1
ti[f(x, yi) + (xTBx)

1
2 − λ{h(x, yi)− (xTDx)

1
2 }]

< 0

≤
s∑

i=1
ti[f(z, yi) + zTBw − λ{h(z, yi)− zTDv}]

− 1
2p

T∇2
s∑

i=1
ti(f(z, yi)− λh(z, yi))p.

That is

ψ(x) < ψ(z)− 1
2p

T∇2ψ(z)p. (3.5)

If condition (i) holds, then

b0(x, z)ϕ0[ψ(x)− ψ(z) + 1
2p

T∇2ψ(z)p] ≥ ⟨α(x, z)(∇ψ(z) +∇2ψ(z)p), η(x, z)⟩
= ⟨α(x, z)(−∇µT g(z)−∇2µT g(z)p), η(x, z)⟩
≥ −b1(x, z)ϕ1[µT g(x)− µT g(z) + 1

2p
T∇2µT g(z)p]

≥ µT g(z)− µT g(x)− 1
2p

T∇2µT g(z)p ≥ 0

(3.6)

Since ϕ0(V ) ≥ 0 ⇒ V ≥ 0 and b0 > 0, we have

ψ(x) ≥ ψ(z)− 1

2
pT∇2ψ(z)p,

which contradicts with (3.5). Hence, the assertion is true.

If condition (ii) holds, by the positivity of b0 and V < 0 ⇒ ϕ0(V ) < 0, then from (3.5), we get

b0(x, z)ϕ0[ψ(x)− ψ(z) +
1

2
pT∇2ψ(z)p] < 0.

Using the second order pseudo α-univexity, we can deduce the following inequality

⟨α(x, z)(∇ψ(z) +∇2ψ(z)p), η(x, z)⟩ < 0. (3.7)

Taking into account (3.1), (3.7) and the positivity of α(x, z), we have

⟨(∇µT g(z) +∇2µT g(z)p), η(x, z)⟩ > 0. (3.8)
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According to µT g(x) ≤ 0, (3.3), the positivity of b1(x, z) and V ≤ 0 ⇒ ϕ1(V ) ≤ 0, we have

b1(x, z)ϕ1[µ
T g(x)− µT g(z) + 1

2p
T∇2µT g(z)p] ≤ 0. (3.9)

By the second order quasi α-univexity of µT g(.) and the above inequality, we get

⟨α(x, z)(∇µT g(z) +∇2µT g(z)p), η(x, z)⟩ ≤ 0.

That is,

⟨(∇µT g(z) +∇2µT g(z)p), η(x, z)⟩ ≤ 0,

which contradicts with(3.8).

For condition (iii), the proof is similar to that of condition (ii).

Remark 3.1 If we take ϕ0, ϕ1 as identity maps, b0 = b1 = 1, α0 = α1 = 1, p = 0 and η(x1, x0) =

x1 − x0 in the above theorem, we get Theorem 4.1 in [11]. If we take ϕ0, ϕ1 as identity maps,

b0 = b1 = 1, α0 = α1 = 1, p = 0 and remove the quadratic terms from the numerator and

denominator of objective function and from the constraints in the above theorem, we get Theorem

3.1 in [12]. If we take ϕ0, ϕ1 as identity maps, b0 = b1 = 1, p = 0, we get Theorem 4.1 in [14]. If

we take α0 = α1 = 1, p = 0 in the above theorem, we get Theorem 2 in [15]. If we take p = 0 in

the above theorem, we get Theorem 4.1 in [16].

Theorem 3.2 (Strong Duality)Let x∗ be an optimal solution of (P) and ∇gj(x∗), j ∈ J(x∗) be lin-

early independent, then there exist (s∗, t∗, y∗) ∈ K(x∗) and (x∗, u∗, λ∗, w∗, v∗, p∗ = 0) ∈ H1(s
∗, t∗, y∗)

such that (x∗, u∗, λ∗, s∗, t∗, w∗, v∗, p∗ = 0) is feasible for (D), and the corresponding objective values

of (P) and (D) are equal. If, in addition, the assumptions of Weak Duality hold for all feasible

solutions of (P) and (D), then (x∗, u∗, λ∗, s∗, t∗, w∗, v∗, p∗ = 0) is an optimal solution of (D).

Proof. By Theorem 2.1, there exist (s∗, t∗, y∗) ∈ K(x∗) and (x∗, u∗, λ∗, w∗, v∗, p∗ = 0) ∈ H1(s
∗, t∗, y∗)

such that (x∗, u∗, λ∗, s∗, t∗, w∗, v∗, p∗ = 0) is feasible for (D) and

λ∗ =
f(x∗, y∗i ) + (x∗TBx∗)

1
2

g(x∗, y∗i )− (x∗TDx∗)
1
2

.

The optimality of the feasible solution for (D)can be derived from Theorem 3.1.

Remark 3.2 If we take ϕ0, ϕ1 as identity maps, b0 = b1 = 1, α0 = α1 = 1, p∗ = 0 and

η(x1, x0) = x1−x0 in the above theorem, we get Theorem 4.2 in [11]. If we take ϕ0, ϕ1 as identity

maps, b0 = b1 = 1, α0 = α1 = 1, p∗ = 0 and remove the quadratic terms from the numerator and

denominator of objective function and from the constraints in the above theorem, we get Theorem

3.2 in [12]. If we take ϕ0, ϕ1 as identity maps, b0 = b1 = 1, p∗ = 0, we get Theorem 4.2 in [14].

If we take α0 = α1 = 1, p∗ = 0 in the above theorem, we get Theorem 3 in [15]. If we take p∗ = 0

in the above theorem, we get Theorem 4.2 in [16].
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Theorem 3.3 (Strict Converse Duality) Let x∗ and (z, µ, λ, s, t, w, v, p) be optimal solutions of (P)

and (D), respectively. Assume that the hypothesis of Theorem 3.2 is fulfilled, if one of the following

conditions holds:

(i))µT g(.) is second order strictly α-univex at z with respect to b1, ϕ1, α, η and
s∑

i=1
ti[f(., yi) +

⟨., Bw⟩ − λ(h(., yi) + ⟨., Dv⟩)] is second order strictly α-univex at z with respect to b0, ϕ0, α, η with

ϕ0(V ) ≥ 0 ⇒ V ≥ 0 and ϕ1(V ) ≤ V ;

(ii)µT g(.) is second order quasi α-univex at z with respect to b1, ϕ1, α, η and
s∑

i=1
ti[f(., yi)+⟨., Bw⟩−

λ(h(., yi) + ⟨., Dv⟩)] is second order strictly pseudo α-univex at z with respect to b0, ϕ0, α, η with

V < 0 ⇒ ϕ0(V ) < 0 and V ≤ 0 ⇒ ϕ1(V ) ≤ 0.

Then x∗ = z, that is, z is an optimal solution for (P) and

sup
y∈Y

f(z, y) + (zTBz)
1
2

h(z, y)− (zTDz)
1
2

= λ.

Proof. Suppose that x∗ ̸= z. From Theorem 3.2, we know that there exist (s∗, t∗, y∗) ∈ K(x∗) and

(x∗, u∗, λ∗, w∗, v∗, p∗ = 0) ∈ H1(s
∗, t∗, y∗) such that (x∗, u∗, λ∗, s∗, t∗, w∗, v∗, p∗ = 0) is optimal for

(D) and

λ∗ = sup
y∈Y

f(x∗, y) + (x∗TBx∗)
1
2

g(x∗, y)− (x∗TDx∗)
1
2

= λ. (3.10)

The remaining part of the proof is similar to that of Theorem 3.1 in which x is replaced by x∗ and

(z, µ, λ, s, t, w, v, p) by (z, µ, λ, s, t, w, v, p), and we get

sup
y∈Y

f(x∗, y) + (x∗TBx∗)
1
2

g(x∗, y)− (x∗TDx∗)
1
2

> λ,

which contradicts with (3.10). Therefore, we conclude that x∗ = z.

Remark 3.3 If we take ϕ0, ϕ1 as identity maps, b0 = b1 = 1, α0 = α1 = 1, p = 0 and η(x1, x0) =

x1 − x0 in the above theorem, we get Theorem 4.3 in [11]. If we take ϕ0, ϕ1 as identity maps,

b0 = b1 = 1, α0 = α1 = 1, p = 0 and remove the quadratic terms from the numerator and

denominator of objective function and from the constraints in the above theorem, we get Theorem

3.3 in [12]. If we take ϕ0, ϕ1 as identity maps, b0 = b1 = 1, p = 0, we get Theorem 4.3 in [14]. If

we take α0 = α1 = 1, p = 0 in the above theorem, we get Theorem 4 in [15]. If we take p = 0 in

the above theorem, we get Theorem 4.3 in [16].
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SOME PROPERTIES OF THE INTERVAL-VALUED GENERALIZED

FUZZY INTEGRAL WITH RESPECT TO A FUZZY MEASURE BY

MEANS OF AN INTERVAL-REPRESENTABLE GENERALIZED

TRIANGULAR NORM

LEE-CHAE JANG

Abstract. We consider the generalized fuzzy integral introduced by Fang[4] and use the
concept of interval-valued functions which is used for representing uncertain functions.

In this paper, we define the interval-valued generalized fuzzy integral with respect to a
fuzzy measure by means of an interval-representable generalized triangular norm of mea-
surable interval-valued functions and investigate some characterizations and convergence
properties of them.

1. Introduction

Fang[4], Wu-Wang-Ma[22], and Wu-Ma-Song-Zhang[23] introduced the theory of the gen-
eralized fuzzy integral(for short, the (G) fuzzy integral) by means of a generalized triangular
norm. Many researchers[5,16,17,20,22-26] have been studying fuzzy measure and fuzzy inte-
gral theory used in the decision making and information theory.

The main idea of this study is the concept of interval-valued functions which is used for
representing uncertain functions. Aubin[1], Aumann[2], Beliakov et al.[3], Jang et al.[6-12],
Schjear-Jacoben[18], Weichselberger[21], and Zhang et al.[24-26] have been researching various
integrals of uncertain functions, for examples, the Lebesgue integral, the fuzzy integral, and
the Choquet integral of interval-valued functions, the calculation of economic uncertain, and
the theory of interval-probability, etc.

In this paper, we define the interval-valued generalized fuzzy integral (for short, (IG) fuzzy
integral) with respect to a fuzzy measure by means of an interval-representable generalized tri-
angular norm of measurable interval-valued functions and investigate some characterizations
and convergence properties of them.

In section 2, we list definitions and basic properties of a fuzzy measure, a generalized tri-
angular norm, and the (G) fuzzy integral with respect to a fuzzy measure by means of a
generalized triangular norm of measurable functions. In section 3, we define the (IG) fuzzy
integral of interval-valued functions by means of an interval-representable generalized trian-
gular norm of measurable interval-valued functions and investigate some characterizations of
them. In section 4, we investigate some convergence properties of the (IG) fuzzy integral with
respect to a fuzzy measure by means of an interval-representable generalized triangular norm
of measurable interval-valued functions. In section 5, we give a brief summary results and
some conclusions.

1991 Mathematics Subject Classification. 28E10, 28E20, 03E72, 26E50 11B68.
Key words and phrases. fuzzy measure, interval-representable generalized triangular norm, generalized

fuzzy integral, interval-valued function, convergence theorem.
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2 LEE-CHAE JANG

2. Definitions and Preliminaries

In this section, we first introduce some definitions and basic properties of a fuzzy measure,
the (G) fuzzy integral with respect to a fuzzy measure by means of a generalized triangular
norm of measurable functions. Let X be a set, B be a σ−algebra of subsets of X, and (X,B)
be a measurable space. Denote F(X) by the set of all nonnegative measurable functions on
(X,B) and N = {1, 2, 3, ⋅ ⋅ ⋅}.

Definition 2.1. ([3-26]) (1) A set function µ : B → [0,∞] is called a fuzzy measure if
(i) µ(∅) = 0 and
(ii) A,B ∈ B and A ⊂ B implies µ(A) ≤ µ(B).

It is easy to see that if m is the Lebesgue measure on X and we define µ = m2, then µ is
a fuzzy measure which satisfies the two conditions of Definition 2.1. Since µ is not additive,
we can see that this fuzzy measure is not a classical measure.

Definition 2.2. ([22,23]) Let D = [0,∞]2\ {(0,∞), (∞, 0)}. The mapping T : D → [0,∞] is
said to be a generalized triangular norm if it satisfies the following conditions

(i) T [0, x] = 0 for all x ∈ [0,∞) and exists an e ∈ (0,∞] such that T [x, e] = x for each
x[0,∞]. In this case, e is said to be the unit element of T ,

(ii) T [x, y] = T [y, x] for all (x, y) ∈ D,
(iii) T [a, b] ≤ T [c, d] whenever a ≤ c, b ≤ d, and
(iv) if {(xn, yn)} ∈ D, (x, y) ∈ D, xn ↘ x, and yn ↗ y, then T [xn, yn] −→ T [x, y].

Remark 2.1. T1[x, y] = min {x, y} and T2[x, y] = kxy(k > 0) are generalized triangular
norms and the identities of T1 and T2 are ∞ and 1

k , respectively (see [4]).

Definition 2.3. ([22,23]) Let (X,B, µ) be a fuzzy measure space and T be a generalized
triangular norm. If A ∈ B and f ∈ F(X), then the (G) fuzzy integral with respect to µ by
means of T of f on A is defined by

(G)

∫
A

fdµ = sup
�>0

T [�, µA,f (�)], (1)

where µA,f (�) = µ(A ∩ {x ∈ X ∣ f(x) ≥ �}) for all � ∈ [0,∞).

We remark that the Sugeno integral defined by M. Sugeno[20] and the (N) fuzzy integrals
defined by N. Shilkret[19] are the special kinds of (G) fuzzy integrals and the corresponding
generalized triangular norms are T [x, y] = min{x, y} and T [x, y] = xy, respectively. Recall
that

limn→∞fn = inf
k≥1

sup
n≥k

{fn}, (2)

for all {fn} ⊂ F(X). In [4], the authors have shown the following theorems which are
convergence properties of the (G) fuzzy integral.

INTERVAL-VALUED FUZZY INTEGRAL
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Theorem 2.1. ([4]) Let {fn} ⊂ F(X), f ∈ F(X), A ∈ B, and fn ↘ f on A. Then we have

lim
n→∞

(G)

∫
A

fndµ = (G)

∫
A

fdµ (3)

if and only if the following conditions are satisfied
(i) for any given ε > 0 there exists n0 ∈ N such that

µA,fn0
(c0 + ε) <∞, (4)

where c0 = sup{a > 0 : T [a,∞] ≤ (G)
∫
A
fdµ} and µA,fn0

(c0 + ε) = µ(A∩ {x ∈ X ∣ fn0(x) ≥
c0 + ε}) and

(ii) for any {�n} with �n ↗ ∞ or �n ↘ 0,

limn→∞T [�n, µA,fn(�n)] ≤ (G)

∫
A

fdµ (5)

where µA,fn(�) = µ(A ∩ {x ∈ X ∣ fn(x) ≥ �}) for all n ∈ N and � ∈ ℝ+.

Theorem 2.2. ([4]) Let {fn} ⊂ F(X), f ∈ F(X), µ(A) <∞, and fn ↘ f . Then we have

lim
n→∞

(G)

∫
A

fndµ = (G)

∫
A

fdµ (6)

if and only if for any {�n} with �n ↗ ∞,

limn→∞T [�n, µA,fn(�n)] ≤ (G)

∫
A

fdµ, (7)

where µA,fn(�) = µ(A ∩ {x ∈ X ∣ fn(x) ≥ �}) for all n ∈ N and � ∈ ℝ+.

3. The (IG) fuzzy integral of measurable interval-valued functions

In this section, we consider the intervals and define an interval-valued generalized triangular
norm. Let I(Y ) be the set of all bounded closed intervals (intervals, for short) in Y as follows:

I(Y ) = {a = [al, ar] ∣ al, ar ∈ Y and al ≤ ar}, (8)

where Y is [0,∞) or [0,∞]. For any a ∈ ℝ+, we define a = [a, a]. Obviously, a ∈ I(ℝ+)
(see[3, 9-12, 18, 21, 24-26]).

Definition 3.1. If a = [al, ar], b = [bl, br], an = [an,l, an,r], a� = [a�,l, a�,r] ∈ I(Y ) for all
n ∈ N and � ∈ [0,∞), and k ∈ [0,∞), then we define arithmetic, maximum, minimum, order,
inclusion, supremum, and infinimum operations as follows:

(1) a+ b = [al + bl, ar + br],
(2) ka = [kal, kar],
(3) ab = [albl, arbr],
(4) a ∨ b = [al ∨ bl, ar ∨ br],
(5) a ∧ b = [al ∧ bl, ar ∧ br],
(6) a ≤ b if and only if al ≤ bl and ar ≤ br,
(7) a < b if and only if a ≤ b and a ̸= b,
(8) a ⊂ b if and only if bl ≤ al and ar ≤ br,

INTERVAL-VALUED FUZZY INTEGRAL
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(9) supn an = [supn an,l, supn an,r],
(10) infn an = [infn an,l, infn an,r],
(11) sup� a� = [sup� a�,l, sup� a�,r], and
(12) inf� a� = [inf� a�,l, inf� a�,r].

Note that if a mapping dH : I(Y )× I(Y ) → [0,∞] is defined by

dH(A,B) = max

{
sup
x∈A

inf
y∈B

∣x− y∣, sup
y∈B

inf
x∈A

∣x− y∣
}
, (9)

for all A,B ∈ I(Y ), then dH is called a Hausdorff metric and (I(Y ), dH) is a metric space. It
is well-known that for every a = [al, ar], b = [bl, br] ∈ I(Y ),

dH(a, b) = max {∣al − bl∣, ∣ar − br∣} . (10)

For a sequence of intervals {an}, we say that {an} converges in the Hausdorff metric to a, in
symbols, dH − limn→∞ an = a if limn→∞ dH(an, ā) = 0. Then, it is easy to see that

dH − lim
n→∞

an = a if and only if lim
n→∞

an,l = al and lim
n→∞

an,r = ar. (11)

Now, we consider an interval-representable generalized triangular norm as follows(see [3]):

Definition 3.2. Let D = I([0,∞])2\ {(0,∞), (∞, 0)}. The mapping T : D → I([0,∞])
is called an interval-representable generalized triangular norm if there are two generalized
triangular norm Tl and Tr such that Tl ≤ Tl and T = [Tl, Tr].

Theorem 3.1. If we take T1[x, y] = min{x, y} and T2[x, y] = kx y(k > 0), then T1 and T2

are interval-representable generalized triangular norms.

Proof. If we define T1,l[x, y] = min{x, y} and T1,r[x, y] = min{x, y}, then, by Remark
2.1, T1,l and T1,r are generalized triangular norms. Thus, by Definition 3.2, we see that
T1 = [T1,l, T1,r is an interval-representable generalized triangular norm. Similarly, if we
define T2,l[x, y] = T2,r[x, y] = kxy(k > 0), then, by Remark 2.1, T2,l and T2,r are generalized
triangular norms. By Definition 3.2, we see that T2 = [T2,l, T2,r is an interval-representable
generalized triangular norm.

Let IF(X) the set of all measurable interval-valued functions f : X → I([0,∞)) \ {∅}.
Then we define the (IG) fuzzy integral with respect to a fuzzy measure by means of an
interval-representable generalized triangular norm of interval-valued functions as follows.

Definition 3.3. Let (X,B, µ) be a fuzzy measure space, T = [Tl, Tr] be an interval-representable
generalized triangular norm, A ∈ B, and f = [fl, fr] ∈ IF(X).

(1) An interval-valued function f is said to be measurable if for any open set O ⊂ [0,∞),

f
−1

(O) = {x ∈ X ∣ f(x) ∩O ̸= ∅} ∈ B. (12)

(2) The (IG) fuzzy integral with respect to µ by means of T of f on A is defined by

(IG)

∫
A

fdµ = sup
�>0

T[�, µA,f (�)], (13)

where µA,f (�) = [µA,fl(�), µA,fr (�)] for all � ∈ [0,∞).
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(3) f is said to be integrable on A if

(IG)

∫
A

fdµ ∈ P([0,∞)) \ {∅}, (14)

where P([0,∞)) is the set of all subsets of [0,∞).

Let IF∗(X) be the set of all integrable interval-valued functions. We can obtain the
following basic characterizations of the (IG) fuzzy integral with respect to a fuzzy measure by
means of an interval-representable generalized triangular norm of interval-valued functions.

Theorem 3.2. Let (X,B, µ) be a fuzzy measure space and T = [Tl, Tr] be an interval-
representable generalized triangular norm. (1) If f, g ∈ IF∗(X) and f ≤ g, then we have

(IG)

∫
A

fdµ ≤ (IG)

∫
A

gdµ. (15)

(2) If A ∈ B and a ∈ I([0,∞)), then we have

(IG)

∫
A

adµ = T[al, µ(A)] ∨ T[ar, [0, µ(A)]]. (16)

Proof. (1) Since f ≤ g, fl ≤ gl and fr ≤ gr. Thus, we have

µA,fl(�) ≤ µA,gl(�) and µA,fr (�) ≤ µA,gr (�)

for all � ∈ [0,∞). By Definition 3.2,

T[�, µA,f (�)] = [Tl[�, µA,fl(�)], Tr[�, µA,fl(�)]

≤ [Tl[�, µA,gl(�)], Tr[�, µA,gl(�)]
= T[�, µA,g(�)]. (17)

for all � ∈ [0,∞). Therefore we obtain

(IG)

∫
A

fdµ = sup
�>0

T[�, µA,f (�)]

≤ sup
�>0

T[�, µA,g(�)] = (IG)

∫
A

gdµ.

(2) Note that if µ is a fuzzy measure and a = [al, ar] ∈ [0,∞), then we have

µA,a(�) = [µA,al
(�), µA,ar (�)]

=

⎧⎨⎩ [µ(A), µ(A)] if � ∈ (0, al]
[0, µ(A)] if � ∈ (al, ar]
0 if � ∈ (ar,∞).

Thus, by Definition 3.1 (11) and Definition 3.3(2), we have

(IG)

∫
A

adµ

= sup
�>0

T[�, µA,a(�)]

= sup
�>0

[Tl[�, µA,al
(�), Tr[�, µA,ar (�)]

=

[
sup
�>0

Tl[�, µA,al
(�), sup

�>0
Tr[�, µA,ar (�)

]
=

[
sup

0<�≤al

Tl[�, µ(A)],max{ sup
0<�≤al

Tr[�, µ(A)], sup
al<�≤ar

Tr[�, µ(A)]}
]

= [Tl[al, µ(A)], Tr[ar, µ(A)]] .

INTERVAL-VALUED FUZZY INTEGRAL
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Finally, we obtain the following important theorem which is used in the next section and
give a simple example for the (IG) fuzzy integral.

Theorem 3.3. Let Tl, Tr be generalized triangular norms and T[x, y] = [Tl[xl, yl], Tr[xr, yr]]
for all x = [xl, xr], y = [yl, yr] ∈ I([0,∞)) be an interval-representable generalized triangular
norm. If f = [fl, fr] ∈ IF∗(X), and A ∈ B, then we have

(IG)

∫
A

fdµ =

[
(G)

∫
A

fldµ, (G)

∫
A

frdµ

]
, (18)

where (G)
∫
A
fudµ is the (G) fuzzy integral with respect to a fuzzy measure by means of a

generalized triangular norm Tu of a measurable function fu for u = l, r.

Proof. For any f = [fl, fr] ∈ IF∗(X), we have

(IG)

∫
A

fdµ = sup
�>0

T[�, µA,f (�)]

= sup
�>0

T[�, [µA,fl(�), µA,fr (�)]]

= sup
�>0

[Tl[�, µA,fl(�)], Tr[�, µA,fr (�)]]

= [sup
�>0

Tr[�, µA,fl(�)], sup
�>0

Tr[�, µA,fr (�)]]

=

[
(G)

∫
A

fldµ, (G)

∫
A

frdµ

]
,

where (G)
∫
A
fudµ is the (G) fuzzy integral with respect to a fuzzy measure by means of a

generalized triangular norm Tu of a measurable function fu for u = l, r.

Example 3.1. Let Tl[xl, yl] = min{min{xl, yl}, xl ⋅yl} and Tr[xr, yr] = max{min{xr, yr}, xr ⋅
yr}, and T[x, y] = [Tl[xl, yl], Tr[xl, yr]] be an interval-valued generalized triangular norm for
all x = [xl, xr], y = [yl, yr] ∈ I([0,∞)), and m be the Lebesgue measure on [0,∞). Note that
if x, y ⊂ [0, 1], then we have

Tl[xl, yl] = xl ⋅ yl and Tr[xr, yr] = min{xr, yr}

If we take X = [0, 1] and f : X −→ I([0,∞))\∅ by f =
[
1
4x, 2x

]
for all x ∈ X is an

interval-valued function,and µ = m2, then we have

(IG)

∫
f̄dµ = sup

�>0
[Tl[�, µfl(�)], Tr[�, µfr (�)]]

=

[
sup

0<�≤ 1
4

{� ⋅ (1− 4�)2}, sup
0<�≤2

min{�, (1− 1

2
�)2}

]
=

[
1

27
, 3−

√
5

]
.

4. Convergence properties for the (IG) fuzzy integral by means of an
interval-representable generalized triangular norm

In this section, we consider monotone convergent sequences of measurable interval-valued
functions in the Hausdorff metric and investigate some convergence properties of the (IG)
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fuzzy integral with respect to a fuzzy measure by means of an interval-representable general-
ized triangular norm of measurable interval-valued functions.

Definition 4.1. If {fn} be a sequence of measurable interval-valued functions and {f} ∈
IF(X) and A ∈ B.

(1) fn ↗ f on A in the Hausdorff metric if {fn} is an increasing sequence of interval-valued
functions and limn→∞ dH(fn(x), f(x)) = 0, in symbols

dH − lim
n→∞

f̄n(x) = f̄(x), (19)

for all x ∈ X.
(2) fn ↘ f on A in the Hausdorff metric if {fn} is an decreasing sequence of interval-valued

functions and dH − limn→∞ fn(x) = f(x).

By using Definition 4.1, we obtain the following theorem under an interval-representable
generalized triangular norm which is an extension of Theorem 2.1.

Theorem 4.1. Let Tl, Tr be generalized triangular norms and

T[x, y] = [T [xl, yl], T [xr, yr]] (20)

be an interval-representable generalized triangular norm for all x = [xl, xr], y = [yl, yr] ∈
I([0,∞)). If {fn} ⊂ IF∗(X) and f ∈ IF∗(X), and A ∈ B, and fn ↘ f on A in the
Hausdorff metric, then we have

dH − lim
n→∞

(IG)

∫
A

fndµ = (IG)

∫
A

fdµ, (21)

if and only if the following conditions are satisfied
(i) for any given ε > 0 there exists a n0 ∈ N such that

µA,fn0

(c0 + ε) <∞, (22)

where c0 = max
{
sup{a > 0 : Tl[a,∞] ≤ (G)

∫
A
fldµ}, sup{a > 0 : Tr[a,∞] ≤ (G)

∫
A
frdµ}

}
and

(ii) for any �n with �n ↗ ∞ or �n ↘ 0,

limn→∞T[�n, µA,fn
(�n)] ≤ (IG)

∫
A

fdµ. (23)

Proof. By Theorem 3.3, we have

(IG)

∫
A

fdµ =

[
(G)

∫
A

fn,ldµ, (G)

∫
A

fn,rdµ

]
(24)

for all n ∈ N and

(IG)

∫
A

fdµ =

[
(G)

∫
A

fldµ, (G)

∫
A

frdµ

]
, (25)

where where (G)
∫
A
fn,udµ and (G)

∫
A
fudµ are the (G) fuzzy integrals with respect to a fuzzy

measure by means of a generalized triangular norm Tu for u = l, r. By (11),(18),(24) and
(25), (21) implies that

lim
n→∞

(G)

∫
A

fn,ldµ = (G)

∫
A

fldµ, (26)
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and

lim
n→∞

(G)

∫
A

fn,rdµ = (G)

∫
A

frdµ. (27)

By Theorem 2.1, (26) holds if and only if the following conditions are satisfied
(i) for any given ε > 0 there exists a n1 ∈ N such that

µA,fn1,l
(c1 + ε) <∞,

where c1 = sup{a > 0 : Tl[a,∞] ≤ (G)
∫
A
fldµ}.

(ii) For any {�n} with �n ↗ ∞ or �n ↘ 0,

limn→∞Tl[�n, µA,fn,l
(�n)] ≤ (G)

∫
A

fldµ. (28)

and (27) holds if and only if the following conditions are satisfied
(i) for any given ε > 0 there exists a n2 ∈ N such that

µA,fn2,r (c2 + ε) <∞,

where c2 = sup{a > 0 : Tl[a,∞] ≤ (G)
∫
A
frdµ} and

(ii) for any {�n} with �n ↗ � or �n ↘ 0,

limn→∞T [�n, µA,frn(�n)] ≤ (GF )

∫
A

frdµ. (29)

Without loss of the generality, we assume that n1 ≥ n2 and c1 ≤ c2. Thus, fn1,l ≤ fn2,l and
fn1,r ≤ fn2,r and hence

µA,fn1,l
(c2 + ε) ≤ µA,fn1,l

(c1 + ε), (30)

and

µA,fn1,r
(c2 + ε) ≤ µA,fn2,r (c2 + ε). (31)

If we take c0 = max{c1, c2}, then (30) and (31) implies that for any given ε > 0, there
exists a n0 = n1 ∈ N such that

µA,fn0

(c0 + ε)

≤ µA,fn1

(c2 + ε)

= [µA,fn1,l
(c2 + ε), µA,fn1,r (c2 + ε)]

≤ [µA,fn1,l
(c1 + ε), µA,fn2,r (c2 + ε)]

< [∞,∞] = ∞.

Thus, the condition (22) holds. For any {�n} with �n ↗ ∞ or �n ↘ 0, by Theorem 2.1, we
have

limn→∞Tl[�n, µA,fn,l
(�n)] ≤ (G)

∫
A

fldµ, (32)

and

limn→∞Tr[�n, µA,fn,r (�n)] ≤ (G)

∫
A

frdµ. (33)

By (32) and (33) and (20) and Theorem 3.3,

limn→∞T [�n, [µA,fl(�), µA,fr (�)]]

limn→∞ [Tl[�n, [µA,fl(�)], Tr[�n, µA,fr (�)]][
limn→∞Tl[�n, [µA,fl(�)], limn→∞Tr[�n, µA,fr (�)]

]
≤
[
(G)

∫
A

fldµ, (G)

∫
A

frdµ

]
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= (IG)

∫
A

fdµ.

Thus, the condition (23) holds. Similarly, we can derive the converse that (22) and (23)
implies (21).

Theorem 4.2. Let Tl, Tr be generalized triangular norms and T[x, y] = [Tl[xl, yl], Tr[xr, yr]]
be an interval-representable generalized triangular norm for all x = [xl, xr], y = [xl, xr] ∈
I([0 < ∞)). If {fn} ⊂ IF∗(X) and f ∈ IF∗(X), and A ∈ B, and fn ↘ f on A in the
Hausdorff metric, then we have

dH − limn→∞fn(x) = (IG)

∫
A

fdµ, (34)

if and only if for any {�n} with �n ↗ ∞,

limn→∞T[�n, µA,fn
(�n)] ≤ (IG)

∫
A

fdµ. (35)

Proof. By (11),(18),(24) and (25), (34) implies the following two equations:

lim
n→∞

(G)

∫
A

fn,ldµ = (G)

∫
A

fldµ, (36)

and

lim
n→∞

(GF )

∫
A

frndµ = (GF )

∫
A

frdµ. (37)

By Theorem 2.2, (36) and (37) hold if and only if for any {�n} with �n ↗ ∞,

lim
n→∞

Tl[�n, µA,fn,l
(�n)] ≤ (G)

∫
A

fldµ, (38)

and

lim
n→∞

Tr[�n, µA,fn,r (�n)] ≤ (G)

∫
A

frdµ. (39)

By (38),(39) and Definition 3.1 (9) and (10), we have

lim
n→∞

T[�n, µA,fn
(�n)]

= lim
n→∞

[Tl[�n, µA,fn,l
(�n)], Tr[�n, µA,fn,r (�n)]]

= [ lim
n→∞

Tl[�n, µA,fn,l
(�n)], lim

n→∞
Tr[�n, µA,fn,r (�n)]]

≤ [(G)

∫
A

fldµ, (G)

∫
A

frdµ]

= (IG)

∫
A

fdµ.

Thus, the condition (35) holds. Similarly, we can derive the converse that (35) implies (34).
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5. Conclusions

In this paper, we considered the concept of an interval-representable generalized trian-
gular norm (see [3] and Definition 3.2)and studied some characterizations and convergence
properties of the (IG) fuzzy integral with respect to a fuzzy measure by means of an interval-
representable generalized triangular norms of measurable interval-valued functions (see Defi-
nition 3.3) which is an extension of the (G)fuzzy integral with respect to a fuzzy measure by
means of a generalized triangular norm of measurable functions by Fang[4].

From Theorems 3.1 and 3.2, we investigated some characterizations of the (IVG) fuzzy
integral with respect to a fuzzy measure on the space of measurable interval-valued functions.
Theorem 3.3 are used in the proof of Theorems 4.1 and 4.2. From Theorems 4.1 and 4.2,
we discussed some convergence properties of the (IG) fuzzy integral with respect to a fuzzy
measure of measurable interval-valued functions.

Acknowledgement This paper was supported by Konkuk University in 2013.
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Soft rough sets and their properties

Cheng-Fu Yang∗

School of Mathematics and Statistics of Hexi University,

Zhangye Gansu,734000, P. R. China

Abstract
Molodtsov initiated the concept of soft set theory, which can be used as a generic mathematical tool

for dealing with uncertainty. However, it has been pointed out that classical soft sets are not appropriate to
deal with imprecise and fuzzy parameters. In this paper, the notion of the soft rough set theory is proposed.
Soft rough set theory is a combination of a rough theory and a soft set theory. The complement, relative
complement, union, restricted union, intersection, restricted intersection, ”and” and ”or” operations are
defined on the soft rough sets. The basic properties of the soft rough sets are also presented and discussed.
Keywords: Rough sets; Soft sets; Soft rough sets; Properties
MR2000: 08A99.

1 Introduction
Soft set theory was firstly proposed by Molodtsov in 1999 [7]. It is different from traditional tools for

dealing with uncertainties, such as the theory of probability [13], the theory of fuzzy sets [16], the theory of
rough sets [12]. It has been demonstrated that soft set theory brings about a rich potential for applications
in many fields such as function smoothness, Riemann integration, decision making, measurement theory,
game theory, etc.

Soft set theory has received much attention since its introduction by Molodtsov. The concept and basic
properties of soft set theory are presented in [9,7]. Chen et al. [2] presented a new definition of soft set
parameterization reduction and compared this definition with the related concept of knowledge reduction
in the rough set theory. In fact, the soft set model can also be combined with other mathematical models
[15]. For example, by amalgamating the soft sets and algebra, Aktas and Cagman [1] introduce the basic
properties of soft sets, compare soft sets to the related concepts of fuzzy sets [16] and rough sets [12],
point out that every fuzzy set and every rough set may be considered a soft set, and give a definition of soft
groups. Feng et al. [4] defined soft semirings and several related notions to establish a connection between
soft sets and semirings. Maji et al. [11] presented the concept of the fuzzy soft set which is based on a
combination of the fuzzy set and soft set models. Xu et al. [14] introduce the notion of vague soft sets
which is an extension to the soft sets and is based on a combination of the vague set [5] and soft set models.
Majumdar and Samanta [8] further generalized the concept of fuzzy soft sets as introduced by Maji et al.
[10], in other words, a degree is attached with the parameterization of fuzzy sets while defining a fuzzy soft
set. Jiang et al. [6] presented the concept of the interval-valued intuitionistic fuzzy soft sets by combining
the interval-valued intuitionistic fuzzy set and soft set models.

The purpose of this paper is to combine the rough sets and soft sets, from which we can obtain a new
soft set model: soft rough set theory.
∗E-mail: yangcf1@163.com (C.F.Yang).Tel.:+86 0936 8280868; fax:+86 0936 8282000.
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The rest of this paper is organized as follows. The following section briefly reviews some background
on soft sets, rough sets. At the same time some operations of rough sets are defined. In Section 3, we
propose the concepts and operations of soft rough sets and discuss their properties in detail. Finally, in
Section 4, we draw the conclusion and present some topics for future research.

2 Preliminaries
Given a non-empty universe U, by P(U) we will denote the power-set on U. If ρ is an equivalence

relation on U then foe every x ∈ U, [x]ρ denotes the equivalence class of ρ determined by x. For any X ⊆ U,
we write Xc to denote the complementation of X in U, that is the set U − X.
Definition 2.1 [3]. A pair (U, ρ) where U , ∅ and ρ is an equivalence relation on U, is called an approxi-
mation space.
Definition 2.2 [3]. For an approximation space (U, ρ), by a rough approximation in (U, ρ) we mean a
mapping ρ : P(U)→P(U) ×P(U) defined by for every X ∈P(U), ρ(X) = (ρ(X), ρ(X)), where

ρ(X) = {x ∈ X|[x]ρ ⊆ X}, ρ(X) = {x ∈ X|[x]ρ ∩ X , ∅}.

ρ(X) is called a lower rough approximation of X in (U, ρ), where as ρ(X) is called a upper rough approxi-
mation of X in (U, ρ).
Definition 2.3 [3]. Given an approximation space (U, ρ), a pair (A, B) ∈ P(U) ×P(U) is called a rough
set in (U, ρ) iff (A, B) = ρ(X) for some X ∈P(U).
Definition 2.4. Let ρ(X) be is a rough set over U with respect to an equivalence relation ρ, then the comple-
ment of ρ(X) is denoted by ρc(X) = (ρc(X), ρc(X)), is a rough set, where ρc(X) =

{
x ∈ Xc|[x]ρ ⊆ Xc

}
, ρc(X) ={

x ∈ Xc|[x]ρ ∩ Xc , φ
}
.

By the definition of rough set, obviously, ρc(X) = ρ(Xc).
Definition 2.5. Let ρ(X) and ρ(Y) be two rough sets over U with respect to an equivalence relation ρ, then
union of ρ(X) and ρ(Y) denoted by ρ(X) ∪ ρ(Y), is a rough set ρ(Z), where

ρ(Z) = {x ∈ X ∪ Y |[x]ρ ⊆ (X ∪ Y)}, ρ(Z) = {x ∈ X ∪ Y |[x]ρ ∩ (X ∪ Y) , ∅}.

By the definition of rough set, obviously, ρ(Z) = ρ(X ∪ Y).
Definition 2.6. Let ρ(X) and ρ(Y) be two rough sets over U with respect to an equivalence relation ρ, then
intersection of ρ(X) and ρ(Y) denoted by ρ(X) ∩ ρ(Y), is a rough set ρ(Z), where

ρ(Z) = {x ∈ X ∩ Y |[x]ρ ⊆ (X ∩ Y)}, ρ(Z) = {x ∈ X ∩ Y |[x]ρ ∩ (X ∩ Y) , ∅}.

By the definition of rough set, obviously, ρ(Z) = ρ(X ∩ Y).
Molodtsov [7] defined the soft set in the following way. Let U be an initial universe of objects and E the

set of parameters in relation to objects in U. Parameters are often attributes, characteristics, or properties of
objects. Let P(U) denote the power set of U and A ⊆ E.
Definition 2.7. A pair 〈F, A〉 is called a soft set over U, where F is a mapping given by F : A→P(U).

In other words, the soft set is not a kind of set, but a parameterized family of subsets of the set U. For
any parameter ε ∈ A, F(ε) may be considered as the set of ε-approximate elements of the soft set 〈F, A〉.

3 Soft rough sets and their properties
Definition 3.1. Let U be an initial universe and E be a set of parameters. RS (U) denotes the set of all

rough sets of U with respect to an equivalence relation ρ. Let A ⊆ E. A pair 〈F, A〉 is a soft rough set over
U, where F is a mapping given by F : A→ RS (U).
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In other words, a soft rough set is a parameterized family of rough subsets of U, thus, its universe is the
set of all rough sets of U, i.e., RS (U). A soft rough set is also a special case of a soft set because it is still a
mapping from parameters to RS (U).
Definition 3.2. The union of two soft rough sets 〈F, A〉 and 〈G, B〉 over a common universe U with respect
to an equivalence relation ρ is a soft rough set 〈H,C〉, where C = A ∪ B and ∀ε ∈ C,

H(ε) =


F(ε), i f ε ∈ A − B,
G(ε), i f ε ∈ B − A,
F(ε) ∪G(ε), i f ε ∈ A ∩ B.

We write 〈F, A〉∪̃〈G, B〉 = 〈H,C〉.
Definition 3.3. The intersection of two soft rough sets 〈F, A〉 and 〈G, B〉 over a common universe U with
respect to an equivalence relation ρ is a soft rough set 〈H,C〉, where C = A ∪ B and ∀ε ∈ C,

H(ε) =


F(ε), i f ε ∈ A − B,
G(ε), i f ε ∈ B − A,
F(ε) ∩G(ε), i f ε ∈ A ∩ B.

We write 〈F, A〉∩̃〈G, B〉 = 〈H,C〉.
Definition 3.4. Let E = {e1, e2, . . . , en} be a parameter set. The not set of E denoted by eE is defined by
eE = {ee1, ee2, . . . , een} where eei = not ei .
Definition 3.5. Let 〈F, A〉 be a soft rough set over a common universe U with respect to an equivalence
relation ρ, then complement of 〈F, A〉 denoted by 〈F, A〉c = 〈Fc, eA〉 is a soft rough set, and ∀eε ∈eA,
Fc(eε) = ρc(X) = ρ(Xc), where F(ε) = ρ(X).
Definition 3.6. Let 〈F, A〉 and 〈G, B〉 be two soft rough sets over a common universe U with respect
to an equivalence relation ρ such that A ∩ B , ∅. The restricted union of 〈F, A〉 and 〈G, B〉 is denoted by
〈F, A〉d〈G, B〉, and is defined as 〈F, A〉d〈G, B〉 = 〈H,C〉, where C = A∩B and ∀ε ∈ C, H(ε) = F(ε)∪G(ε).
Definition 3.7. Let 〈F, A〉 and 〈G, B〉 be two soft rough sets over a common universe U with respect to an
equivalence relation ρ such that A ∩ B , ∅. The restricted intersection of 〈F, A〉 and 〈G, B〉 is denoted by
〈F, A〉e〈G, B〉, and is defined as 〈F, A〉e〈G, B〉 = 〈H,C〉, where C = A∩B and ∀ε ∈ C, H(ε) = F(ε)∩G(ε).
Definition 3.8. Let 〈F, A〉 be a soft rough set over a common universe U with respect to an equivalence
relation ρ, then restricted complement of 〈F, A〉 denoted by 〈F, A〉r = 〈Fr, A〉 is a soft rough set, and ∀ε ∈ A,
Fr(ε) = ρc(X) = ρ(Xc), where F(ε) = ρ(X).
Definition 3.9. A soft rough set 〈F, A〉 over U with respect to an equivalence relation ρ is said to be a null
soft rough set denoted by ∅A, if ε ∈ A, F(ε) = ρ(∅).
Definition 3.10. A soft rough set 〈F, A〉 over U with respect to an equivalence relation ρ is said to be a
absolute soft rough set denoted by ΣA, if ε ∈ A, F(ε) = ρ(U).
Theorem 3.11. Let E be a set of parameters, A ⊆ E. If ∅A is a null soft rough set, ΣA a absolute soft rough
set, and 〈FA〉 and 〈F, E〉 two soft rough sets over a common universe U with respect to an equivalence
relation ρ, then
(1) 〈F, A〉∪̃〈F, A〉 = 〈F, A〉;
(2) 〈F, A〉∩̃〈F, A〉 = 〈F, A〉;
(3)〈F, E〉∪̃∅A = 〈F, E〉;
(4)〈F, E〉∩̃∅E = ∅E ;
(5)〈F, E〉∪̃ΣE = ΣE ;
(6)〈F, E〉∩̃ΣA = 〈F, E〉.
Proof. It is easily obtained from Definitions above.
Theorem 3.12. Let 〈F, A〉 and 〈G, B〉 be two soft rough sets over a common universe U with respect to an
equivalence relation ρ such that A ∩ B , ∅. Then
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(1) (〈F, A〉 d 〈G, B〉)r = 〈F, A〉r e 〈G, B〉r;
(2) (〈F, A〉 e 〈G, B〉)r = 〈F, A〉r d 〈G, B〉r.
Proof. For ∀ε ∈ A∩B, let F(ε) = ρ(X), G(ε) = ρ(Y), and 〈F, A〉d 〈G, B〉 = 〈H,C〉. According to definition,
H(ε) = F(ε) ∪G(ε) = ρ(X) ∪ ρ(Y) = ρ(X ∪ Y), and then Hr(ε) = ρc(X ∪ Y) = ρ(Xc ∩ Yc).

Now 〈F, A〉r e 〈G, B〉r = 〈Fr, A〉 e 〈Gr, B〉 = 〈K,C〉, where C = A ∩ B. So by definition, we have
K(ε) = Fr(ε) ∩Gr(ε) = ρc(X) ∩ ρc(Y) = ρ(Xc ∩ Yc) = Hr(ε) ∀ε ∈ C.

Hence (〈F, A〉 d 〈G, B〉)r = 〈F, A〉r e 〈G, B〉r.
(2) Let 〈F, A〉 e 〈G, B〉 = 〈H,C〉 where C = A ∩ B , ∅, thus H(ε) = F(ε) ∩G(ε) = ρ(X) ∩ ρ(Y) = ρ(X ∩ Y)
for all ε ∈ C.

Since (〈F, A〉 e 〈G, B〉)r = 〈H,C〉r = 〈Hr,C〉, by definition, Hr(ε) = ρ((X ∩ Y)c) = ρ(Xc ∪ Yc).
Now 〈F, A〉r d 〈G, B〉r = 〈Fr, A〉 d 〈Gr, B〉 = 〈K,C〉, where C = A ∩ B. So by definition, we have

K(ε) = Fr(ε) ∪Gr(ε) = ρc(X) ∪ ρc(Y) = ρ(Xc ∪ Yc) = Hr(ε) ∀ε ∈ C.
Hence (〈F, A〉 e 〈G, B〉)r = 〈F, A〉r d 〈G, B〉r.

Theorem 3.13. Let 〈F, A〉 and 〈G, B〉 be two soft rough sets over a common universe U with respect to an
equivalence relation ρ. Then we have the following:
(1) (〈F, A〉∪̃〈G, B〉)c = 〈F, A〉c∩̃〈G, B〉c;
(2) (〈F, A〉∩̃〈G, B〉)c = 〈F, A〉c∪̃〈G, B〉c.
Proof. (1) For the convenience, we do following assumptions, ∀ε ∈ A ∪ B :
if ε ∈ A − B, then F(ε) = ρ(X);
if ε ∈ B − A, then G(ε) = ρ(Y);
if ε ∈ A ∩ B, then F(ε) = ρ(Z),G(ε) = ρ(W).

Suppose that 〈F, A〉∪̃〈G, B〉 = 〈H, A ∪ B〉. Then (〈F, A〉∪̃〈G, B〉)c = 〈H, A ∪ B〉c = 〈Hc, e(A ∪ B〉) =

〈Hc, eA∪eB〉). For ∀ε ∈ A ∪ B, we have

H(ε) =


F(ε) = ρ(X), i f ε ∈ A − B,
G(ε) = ρ(Y), i f ε ∈ B − A,
F(ε) ∪G(ε) = ρ(Z ∪W), i f ε ∈ A ∩ B.

Thus

Hc(eε) =


ρ(Xc), i f eε ∈eA−eB,
ρ(Yc), i f eε ∈eB−eA,
ρ(Zc ∩Wc), i f eε ∈eA∩eB.

Moreover, let 〈F, A〉c∩̃〈G, B〉c = 〈Fc, eA〉∩̃〈Gce, eB〉 = 〈K, eA∪eB〉. Then

K(eε) =


Fc(eε) = ρ(Xc), i f eε ∈eA−eB,
Gc(eε) = ρ(Yc), i f eε ∈eB−eA,
Fc(eε) ∩Gc(eε) = ρ(Zc ∩Wc), i f ε ∈eA∩eB.

Since Hc and K are indeed the same rough-set-valued mapping, we conclude that (〈F, A〉∪̃〈G, B〉)c =

〈F, A〉c∩̃〈G, B〉c as required.
(2) The proof is similar to that of (1).
Definition 3.14. Let 〈F, A〉 and 〈G, B〉 be two soft rough sets over a common universe U with respect to an
equivalence relation ρ. Then ”〈F, A〉 and 〈G, B〉” is a soft rough set denoted by 〈F, A〉 ∧ 〈G, B〉, is defined as
〈F, A〉 ∧ 〈G, B〉 = 〈H, A × B〉, where H(α, β) = F(α) ∩G(β),∀(α, β) ∈ A × B.
Definition 3.15. Let 〈F, A〉 and 〈G, B〉 be two soft rough sets over a common universe U with respect to an
equivalence relation ρ. Then ”〈F, A〉 or 〈G, B〉” is a soft rough set denoted by 〈F, A〉 ∨ 〈G, B〉, is defined as
〈F, A〉 ∨ 〈G, B〉 = 〈O, A × B〉, where O(α, β) = F(α) ∪G(β),∀(α, β) ∈ A × B.
Theorem 3.16. Let 〈F, A〉 and 〈G, B〉 be two soft rough sets over a common universe U with respect to an
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equivalence relation ρ. Then we have the following:
(1) (〈F, A〉 ∧ 〈G, B〉)c = 〈F, A〉c ∨ 〈G, B〉c;
(2) (〈F, A〉 ∨ 〈G, B〉)c = 〈F, A〉c ∧ 〈G, B〉c.
Proof. (1) Suppose that 〈F, A〉∧〈G, B〉 = 〈H, A×B〉. Then (〈F, A〉∧〈G, B〉)c = 〈H, A×B〉c = 〈Hc, e(A×B)〉.
For ∀e(α, β) ∈e(A × B), let F(α) = ρ(X), G(β) = ρ(Y). By definition, H(α, β) = F(α) ∩ G(β) = ρ(X ∩ Y).
Thus Hc(e(α, β)) = ρc(X ∩ Y) = ρ((X ∩ Y)c) = ρ(Xc ∪ Yc).

Since 〈F, A〉c = 〈Fc, eA〉 and 〈G, B〉c = 〈Gc, eB〉, then 〈F, A〉c ∨ 〈G, B〉c = 〈Fc, eA〉 ∨ 〈Gc, eB〉. Assume
that 〈Fc, eA〉 ∨ 〈Gc, eB〉 = 〈O, eA×eB〉 = 〈O, e(A × B)〉, where ∀(eα, eβ) ∈eA×eB, by definition, O(eα, eβ) =

Fc(eα) ∪Gc(eβ) = ρc(X) ∪ ρc(Y) = ρ(Xc ∪ ρ(Yc) = ρ(Xc ∪ Yc).
Consequently, Hc and O are the same operators. Thus, (〈F, A〉 ∧ 〈G, B〉)c = 〈F, A〉c ∨ 〈G, B〉c.

(2) The proof is similar to that of (1).
Theorem 3.17. Let 〈F, A〉, 〈G, B〉 and 〈H,C〉 be three soft rough sets over a common universe U with
respect to an equivalence relation ρ. Then we have the following:
(1) 〈F, A〉 ∧ (〈G, B〉 ∧ 〈H,C〉) = (〈F, A〉 ∧ 〈G, B〉) ∧ 〈H,C〉;
(2) 〈F, A〉 ∨ (〈G, B〉 ∨ 〈H,C〉) = (〈F, A〉 ∨ 〈G, B〉) ∨ 〈H,C〉.
Proof. (1) Assume that 〈G, B〉 ∧ 〈H,C〉 = 〈I, B × C〉. For ∀(α, β) ∈ B × C, let G(α) = ρ(Y), H(β) = ρ(Z).
By definition, I(α, β) = G(α) ∩ H(β) = ρ(Y ∩ Z).

Since 〈F, A〉∧(〈G, B〉∧〈H,C〉) = 〈F, A〉∧〈I, B×C〉, we suppose that 〈F, A〉∧〈I, B×C〉 = 〈K, A×(B×C)〉.
For ∀(δ, α, β) ∈ A × (B ×C), let F(δ) = ρ(X), by definition, K(δ, α, β) = F(δ) ∩ I(α, β) = ρ(X) ∩ ρ(Y ∩ Z) =

ρ(X ∩ Y ∩ Z).
On the other hand, we take (δ, α) ∈ A × B. Suppose that 〈F, A〉 ∧ 〈G, B〉 = 〈J, A × B〉, by definition,

J(δ, α) = F(δ) ∩G(α) = ρ(X ∩ Y).
Since (〈F, A〉∧〈G, B〉)∧〈H,C〉 = 〈J, A×B〉∧〈H,C〉, we suppose that 〈J, A×B〉∧〈H,C〉 = 〈O, (A×B)×C)〉,

where O(δ, α, β) = J(δ, α) ∩ H(β) = ρ(X ∩ Y ∩ Z), (δ, α, β) ∈ (A × B) ×C = A × B ×C.
Consequently, K and O are the same operators. Thus, 〈F, A〉 ∧ (〈G, B〉 ∧ 〈H,C〉) = (〈F, A〉 ∧ 〈G, B〉) ∧

〈H,C〉.
Theorem 3.18. Let 〈F, A〉, 〈G, B〉 and 〈H,C〉 be three soft rough sets over a common universe U with
respect to an equivalence relation ρ such that A ∩ B ∩C , ∅. Then we have the following:
(1) 〈F, A〉 e (〈G, B〉 e 〈H,C〉) = (〈F, A〉 e 〈G, B〉) e 〈H,C〉;
(2) 〈F, A〉 d (〈G, B〉 d 〈H,C〉) = (〈F, A〉 d 〈G, B〉) d 〈H,C〉;
(3) 〈F, A〉 e (〈G, B〉 d 〈H,C〉) = (〈F, A〉 e 〈G, B〉) d (〈F, A〉 e 〈H,C〉);
(4) 〈F, A〉 d (〈G, B〉 e 〈H,C〉) = (〈F, A〉 d 〈G, B〉) e (〈F, A〉 d 〈H,C〉).
Proof. In the following, we shall prove (1) and (3); (2) and (4) are proved analogously.

For the convenience, we do following assumptions, ∀ε ∈ A ∪ B ∪C,
if ε ∈ A − B −C, then F(ε) = ρ(X1);
if ε ∈ B − A −C, then G(ε) = ρ(X2);
if ε ∈ C − A − B, then H(ε) = ρ(X3);
if ε ∈ A ∩ B −C, then F(ε) = ρ(X4),G(ε) = ρ(X5);
if ε ∈ A ∩C − B, then F(ε) = ρ(X6),H(ε) = ρ(X7);
if ε ∈ B ∩C − A, then G(ε) = ρ(X8),H(ε) = ρ(X9);
if ε ∈ A ∩ B ∩C, then F(ε) = ρ(X10),G(ε) = ρ(X11),H(ε) = ρ(X12).
(1) Suppose that 〈G, B〉e〈H,C〉 = 〈I,D〉, where D = B∩C. For ∀ε ∈ D, by definition, I(ε) = F(ε)∩H(ε) =

ρ(X8 ∩ X9) or ρ(X11 ∩ X12).
Since 〈F, A〉 e (〈G, B〉 e 〈H,C〉) = 〈F, A〉 e 〈I,D〉, we assume that 〈F, A〉 e 〈I,D〉 = 〈J, S 〉, where

S = A ∩ D. By definition, for ∀ε ∈ S , J(ε) = F(ε) ∩ I(ε) = ρ(X10) ∩ ρ(X11 ∩ X12) = ρ(X10 ∩ X11 ∩ X12).
On the other hand, assume that 〈F, A〉 e 〈G, B〉 = 〈K,V〉, where V = A ∩ B. For ∀ε ∈ V , K(ε) =

F(ε) ∩G(ε) = ρ(X4 ∩ X5) or ρ(X10 ∩ X11).

1295



YANG:SOFT ROUGH SETS

Since (〈F, A〉 e (〈G, B〉) e 〈H,C〉 = 〈K,V〉 e 〈H,C〉, we assume that 〈K,V〉 e 〈H,C〉 = 〈L,W〉, where
W = V ∩ C = A ∩ B ∩ C. By definition, for ∀ε ∈ W, L(ε) = K(ε) ∩ H(ε) = ρ(X10 ∩ X11) ∩ ρ(X12) =

ρ(X10 ∩ X11 ∩ X12).
Therefore, L(ε) = J(ε) for all ∀ε ∈ A ∩ B ∩ C. That is, J and L are the same operators. Thus,

〈F, A〉 e (〈G, B〉 e 〈H,C〉) = (〈F, A〉 e 〈G, B〉) e 〈H,C〉.
(3) Let 〈G, B〉 d 〈H,C〉 = 〈I,D〉, where D = B ∩ C. For ∀ε ∈ D, by definition, I(ε) = G(ε) ∪ H(ε) =

ρ(X8 ∪ X9) or ρ(X11 ∪ X12).
Since 〈F, A〉 e (〈G, B〉 d 〈H,C〉) = 〈F, A〉 e 〈I,D〉, we assume that 〈F, A〉 e 〈I,D〉 = 〈K,V〉, where

V = A ∩ D. For ∀ε ∈ V = A ∩ B ∩C, K(ε) = F(ε) ∩ I(ε) = ρ(X10) ∩ ρ(X11 ∪ X12) = ρ(X10 ∩ (X11 ∪ X12)).
On the other hand, suppose 〈F, A〉 e 〈G, B〉 = 〈J,M〉 and 〈F, A〉 e 〈H,C〉 = 〈L,W〉, where M = A ∩ B,

W = A∩C. Since (〈F, A〉e〈G, B〉)d(〈F, A〉e〈H,C〉) = 〈J,M〉d〈L,W〉, assume that 〈J,M〉d〈L,W〉 = 〈O,N〉,
where N = M∩W. For ∀ ∈ N = A∩B∩C, by definition, O(ε) = J(ε)∪L(ε) = (F(ε)∩G(ε))∪(F(ε)∩H(ε)) =

(ρ(X10) ∩ ρ(X11)) ∪ (ρ(X10) ∩ ρ(X12)) = ρ(X10 ∩ X11) ∪ ρ(X10 ∩ X12) = ρ((X10 ∩ X11) ∪ (X10 ∩ X12)) =

ρ(X10 ∩ (X11 ∪ X12)).
Therefore, K(ε) = O(ε) for all ∀ε ∈ A ∩ B ∩ C. That is, K and O are the same operators. Thus,

〈F, A〉 e (〈G, B〉 d 〈H,C〉) = (〈F, A〉 e 〈G, B〉) d (〈F, A〉 e 〈H,C〉).
Theorem 3.19. Let 〈F, A〉, 〈G, B〉 and 〈H,C〉 be three soft rough sets over a common universe U with
respect to an equivalence relation ρ. Then we have the following:
(1) 〈F, A〉∩̃(〈G, B〉∩̃〈H,C〉) = (〈F, A〉∩̃〈G, B〉)∩̃〈H,C〉;
(2) 〈F, A〉∪̃(〈G, B〉∪̃〈H,C〉) = (〈F, A〉∪̃〈G, B〉)∪̃〈H,C〉;
Proof. In the following, we shall prove (1), (2) is proved analogously.

For the convenience, ∀ε ∈ A ∪ B ∪C, we do following assumptions:
if ε ∈ A − B −C, then F(ε) = ρ(X1);
if ε ∈ B − A −C, then G(ε) = ρ(X2);
if ε ∈ C − A − B, then H(ε) = ρ(X3);
if ε ∈ A ∩ B −C, then F(ε) = ρ(X4),G(ε) = ρ(X5);
if ε ∈ A ∩C − B, then F(ε) = ρ(X6),H(ε) = ρ(X7);
if ε ∈ B ∩C − A, then G(ε) = ρ(X8),H(ε) = ρ(X9);
if ε ∈ A ∩ B ∩C, then F(ε) = ρ(X10),G(ε) = ρ(X11),H(ε) = ρ(X12).
(1) Suppose that 〈G, B〉∩̃〈H,C〉 = 〈I,D〉, where D = B ∪C. For ∀ε ∈ D, by definition,

I(ε) =


G(ε) = ρ(X2) or ρ(X5), ε ∈ B −C,
H(ε) = ρ(X3) or ρ(X7), ε ∈ C − B,
G(ε) ∩ H(ε) = ρ(X8 ∩ X9) or ρ(X11 ∩ X12), ε ∈ B ∩C.

Since 〈F, A〉∩̃(〈G, B〉∩̃〈H,C〉) = 〈F, A〉∩̃〈I,D〉, we assume that 〈F, A〉∩̃〈I,D〉 = 〈J, S 〉, where S = A∪D.
By definition, for ∀ε ∈ S ,

J(ε) =


F(ε) = ρ(X1), ε ∈ A − D,
I(ε) = ρ(X2) or ρ(X3) or ρ(X8 ∩ X9), ε ∈ D − A,
F(ε) ∩ I(ε) = ρ(X4 ∩ X5) or ρ(X10 ∩ X11 ∩ X12) or ρ(X6 ∩ X7), ε ∈ A ∩ D.

=



ρ(X1), ε ∈ A − B −C,
ρ(X2), ε ∈ B − A −C,
ρ(X3), ε ∈ C − B − A,
ρ(X8 ∩ X9), ε ∈ B ∩C − A,
ρ(X4 ∩ X5), ε ∈ A ∩ B −C,
ρ(X6 ∩ X7), ε ∈ A ∩C − B,
ρ(X10 ∩ X11 ∩ X12), ε ∈ A ∩ B ∩C.
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On the other hand, assume that 〈F, A〉∪̃〈G, B〉 = 〈K,V〉, where V = A ∪ B. For ∀ε ∈ V ,

K(ε) =


F(ε) = ρ(X1) or ρ(X6), ε ∈ A − B,
G(ε) = ρ(X2) or ρ(X8), ε ∈ B − A,
F(ε) ∩G(ε) = ρ(X4 ∩ X5) or ρ(X10 ∩ X11), ε ∈ A ∩ B.

Since (〈F, A〉∩̃(〈G, B〉)∩̃〈H,C〉 = 〈K,V〉∩̃〈H,C〉, we assume that 〈K,V〉∩̃〈H,C〉 = 〈L,W〉, where W =

V ∪C = A ∪ B ∪C. By definition, for ∀ε ∈ W,

L(ε) =


K(ε) = ρ(X1) or ρ(X2) or ρ(X4 ∩ X5), ε ∈ V −C,
H(ε) = ρ(X3), ε ∈ C − V,
K(ε) ∩ H(ε) = ρ(X8 ∩ X9) or ρ(X10 ∩ X11 ∩ X12) or ρ(X6 ∩ X7), ε ∈ C ∩ V.

=



ρ(X1), ε ∈ A − B −C,
ρ(X2), ε ∈ B − A −C,
ρ(X3), ε ∈ C − B − A,
ρ(X8 ∩ X9), ε ∈ B ∩C − A,
ρ(X4 ∩ X5), ε ∈ A ∩ B −C,
ρ(X6 ∩ X7), ε ∈ A ∩C − B,
ρ(X10 ∩ X11 ∩ X12), ε ∈ A ∩ B ∩C.

Therefore, L(ε) = J(ε) for all ∀ε ∈ A ∪ B ∪ C. That is, J and L are the same operators. Thus,
〈F, A〉∩̃(〈G, B〉∩̃〈H,C〉) = (〈F, A〉∩̃〈G, B〉)∩̃〈H,C〉.

The following example shows that if e and d of assertions (3) and (4) of theorem 3.18 are replaced by
∩̃ and ∪̃ respectively, then assertions (3) and (4) of theorem 3.18 do not hold, i.e., 〈F, A〉∩̃(〈G, B〉∪̃〈H,C〉) =

(〈F, A〉∩̃〈G, B〉)∪̃(〈F, A〉∩̃〈H,C〉) and 〈F, A〉∪̃(〈G, B〉∩̃〈H,C〉) = (〈F, A〉∪̃〈G, B〉)∩̃(〈F, A〉∪̃〈H,C〉) are both
incorrect.
Example. Let U = {x1, x2, x3, x4, x5, x6} be an initial universe and E = {e1, e2, e3, e4} be a set of parameters.
Let ρ be an equivalence relation on U such that ρ−equivalence classes are the subsets {x1, x3}, {x2, x4, x5}

and {x6}. 〈F, A〉, 〈G, B〉 and 〈H,C〉 are three soft rough sets over U with respect to an equivalence relation
ρ. Here A = {e1, e2, e3}, B = {e1, e2, e4}, C = {e1, e3, e4}.

We take X1 = {x1, x3}, X2 = {x1, x6}, X3 = {x2, x4, x5}, X4 = {x2, x5}, X5 = {x1, x4}, X6 = {x1, x2, x3},
X7 = {x3, x6}, X8 = {x4, x6} and X9 = {x1, x3, x6}. Let
F(e1) = ρ(X1) = ({x1, x3}, {x1, x3});
F(e2) = ρ(X2) = ({x6}, {x1, x3, x6});
F(e3) = ρ(X3) = ({x2, x4, x5}, {x2, x4, x5});
G(e1) = ρ(X4) = (∅, {x2, x4, x5});
G(e2) = ρ(X5) = (∅, {x1, x2, x3, x4, x5});
G(e4) = ρ(X6) = ({x1, x3}, {x1, x2, x3, x4, x5});
H(e1) = ρ(X7) = ({x6}, {x1, x3, x6});
H(e3) = ρ(X8) = ({x6}, {x2, x4, x5, x6});
H(e4) = ρ(X9) = ({x1, x3, x6}, {x1, x3, x6}).

Suppose that 〈G, B〉∪̃〈H,C〉 = 〈I,D〉, where D = B ∪C. By definition,
I(e1) = G(e1) ∪ H(e1) = ρ(X4) ∪ ρ(X7) = ρ(X4 ∪ X7) = ρ({x2, x3, x5, x6}) = ({x6}, {x1, x2, x3, x4, x5, x6});
I(e2) = G(e2) = ρ(X5) = (∅, {x1, x2, x3, x4, x5});
I(e3) = H(e3) = ρ(X8) = ({x6}, {x2, x4, x5, x6});
I(e4) = G(e4) ∪ H(e4) = ρ(X6) ∪ ρ(X9) = ρ(X6 ∪ X9) = ρ({x1, x2, x3, x6})
= ({x1, x3, x6}, {x1, x2, x3, x4, x5, x6}).
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Since 〈F, A〉∩̃(〈G, B〉∪̃〈H,C〉) = 〈F, A〉∩̃〈I,D〉, we assume that 〈F, A〉∩̃〈I,D〉 = 〈J, S 〉, where S = A∪D.
By definition,
J(e1) = F(e1) ∩ I(e1) = ρ(X1) ∩ ρ(X4 ∪ X7) = ρ(X1 ∩ (X4 ∪ X7)) = ρ({x3}) = (∅, {x1, x3});
J(e2) = F(e2) ∩ I(e2) = ρ(X2) ∩ ρ(X5) = ρ(X2 ∩ X5) = ρ({x1}) = (∅, {x1, x3});
J(e3) = F(e3) ∩ I(e3) = ρ(X3) ∩ ρ(X8) = ρ(X3 ∩ X8) = ρ({x4}) = (∅, {x2, x4, x5});
J(e4) = I(e4) = ρ(X6 ∪ X9) = ρ({x1, x2, x3, x6})
= ({x1, x3, x6}, {x1, x2, x3, x4, x5, x6}).

On the other hand, suppose that 〈F, A〉∩̃〈G, B〉 = 〈K,V〉 and 〈F, A〉∩̃〈H,C〉 = 〈L,W〉, where V = A ∪ B,
W = A∪C. Since (〈F, A〉∩̃〈G, B〉)∪̃(〈F, A〉∩̃〈H,C〉) = 〈K,V〉∪̃〈L,W〉, assume that 〈K,V〉∪̃〈L,W〉 = 〈O,N〉,
where N = V ∪W. By definition,
O(e1) = K(e1) ∪ L(e1) = (F(e1) ∩G(e1)) ∪ (F(e1) ∩ H(e1)) = ρ(X1 ∩ X4) ∪ ρ(X1 ∩ X7) = ρ(∅) ∪ ρ({X3}) =

ρ({x3}) = (∅, {x1, x3});
O(e2) = K(e2) ∪ L(e2) = (F(e2) ∩G(e2)) ∪ F(e2) = (ρ(X2) ∩ ρ(X5)) ∪ ρ(X2) = ρ((X2 ∩ X5) ∪ X2) = ρ(X2) =

ρ({x1, x6}) = ({x6}, {x1, x3, x6});
O(e3) = K(e3) ∪ L(e3) = F(e3) ∪ (F(e3) ∩ H(e3)) = ρ(X3) ∪ ρ(X3 ∩ X8) = ρ(X3 ∪ (X3 ∩ X8)) = ρ(X3) =

ρ({x2, x4, x5}) = ({x2, x4, x5}, {x2, x4, x5});
O(e4) = K(e4) ∪ L(e4) = G(e4) ∪ H(e4) = ρ(X6) ∪ ρ(X9) = ρ(X6 ∪ X9) = ρ({x1, x2, x3, x6})
= ({x1, x3, x6}, {x1, x2, x3, x4, x5, x6}).

Since J(e2) , O(e2) and J(e3) , O(e3). That is, J and O are not the same operators. Thus,
〈F, A〉∩̃(〈G, B〉∪̃〈H,C〉) , (〈F, A〉∩̃〈G, B〉)∪̃(〈F, A〉∩̃〈H,C〉).

Likewise, we may show that 〈F, A〉∪̃(〈G, B〉∩̃〈H,C〉) = (〈F, A〉∪̃〈G, B〉)∩̃(〈F, A〉∪̃〈H,C〉) is incorrect.

4 Conclusion
In this paper, the notion of the soft rough set theory is proposed. soft rough set theory is a combination

of a rough set theory and a soft set theory. The complement, restricted complement, union, restricted union,
intersection, restricted intersection, ”and” and ”or” operations are defined on the soft rough sets. The basic
properties of the soft rough sets are also presented and discussed. This new extension not only provides
a significant addition to existing theories for handling uncertainties, but also leads to potential areas of
further field research and pertinent applications. Our work in this paper is completely theoretical. As far as
future directions are concerned, these will include the parameterization reduction of the soft rough sets. It
is also desirable to further explore the applications of using the soft rough set approach to solve real world
problems such as decision making, forecasting, and data analysis.
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Abstract

This paper deals with the determination of the rate of convergence to
the unit of some multivariate neural network operators, namely the the
normalized �bell�and �squashing�type operators. This is given through
the multidimensional modulus of continuity of the involved multivariate
function or its partial derivatives of speci�c order that appear in the right-
hand side of the associated multivariate Jackson type inequalitiy.

2010 AMSMathematics Subject Classi�cation: 41A17, 41A25, 41A30,
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1 Introduction

The multivariate Cardaliaguet-Euvrard operators were �rst introduced and stud-
ied thoroughly in [3], where the authors among many other interesting things
proved that these multivariate operators converge uniformly on compacta, to
the unit over continuous and bounded multivariate functions. Our multivariate
normalized �bell�and �squashing�type operators (1) and (16) were motivated
and inspired by the �bell�and �squashing�functions of [3].
The work in [3] is qualitative where the used multivariate bell-shaped func-

tion is general. However, though our work is greatly motivated by [3], it is
quantitative and the used multivariate �bell-shaped�and �squashing�functions
are of compact support.
This paper is the continuation and simpli�cation of [1] and [2], in the mul-

tidimensional case.We produce a set of multivariate inequalities giving close
upper bounds to the errors in approximating the unit operator by the above

1
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multidimensional neural network induced operators. All appearing constants
there are well determined. These are mainly pointwise estimates involving the
�rst multivariate modulus of continuity of the engaged multivariate continuous
function or its partial derivatives of some �xed order.

2 Convergence with rates of multivariate neural
network operators

We need the following (see [3]) de�nitions.

De�nition 1 A function b : R ! R is said to be bell-shaped if b belongs to L1

and its integral is nonzero, if it is nondecreasing on (�1; a) and nonincreasing
on [a;+1), where a belongs to R. In particular b (x) is a nonnegative number
and at a, b takes a global maximum; it is the center of the bell-shaped function.
A bell-shaped function is said to be centered if its center is zero.

De�nition 2 (see [3]) A function b : Rd ! R (d � 1) is said to be a d-
dimensional bell-shaped function if it is integrable and its integral is not zero,
and for all i = 1; :::; d;

t! b (x1; :::; t; :::; xd)

is a centered bell-shaped function, where �!x := (x1; :::; xd) 2 Rd arbitrary.

Example 3 (from [3]) Let b be a centered bell-shaped function over R, then
(x1; :::; xd)! b (x1) :::b (xd) is a d-dimensional bell-shaped function.

Assumption 4 Here b (�!x ) is of compact support B :=
Qd
i=1 [�Ti; Ti], Ti > 0

and it may have jump discontinuities there. Let f : Rd ! R be a continuous
and bounded function or a uniformly continuous function.

In this paper, we study the pointwise convergence with rates over Rd, to the
unit operator, of the �normalized bell�multivariate neural network operators

Mn (f) (
�!x ) :=Pn2

k1=�n2 :::
Pn2

kd=�n2 f
�
k1
n ; :::;

kd
n

�
b
�
n1��

�
x1 � k1

n

�
; :::; n1��

�
xd � kd

n

��Pn2

k1=�n2 :::
Pn2

kd=�n2 b
�
n1��

�
x1 � k1

n

�
; :::; n1��

�
xd � kd

n

�� ;

(1)
where 0 < � < 1 and �!x := (x1; :::; xd) 2 Rd, n 2 N. Clearly Mn is a positive
linear operator.
The terms in the ratio of multiple sums (1) can be nonzero i¤ simultaneously����n1���xi � kin

����� � Ti, all i = 1; :::; d;

2
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i.e.,
��xi � ki

n

�� � Ti
n1�� , all i = 1; :::; d, i¤

nxi � Tin� � ki � nxi + Tin�, all i = 1; :::; d: (2)

To have the order

�n2 � nxi � Tin� � ki � nxi + Tin� � n2; (3)

we need n � Ti + jxij, all i = 1; :::; d. So (3) is true when we take

n � max
i2f1;:::;dg

(Ti + jxij) : (4)

When �!x 2 B in order to have (3) it is enough to assume that n � 2T �, where
T � := maxfT1; :::; Tdg > 0. Consider

eIi := [nxi � Tin�; nxi + Tin�] , i = 1; :::; d; n 2 N.
The length of eIi is 2Tin�. By Proposition 1 of [1], we get that the cardinality
of ki 2 Z that belong to eIi := card (ki) � max (2Tin� � 1; 0), any i 2 f1; :::; dg:
In order to have card (ki) � 1; we need 2Tin� � 1 � 1 i¤ n � T

� 1
�

i , any
i 2 f1; :::; dg:
Therefore, a su¢ cient condition in order to obtain the order (3) along with

the interval eIi to contain at least one integer for all i = 1; :::; d is that
n � max

i2f1;:::;dg

n
Ti + jxij ; T

� 1
�

i

o
: (5)

Clearly as n ! +1 we get that card (ki) ! +1, all i = 1; :::; d. Also notice
that card (ki) equals to the cardinality of integers in [dnxi � Tin�e ; [nxi + Tin�]]
for all i = 1; :::; d: Here, [�] denotes the integral part of the number while. d�e
denotes its ceiling.
From now on, in this article we will assume (5). Furthermore it holds

(Mn (f)) (
�!x ) =

P[nx1+T1n
�]

k1=dnx1�T1n�e :::
P[nxd+Tdn

�]
kd=dnxd�Tdn�e f

�
k1
n ; :::;

kd
n

�
V (�!x ) � (6)

b

�
n1��

�
x1 �

k1
n

�
; :::; n1��

�
xd �

kd
n

��
all �!x := (x1; :::; xd) 2 Rd; where

V (�!x ) :=

[nx1+T1n
�]X

k1=dnx1�T1n�e

:::

[nxd+Tdn
�]X

kd=dnxd�Tdn�e

b

�
n1��

�
x1 �

k1
n

�
; :::; n1��

�
xd �

kd
n

��
:
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Denote by k�k1 the maximum norm on Rd, d � 1. So if
��n1�� �xi � ki

n

��� �
Ti, all i = 1; :::; d, we get that�!x �

�!
k

n


1

� T �

n1��
;

where
�!
k := (k1; :::; kd) :

De�nition 5 Let f : Rd ! R. We call

!1 (f; h) := sup
all �!x ;�!y :

k�!x��!y k1�h

jf (�!x )� f (�!y )j ; (7)

where h > 0, the �rst modulus of continuity of f:

Here is our �rst main result.

Theorem 6 Let �!x 2 Rd; then

j(Mn (f)) (
�!x )� f (�!x )j � !1

�
f;

T �

n1��

�
: (8)

Inequality (8) is attained by constant functions.
Inequality (8) gives Mn (f) (

�!x )! f (�!x ), pointwise with rates, as n! +1,
where �!x 2 Rd, d � 1:

Proof. Next, we estimate

j(Mn (f)) (
�!x )� f (�!x )j (6)=������

[nx1+T1n
�]X

k1=dnx1�T1n�e

:::

[nxd+Tdn
�]X

kd=dnxd�Tdn�e

f

�
k1
n
; :::;

kd
n

�
�

b
�
n1��

�
x1 � k1

n

�
; :::; n1��

�
xd � kd

n

��
V (�!x ) � f (�!x )

����� =���������
Ph

n�!x+�!T n�
i

�!
k =

l
n�!x��!T n�

m �f ��!kn �� f (�!x )� b�n1�� ��!x � �!
k
n

��
V (�!x )

��������� �
h
n�!x+�!T n�

iX
�!
k =

l
n�!x��!T n�

m
���f ��!kn �� f (�!x )���

V (�!x ) b

 
n1��

 
�!x �

�!
k

n

!!
�

4
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h
n�!x+�!T n�

iX
�!
k =

l
n�!x��!T n�

m
!1

�
f;
�!x � �!

k
n


1

�
V (�!x ) b

 
n1��

 
�!x �

�!
k

n

!!
:

That is

j(Mn (f)) (
�!x )� f (�!x )j �

!1

�
f; T�

n1��

�
V (�!x ) �

[nx1+T1n
�]X

k1=dnx1�T1n�e

:::

[nxd+Tdn
�]X

kd=dnxd�Tdn�e

b

�
n1��

�
x1 �

k1
n

�
; :::; n1��

�
xd �

kd
n

��

= !1

�
f;

T �

n1��

�
; (9)

proving the claim.
Our second main result follows.

Theorem 7 Let �!x 2 Rd, f 2 CN
�
Rd
�
, N 2 N, such that all of its partial

derivatives fe� of order N , e� : je�j = N , are uniformly continuous or continuous
are bounded. Then,

j(Mn (f)) (
�!x )� f (�!x )j � (10)8<:

NX
j=1

(T �)
j

j!nj(1��)

0@ dX
i=1

���� @@xi
����
!j
f (�!x )

1A9=;+
(T �)

N
dN

N !nN(1��)
� maxe�:je�j=N!1

�
fe�; T �

n1��

�
:

Inequality (10) is attained by constant functions. Also, (10) gives us with rates
the pointwise convergence of Mn (f)! f over Rd, as n! +1:

Proof. Set

g�!k
n

(t) := f

 
�!x + t

 �!
k

n
��!x

!!
; 0 � t � 1:

Then
g
(j)
�!
k
n

(t) =24 dX
i=1

�
ki
n
� xi

�
@

@xi

!j
f

35�x1 + t�k1
n
� x1

�
; :::; xd + t

�
kd
n
� xd

��
and g�!k

n

(0) = f (�!x ) : By Taylor�s formula, we get

f

�
k1
n
; :::;

kd
n

�
= g�!k

n

(1) =
NX
j=0

g
(j)
�!
k
n

(0)

j!
+RN

 �!
k

n
; 0

!
;

5
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where

RN

 �!
k

n
; 0

!
=

Z 1

0

�Z t1

0

:::

�Z tN�1

0

�
g
(N)
�!
k
n

(tN )� g(N)�!
k
n

(0)

�
dtN

�
:::

�
dt1:

Here we denote by

fe� := @e�f
@xe� ; e� := (�1; :::; �d) , �i 2 Z+;

i = 1; :::; d, such that je�j :=Pd
i=1 �i = N . Thus,

f
��!
k
n

�
b
�
n1��

��!x � �!
k
n

��
V (�!x ) =

NX
j=0

g
(j)
�!
k
n

(0)

j!

b
�
n1��

��!x � �!
k
n

��
V (�!x ) +

b
�
n1��

��!x � �!
k
n

��
V (�!x ) �RN

 �!
k

n
; 0

!
:

Therefore
(Mn (f)) (

�!x )� f (�!x ) =h
n�!x+�!T n�

iX
�!
k =

l
n�!x��!T n�

m
f
��!
k
n

�
V (�!x ) b

 
n1��

 
�!x �

�!
k

n

!!
� f (�!x ) =

NX
j=1

1

j!

0B@
h
n�!x+�!T n�

iX
�!
k =

l
n�!x��!T n�

m g(j)�!kn (0)
b
�
n1��

��!x � �!
k
n

��
V (�!x )

1CA+R�;
where

R� :=

h
n�!x+�!T n�

iX
�!
k =

l
n�!x��!T n�

m
b
�
n1��

��!x � �!
k
n

��
V (�!x ) �RN

 �!
k

n
; 0

!
:

Consequently, we obtain

j(Mn (f)) (
�!x )� f (�!x )j �

NX
j=1

1

j!

0BB@
h
n�!x+�!T n�

iX
�!
k =

l
n�!x��!T n�

m

����g(j)�!k
n

(0)

���� b�n1�� ��!x � �!
k
n

��
V (�!x )

1CCA+ jR�j =: �:
Noyice that ����g(j)�!k

n

(0)

���� � � T �

n1��

�j0@ dX
i=1

���� @@xi
����
!j
f (�!x )

1A
6
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and

� �

8<:
NX
j=1

1

j!

�
T �

n1��

�j0@ dX
i=1

���� @@xi
����
!j
f (�!x )

1A9=;+ jR�j : (11)

That is, by (11), we get

j(Mn (f)) (
�!x )� f (�!x )j �8<:

NX
j=1

(T �)
j

j!nj(1��)

0@ dX
i=1

���� @@xi
����
!j
f (�!x )

1A9=;+ jR�j : (12)

Next, we need to estimate jR�j. For that, we observe (0 � tN � 1)����g(N)�!
k
n

(tN )� g(N)�!
k
n

(0)

���� =������
 

dX
i=1

�
ki
n
� xi

�
@

@xi

!N
f

 
�!x + tN

 �!
k

n
��!x

!!
�

 
dX
i=1

�
ki
n
� xi

�
@

@xi

!N
f (�!x )

������
� (T �)

N
dN

nN(1��)
� maxe�:je�j=N!1

�
fe�; T �

n1��

�
:

Thus,�����RN
 �!
k

n
; 0

!����� �
Z 1

0

�Z t1

0

:::

�Z tN�1

0

����g(N)�!
k
n

(tN )� g(N)�!
k
n

(0)

���� dtN� :::� dt1
� (T �)

N
dN

N !nN(1��)
� maxe�:je�j=N!1

�
fe�; T �

n1��

�
:

Therefore,

jR�j �

h
n�!x+�!T n�

iX
�!
k =

l
n�!x��!T n�

m
b
�
n1��

��!x � �!
k
n

��
V (�!x )

�����RN
 �!
k

n
; 0

!�����
� (T �)

N
dN

N !nN(1��)
� maxe�:je�j=N!1

�
fe�; T �

n1��

�
: (13)

By (12) and (13) we get (10).
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Corollary 8 Here, additionally assume that b is continuous on Rd. Let

� :=
dY
i=1

[�i; i] � Rd, i > 0;

and take
n � max

i2f1;:::;dg

�
Ti + i; T

� 1
�

i

�
:

Consider p � 1. Then,

kMnf � fkp;� � !1
�
f;

T �

n1��

�
2
d
p

dY
i=1


1
p

i ; (14)

attained by constant functions. From (14), we get the Lp convergence of Mnf

to f with rates.

Proof. By (8).

Corollary 9 Same assumptions as in Corollary 8. Then

kMnf � fkp;� �

8<:
NX
j=1

(T �)
j

j!nj(1��)


 

dX
i=1

���� @@xi
����
!j
f


p;�

9=;+
(T �)

N
dN

N !nN(1��)
� maxe�:je�j=N!1

�
fe�; T �

n1��

�
2
d
p

dY
i=1


1
p

i ; (15)

attained by constants. Here, from (15), we get again the Lp convergence of
Mn (f) to f with rates.

Proof. By the use of (10).

3 The multivariate �normalized squashing type
operators� and their convergence to the unit
with rates

We give the following de�nition

De�nition 10 Let the nonnegative function S : Rd ! R, d � 1, S has compact
support B :=

Qd
i=1 [�Ti; Ti], Ti > 0 and is nondecreasing there for each coor-

dinate. S can be continuous only on either
Qd
i=1(�1; Ti] or B and can have

jump discontinuities. We call S the multivariate �squashing function�(see also
[3]).

8
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Example 11 Let bS as above when d = 1. Then,
S (�!x ) := bS (x1) :::bS (xd) , �!x := (x1; :::; xd) 2 Rd,

is a multivariate �squashing function�.

Let f : Rd ! R be either uniformly continuous or continuous and bounded
function.
For �!x 2 Rd; we de�ne the multivariate �normalized squashing type opera-

tor�,
Ln (f) (

�!x ) :=Pn2

k1=�n2 :::
Pn2

kd=�n2 f
�
k1
n ; :::;

kd
n

�
S
�
n1��

�
x1 � k1

n

�
; :::; n1��

�
xd � kd

n

��
W (�!x ) ;

(16)
where 0 < � < 1 and n 2 N :

n � max
i2f1;:::;dg

n
Ti + jxij ; T

� 1
�

i

o
; (17)

and

W (�!x ) :=
n2X

k1=�n2
:::

n2X
kd=�n2

S

�
n1��

�
x1 �

k1
n

�
; :::; n1��

�
xd �

kd
n

��
: (18)

Obviously Ln is a positive linear operator. It is clear that

(Ln (f)) (
�!x ) =

h
n�!x+�!T n�

iX
�!
k =

l
n�!x��!T n�

m
f
��!
k
n

�
� (�!x ) S

 
n1��

 
�!x �

�!
k

n

!!
; (19)

where

� (�!x ) :=

h
n�!x+�!T n�

iX
�!
k =

l
n�!x��!T n�

mS
 
n1��

 
�!x �

�!
k

n

!!
: (20)

Here, we study the pointwise convergence with rates of (Ln (f)) (
�!x ) ! f (�!x ),

as n! +1, �!x 2 Rd:
This is given by the next result.

Theorem 12 Under the above terms and assumptions, we �nd that

j(Ln (f)) (�!x )� f (�!x )j � !1
�
f;

T �

n1��

�
: (21)

Inequality (21) is attained by constant functions.
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Proof. Similar to (8).
We also give

Theorem 13 Let �!x 2 Rd, f 2 CN
�
Rd
�
, N 2 N, such that all of its partial

derivatives fe� of order N , e� : je�j = N , are uniformly continuous or continuous
are bounded. Then,

j(Ln (f)) (�!x )� f (�!x )j � (22)8<:
NX
j=1

(T �)
j

j!nj(1��)

0@ dX
i=1

���� @@xi
����
!j
f (�!x )

1A9=;+
(T �)

N
dN

N !nN(1��)
� maxe�:je�j=N!1

�
fe�; T �

n1��

�
:

Inequality (22) is attained by constant functions. Also, (22) gives us with rates
the pointwise convergence of Ln (f)! f over Rd, as n! +1:

Proof. Similar to (10).

Note 14 We see that
Mn (1) = Ln (1) = 1:
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NEW APPROACH TO THE ANALOGUE OF
LEBESGUE-RADON-NIKODYM THEOREM WITH

RESPECT TO WEIGHTED p-ADIC q-MEASURE ON Zp

JOO-HEE JEONG, JIN-WOO PARK, AND SEOG-HOON RIM

Abstract In this paper we reprove the result in Kim et al 2011 by using Mahler
expansion of uniformly differentiable function over Cp. This result is related with
Frobenius-Euler numbers.

1. Introduction

Let p be a fixed odd prime number. Throughout this paper, the symbols Zp, Qp,
and Cp denote the ring of p-adic integers, the field of p-adic rational numbers, and
the p-adic completion of the algebraic closure of Qp, respectively. Let νp be the

normalized exponential valuation of Cp with |p| = p−νp(p) = 1
p and νp(0) =∞.

When one speaks of q-extension, q can be regarded as an indeterminate, a complex
q ∈ C, or a p-adic number q ∈ Cp. In this paper we assume that q ∈ Cp with
|1− q| < 1 and we use the notations of q-numbers as follows:

[x]q = [x : q] =
1− qx

1− q
, and [x]−q =

1− (−q)x

1 + q
. (1.1)

For any positive integer N , let

a+ pNZp =
{
x ∈ Zp|x ≡ a

(
mod pN

)}
, (1.2)

where a ∈ Z satisfies the condition 0 ≤ a < pN (see [1-8]).
It is known that the fermionic p-adic q-measure on Zp is given by Kim as follows:

µ−q(a+ pNZp) =
(−q)a

[pN ]−q
=

1 + q

1 + qpN
(−q)a, (see [7, 12, 13, 14, 15]). (1.3)

Let C(Zp) be the space of continuous functions on Zp. From (1.3), the fermionic
p-adic q-integral on Zp is defined by Kim as follows:

I−q(f) =

∫
Zp

f(x)dµ−q(x) = lim
N→∞

1

[pN ]−q

pN−1∑
x=0

f(x)(−q)x, (1.4)

f ∈ C(Zp)(see [1, 7, 12, 13, 14, 15]). From (1.4) we have the following integral
equation.

qI−q(f1) + I−q(f) = [2]qf(x) (1.5)

where f1(x) = f(x+ 1).
Let us take f(x) = etx in (1.5), we have

(qet + 1)

∫
Zp

extdµ−q(x) = [2]q. (1.6)

2010 Mathematics Subject Classification : 11B68, 11S80.
Key words and phrases : p-adic q-measure, Lebesgue-Radon-Nikodym .
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Thus ∫
Zp

extdµ−q(x) =
1 + q

qet + 1
=

1 + q−1

et + q−1

=
∞∑
n=0

Hn(−q−1)
tn

n!

(1.7)

where Hn(−q−1) is well-known the nth Frobenius-Euler number(see [3]). Thus∫
Zp

xndµ−q(x) = Hn(−q−1). (1.8)

The relation between Frobenius-Euler numbers Hn(q) and q-Euler numbers ε̃n,q
are given as follows(see, [3])

[2]q
2
ε̃n,q = Hn(−q−1).

We will reprove the analogue of the Lebesgue-Radon-Nikodym theorem with
respect to weighted p-adic q-measure on Zp. We use Mahler expansion of uniformly
differentiable function over Cp, this result is related with Frobenius-Euler numbers.
In special case, the weight qx is 1, we can derive the same result as Kim et al,
2011(see [10]). And if q = 1, we have the same result as Kim, 2012(see [4]).

2. Lebesgue-Radon-Nikodym’s type theorem with respect to
weighted p-adic q-measure on Zp

For any positive integer a and n with a < pn, and f ∈ C(Zp), let us define

µ̃f,−q(a+ pnZp) =

∫
a+pnZp

q−xf(x)dµ−q(x), (2.1)

where the integral is the fermionic p-adic q-integral on Zp.
From (1.3), (1.4) and (2.1), we note that

µ̃f,−q(a+ pnZp) = lim
m→∞

1

[pm+n]−q

pm−1∑
x=0

q−(a+p
nx)f(a+ pnx)(−q)a+p

nx

= lim
m→∞

(−1)a

[pm]−q

pm−n−1∑
x=0

f(a+ pnx)(−q)−p
nxqp

nx(−1)x

=
[2]q

[2]qpn
(−1)a lim

m→∞

1

[pm−n]−qpn

pm−n−1∑
x=0

f(a+ pnx)(−qp
n

)x

=
[2]q

[2]qpn
(−1)a

∫
Zp

q−p
nxf(a+ pnx)dµ−qpn (x).

(2.2)

By (2.2), we get

µ̃f,−q(a+ pnZp) =
[2]q

[2]qpn
(−1)a

∫
Zp

q−p
nxf(a+ pnx)dµ−qpn (x). (2.3)

Therefore, by (2.3), we obtain the following theorem.

1311



NEW APPROACH TO THE ANALOGUE OF LEBESGUE-RADON-NIKODYM THEOREM

Theorem 2.1. For f, g ∈ C(Zp), we have

µ̃αf+βg,−q = αµ̃f,−q + βµ̃g,−q, (2.4)

where α, β are constants.

From (2.2) and (2.4), we note that∣∣µ̃f,−q(a+ pnZp)
∣∣ ≤M‖fq‖∞, (2.5)

where ‖fq‖∞ = supx∈Zp
|q−xf(x)| and M is some positive constant.

Now, we recall the definition of the strongly fermionic p-adic q-measure on Zp.
If µ−q is satisfied the following equation:∣∣µ−q(a+ pnZp)− µ−q(a+ pn+1Zp)

∣∣ ≤ δn,q, (2.6)

where δn,q → 0 and n → ∞ and δn,q is independent of a, then µ−q is called the
weakly fermionic p-adic q-measure on Zp.

If δn,q is replaced by Cp−n ( C is some constant), then µ−q is called strongly
fermionic p-adic q-measure on Zp.

Let P (x) ∈ Cp[x] be an arbitrary polynomial with
∑
aix

i. Then we see that
µP,−q is strongly fermionic p-adic q-measure on Zp. Without a loss of generality, it
is enough to prove the statement for P (x) = xk.

Let a be an integer with 0 ≤ a < pn. Then we get

µ̃P,−q(a+ pnZp) =
[2]q

[2]qpn
(−q)a lim

m→∞

pm−n−1∑
i=0

(a+ ipn)k(−1)iqp
ni, (2.7)

and

(a+ ipn)k =
k∑
l=0

ak−l
(
k

l

)
(ipn)l ≡ ak (mod pn).

By (1.8) and (2.7), we easily get

µ̃P,−q(a+ pnZp) ≡
2[2]q
[2]2
qpn

(−q)aakH0(−qp
n

) (mod pn)

≡ 2[2]q
[2]2
qpn

(−q)aP (a)H0(−qp
n

) (mod pn).

(2.8)

We can rewrite (2.7) as

µ̃p,−q(a+ pnZp)

=
[2]q

[2]qpn
(−q)a lim

m→∞

pm−n−1∑
i=0

{
akqp

ni(−1)i + ak−1(pni)qp
ni(−1)i + · · ·+ (pni)kqp

ni(−1)i
}

=
[2]q

[2]qpn
(−q)a

{
akε̃0,qpn + ak−1pnε̃1,qpn + · · ·+ pnkε̃k,qpn

}
where

ε̃i,q =

∫
Zp

qxxidµi(x)

=
2

[2]q
Hi(−q−1

(see [3]).

1312



JOO-HEE JEONG, JIN-WOO PARK, AND SEOG-HOON RIM

Let x be an arbitrary in Zp with x ≡ xn (mod pn) and x ≡ xn+1 (mod pn+1),
where xn and xn+1 are positive integers such that 0 ≤ xn < pn and 0 ≤ xn+1 <
pn+1. Thus, by (2.8)), we have∣∣µ̃P,−q(a+ pnZp)− µ̃P,−q(a+ pn+1Zp)

∣∣ ≤ Cp−n, (2.9)

where C is a positive some constant and n� 0.
Let

fµ̃P,−q
(a) = lim

n→∞
µ̃P,−q(a+ pnZp). (2.10)

Then, (2.5), (2.7), and (2.8), we get

fµ̃P,−q
(a) =

[2]q
2

(−1)aak

=
[2]q
2

(−1)aP (a).

(2.11)

Since fµ̃P,−q
(x) is continuous on Zp, it follows for all x ∈ Zp

fµ̃P,−q
(x) =

[2]q
2

(−1)xP (x). (2.12)

Let g ∈ C(Zp). By (2.10), (2.11) and (2.12), we get∫
Zp

g(x)dµ̃P,−q(x) = lim
n→∞

pn−1∑
i=0

g(i)µ̃P,−q(i+ pnZp)

=
[2]q
2

lim
n→∞

pn−1∑
i=0

g(i)(−q)iik

=

∫
Zp

q−xg(x)xkdµ−q(x).

(2.13)

Therefore, by (2.13), we obtain the following theorem.

Theorem 2.2. Let P (x) ∈ Cp[x] be an arbitrary polynomial with
∑
aix

i. Then
µ̃P,−q is a strongly fermionic weighted p-adic q-measure on Zp and for all x ∈ Zp

fµ̃P,−q
= (−1)x

[2]q
2
P (x). (2.14)

Furthermore, for any g ∈ C(Zp), we have∫
Zp

g(x)dµ̃P,−q(x) =

∫
Zp

q−xg(x)P (x)dµ−q(x), (2.15)

where the second integral is fermionic p-adic q-integral on Zp.

We adopt the technique of Kim in [4].
Let f(x) =

∑∞
n=0 an

(
x
n

)
be the Mahler expansion of a uniformly differentiable

function of f , where
(
x
n

)
stands for the binomial coefficient. In this case, limn→∞ n|an|p =

0. Let fm(x) =
∑m
i=0 ai

(
x
i

)
∈ Cp[x]. Then

||f − fm|| ≤ sup
n≥m

n|an|p. (2.16)
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Writing f = fm + f − fm, we easily get∣∣µ̃f,−q(a+ pnZp)− µ̃f,−q(a+ pn+1Zp)
∣∣

≤ max{
∣∣µ̃fm,−q(a+ pnZp)− µ̃fm,−q(a+ pn+1Zp)

∣∣,∣∣µ̃f−fm,−q(a+ pnZp)− µ̃f−fm,−q(a+ pn+1Zp)
∣∣}. (2.17)

From Theorem 2.2, we note that∣∣µ̃f−fm,−q(a+ pnZp)
∣∣ ≤ ‖f − fm‖∞ ≤ C1p

−n, (2.18)

where C1 is some positive constant.
For m� 0, we have ‖f‖∞ = ‖fm‖∞.
So, ∣∣µ̃fm,−q(a+ pnZp)− µ̃fm,−q(a+ pn+1Zp)

∣∣ ≤ C2p
−n, (2.19)

where C2 is also some positive constant.
By (2.18) and (2.19), we see that∣∣f(a)− µ̃f,−q(a+ pnZp)

∣∣
≤ max{

∣∣f(a)− fm(a)
∣∣, ∣∣fm(a)− µ̃fm,−q(a+ pnZp)

∣∣, ∣∣µ̃f−fm,−q(a+ pnZp)
∣∣}

≤ max{
∣∣f(a)− fm(a)

∣∣, ∣∣fm(a)− µ̃fm,−q(a+ pnZp)
∣∣, ‖f − fm‖∞}.

(2.20)

If we fix ε > 0 and fix m such that ‖f − fm‖ ≤ ε, then for n� 0, we have∣∣f(a)− µ̃f,−q(a+ pnZp)
∣∣ ≤ ε. (2.21)

Hence, we have

fµf,−q
(a) = lim

n→∞
µ̃f,−q(a+ pnZp) =

[2]q
2

(−1)af(a). (2.22)

Let m be the sufficiently large number such that ‖f − fm‖∞ ≤ p−n.
Then we get

µ̃f,−q(a+ pnZp) = µ̃fm,−q(a+ pnZp) + µ̃f−fm,−q(a+ pnZp)
= µ̃fm,−q(a+ pnZp)

= (−1)a
[2]q

[2]qpn
f(a) (mod pn).

(2.23)

For any g ∈ C(Zp), we have∫
Zp

g(x)dµ̃f,−q(x) =

∫
Zp

q−xf(x)g(x)dµ−q(x). (2.24)

Assume that f is the function from C(Zp) to Lip(Zp). By the definition of µ̃−q,
we easily see that µ̃−q is a strongly p-adic q-measure on Zp and for n� 0∣∣fµ̃−q (a)− µ̃−q(a+ pnZp)

∣∣ ≤ C3p
−n, (2.25)

where C3 is some positive constant.
If µ̃1,−q is associated strongly fermionic weighted p-adic q-measure on Zp, then

we have ∣∣µ̃1,−q(a+ pnZp)− fµ̃−q
(a)
∣∣ ≤ C4p

−n, (2.26)

where n� 0 and C4 is some positive constant.
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From (2.26), we get∣∣µ̃−q(a+ pnZp)− µ̃1,−q(a+ pnZp)
∣∣

≤
∣∣µ̃−q(a+ pnZp)− fµ̃−q (a)

∣∣+
∣∣fµ̃−q (a)− µ̃1,−q(a+ pnZp)

∣∣ ≤ K, (2.27)

where K is some positive constant.
Therefore, µ̃−q − µ̃1,−q is a q-measure on Zp. Hence, we obtain the following

theorem.

Theorem 2.3. Let µ̃−q be a strongly fermionic weighted p-adic q-measure on Zp,
and assume that the fermionic weighted Radon-Nikodym derivative fµ̃−q

on Zp is
continuous function on Zp. Suppose that µ̃1,−q is the strongly fermionic weighted
p-adic q-measure associated to fµ̃−q

. Then there exists a q-measure µ̃2,−q on Zp
such that

µ̃−q = µ̃1,−q + µ̃2,−q. (2.30)
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Generalized Tikhonov regularization method for
large-scale linear inverse problems∗

Di Zhang†, Ting-Zhu Huang‡

School of Mathematical Sciences,

University of Electronic Science and Technology of China,

Chengdu, Sichuan, 611731, P. R. China

Abstract

In this paper we propose a regularization of general Tikhonov type for
large-scale ill-posed problems. We introduce the projection method of iter-
ative bidiagonalization and show that the regularization parameter can be
chosen without prior knowledge of the noise variance by using the method of
balancing principle. An algorithm implicate the efficient numerical realization
of the new choice rule. Numerical experiments for severely ill-show benchmark
inverse problems show that new method is effective compared with other cri-
terions.

Key words: General Tikhonov regularization; Lanczos bidiagonalization;
Iterative method; Balancing princple.

1 Introduction

This paper is concerned with the computation of an approximate solution of linear
inverse problems. We focus on a common degradation model:

Ax = b, (1.1)

where x ∈ Cn, A ∈ Cm×n, in particular A is severely ill-conditioned and may be
singular. An additive zero-mean Gaussian white noise e ∈ Cm of standard deviation
δ0, and we assume that the δ0 is unknown. Thus the right-hand side b is obtained
by

b = b̂+ e, (1.2)
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and assume that the unavailable noise-free system

Ax = b̂. (1.3)

Let x̂ denote the solution of (1.3), e.g., the least-squares solution of minimal Eu-
clidean norm. We would like to determine an approximation of x̂ by computing a
suitable approximate solution of minimal least-squares (LS) problem

min
x∈Cn

∥Ax− b∥, (1.4)

where ∥ · ∥ denotes the Euclidean vector norm. Due to the vector b is very sensitive
to perturbations, the naive least-squares solution xls = A†b (where A†denotes the
pseudoinverse of A) is dominated by inaccuracies, therefore the LS problem generally
does not yield meaningful approximation of x̂. It is well known, the replacement of
the LS problem commonly is referred to as Tikhonov regularization, which is one of
the most popular method. This method amounts to replacing the LS problem (1.3)
by

min
x∈Cn

{∥Ax− b∥2 + µ∥Lx∥2}, (1.5)

where the matrix L ∈ Cl×n is a regularization operator, with l ≤ n, and the scalar
µ > 0 is a regularization parameter. For future reference, let M∗ denote the adjoint
of the matrix M . We note that the normal equations associated with (1.5) are given
by

(A∗A+ µL∗L)x = A∗b, (1.6)

whose solution is xµ = (A∗A + µL∗L)−1A∗b, and the problem is how to select the
parameter µ such that xµ becomes as close as possible to the noise-free solution. We
assume that

N(A) ∩N(L) = {0},
where N(M) denotes the null space of the matrix M , which guarantees the unique-
ness of the minimizer.

The choice of a suitable value of µ is an essential part of Tikhonov regular-
ization. The value of µ determines how sensitive the solution xµ of (1.6) is to the
error e and how close xµ is to the solution x̂. How the discrepancy principle to de-
termine a suitable value of parameter µ for large-scale problems is discussed in [3],
but the discrepancy principle must be employed only when the norm of e is known.
Other choice rules are especially attractive in not requiring any precise knowledge
of the noise level δ, e.g. quasi-optimality criterion [10], generalized cross-validation
(GCV) [9], and L-curve criterion [5, 16]. The latter two have been very popular in
the engineering community since they have been delivered encouraging results for
many practical inverse problems. In the case of GCV, efficient implementation for
Tikhonov regularization requires computing the SVD of the matrix A [17], which
may be computationally impractical for large scale ill-posed problems. Then we take
the very popular L-curve criterion for an instance. Theoretically, various nonconver-
gence results have been established for the L-curve criterion, and the existence of a
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corner is not ensured. In this paper we propose an augmented Tikhonov functional
balancing principle for choosing the regularization parameter, then we combine this
rule with quasi-optimality criterion to form a new parameter selection method.

There are many efficient methods available for the solution of large-scale Tikhonov
minimization problems (1.5) with a general linear regularization operator. When the
matrices A and L are of small to moderate size, one of most popular method to solve
(1.6) is the generalized singular value decomposition (GSVD) method, see, e.g., [1],
[2]. If we are concerned with the situation when A and L are computed their GSVD,
for the mass matrix singular value decomposition (SVD) is likely just a waste. So
looking for a low-cost method is very necessary and meaningful.

A popular approach to determine an approximation of x̂ for large-scale discrete
ill-posed problems is to apply a few steps of an iterative method to (1.5). The new
choice rule applies readily to Tikhonov regularization of a very general type. An it-
erative algorithm is based on Lanczos bidiagonalization and QR factorization, which
is chosen for solve the general type. This makes the method suitable for the solu-
tion of large-scale Tikhonov minimization problems (1.5) with fairly general linear
regularization operators L. The iterative method is easier to calculate regulariza-
tion parameters base on general type. It is very important to determine a reliable
stopping rule that can be partially chosen by combining Krylov subspace projection
method with the convergency of regularization algorithm.

The rest of the paper is organized as follows. Section 2 reviews the iterative
method which transform the large-scale minimization problem into a small size mod-
el. Section 3 discusses how to compute an regularization parameter, proposes an
iterative algorithm for efficient numerical computation and determines a stopping
rules. Section 4 presents numerical results for several benchmark inverse problems
to illustrate relevant features of the proposed method, and a comparison with the
quasi-optimally, L-curve criterion. Concluding remarks can be found in section 5.

2 The Lanczos and QR projection

In this section we describe an approach to regularization of the projected problem
that arises from using Krylov subspace method, give enough details to make the
costs apparent and show that the ideas are easy to program. Many projected prob-
lems have been proposed in [9]. We can solve large-scale, ill-posed inverse problems
efficiently through combination the projected problem like the Lanczos bidiagonal-
ization (LBD) with a direct method like the Tikhonov regularization. Good low-rank
approximations can be directly obtained from the Lanczos bidiagonalization process
which apply to the given matrix without computing any SVD, and this technique
reduces the corresponding residual computational cost. The Lanczos bidiagonal
process is introduced in details by Simon and Zha [12].

We want to evaluate an approximate solution of the Tikhonov minimization
problem (1.5), by computing a partial Lancos bidiagonalization of the matrix A.

Generalized Tikhonov regularization method

1319



DI ZHANG, TING-ZHU HUANG

The methods compute sequences of projections of A onto judiciously chosen low-
dimensional subspaces. We apply k steps of partial Lanczos bidiagonalization to
the matrix A with initial unit vector u1 = b/∥b∥. After the k step iterations, it
has effectively computed three matrices: a lower-bidiagonal matrix Bk ∈ C(k+1)×k,
Uk ≡ [u1, . . . , uk+1] and Vk ≡ [υ1, · · · , υk], with the relationship

b = ∥b∥u1 = Uk+1e1∥b∥, AVk = Uk+1Bk, (2.1)

where ei denotes the ith unit vector, Uk ∈ Cm×(k+1), Vk ∈ Cn×k, columns of Uk and
Vk form an orthogonal basis, Vk spanned the k dimension subspace.

Now suppose we want to solve (1.5), the solution we seek in k dimension sub-
space is the form of x(k) = Vky

(k) for some vector y(k) of length k. The corresponding
residual is given by r(k) = b− Ax(k) and observe that

r(k) = ∥b∥u1 − AVky
(k) = Uk+1(∥b∥e1 −Bky

(k)).

Since Uk+1 has orthogonal columns, computed the solution of the Tikhonov mini-
mization problem (1.5) that we wish to solve

min
y(k)∈Cn

{∥Bky
(k) − ∥b∥e1∥2 + µ∥LVky

(k)∥2}. (2.2)

In this minimization problem, though the matrix L is sparse matrix and the effort
of evaluating the matrix-vector products is much smaller than matrix A and AT , we
still need to calculate the matrix-vector products LVk. It is convenient to use the
QR factorization of LVk, introduce the factorizations

LVk = QkRk, (2.3)

where Qk ∈ Cp×k has orthogonal columns and Rk ∈ Ck×k is upper triangular. In
applications of interest k ≪ l, the factorization (2.3) can be computed quite rapidly.
Through the projection transformation, and unitary invariance of the norm, the
data fitting term and the penalty term have been changed. So the problem (2.2)
will be translated into the reduced minimization problem

min
y(k)∈Cn

{∥Bky
(k) − ∥b∥e1∥2 + µ∥Rky

(k)∥2}, (2.4)

with the associated normal equations

(BT
k Bk + µRT

kRk)y
(k) = RT

k ∥b∥e1. (2.5)

Therefore, we store [Bk, µRk]
T and use it when solving the least squares prob-

lems. Since typically the k−dimension subspace is quite small, this Tikhovov min-
imization problem can be solved efficiently by (2.5), also this method makes the
evaluation of the parameter selection method cheaper than the initial evaluation.
When the number of bidiagonalization steps k is increasing, the QR factorization
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of LVk has to be updated, because of the k is quite small, the QR factorizations
can be updated at negligible cost. It is worth noting that only the upper trian-
gular matrices Rk, k = 1, 2, · · · , are required, but not the associate matrices Qk

with orthogonal columns. After a suitable parameter values is calculated, the third
part will introduce parameter selection method, then we choose a method working
out the minimum solution y(k) of (2.4) which is easy to solve, the corresponding
approximate solution x(k) of (1.5) is given by

x(k) = Vky
(k), and ∥x(k)∥ = ∥y(k)∥.

Since the projection process only used k steps of the Lanczos bidiagonalization,
we must choose an integer k properly. It is worth noting that the integer k is
assumed to be small, so that the approximate solution y

(k)
µ for µ-values of interest

provide meaningful approximations of the corresponding solution xu of (1.6). There
may be many approaches for selecting a suitable number of bidiagonalization steps.
In generally, it was choose at will, but in this paper, we set the smallest integer for
which

min
k

{σk < ϵσ1, 30}. (2.6)

A typical value of ϵ is ϵ =
√
machine precision, where σk are the singular values of

Bk given by its SVD.

3 Determining the regularization parameter

3.1 Parameter selection method

Firstly, we give the definition of the value function F (µ) as follow

F (µ) = inf
x
{∥Ax− b∥2 + µ∥Lx∥2}. (3.1)

The value function F (µ) is monotonically increasing and concave. Thus it is contin-
uous everywhere and differentiable except perhaps on a countable set (see [7] for the
theoretical studies details). In this section we discuss the computation of µ based

on the balancing principle so that the solution of (2.4) meet yk = y
(µ)
k .

We introduce the augmented Tikhonov (a-Tikh) functional J (x, λ, τ) which is
derived from the hierarchical Bayesian inference [4]. The functional is defined by

J (x, λ, τ) = τ∥Ax− b∥2 + λ∥Lx∥2 + β0λ− α0 lnλ+ β1τ − α1 ln τ, (3.2)

where α0 ≈ m
′

2
(m′ = rank(L)), α1 ≈ n

2
, and the parameter pairs (α0, β0), (α1, β1)

are related to shape parameters of Gamma distributions for the scalar unknowns λ
and τ , respectively, which afford a priori statistical knowledge of the fidelity and the
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penalty [4, 13]. Let µ = λ/τ . Then the necessary optimality condition of the a-Tikh
functional (3.2) is given by⎧⎨⎩

xδ
µ = argminx{∥Ax− b∥2 + µ∥Lx∥2},

λ∗ = α0

∥Lxδ
µ∥2+β0

,

τ ∗ = α1

∥Axδ
µ−b∥2+β1

.

Hence the regularization parameter µ∗ satisfies

α1

α0

µ∗(∥Lxδ
µ∥2 + β0) = ∥Axδ

µ − b∥2 + β1. (3.3)

The fix-point method can be regarded as a realization of a parameter choice rule
which was devised in [8]. We assume F (µ) is positive for all µ > 0, which holds for
all commonly models. A rule finds a µ > 0 by minimizing

Φγ(µ) =
(F (µ) + µβ0 + β1)

1+γ

µ
, (3.4)

for proper γ > 0, i.e. γ = α1

α0
. The rule Φ(µ) follows from the equation (3.3) and

the derivation method of Φ(µ) is similar to the rule in [7]. If µ∗ > 0 is a local
minimizer of Φ(µ), then µ∗ = λ∗/τ ∗ holds for all minimizers xµ of (1.5), when F is
differentiable at µ.

Next we use a-Tikh functional based on the iterative decompose method as
described in the previous section. Respectively, yδµ, λ

∗, τ ∗, were expressed as follows,⎧⎨⎩
yδµ = argminy{∥Bky − ∥b∥e1∥2 + µ∥Rky∥2},
λ∗ = α0

∥Rkyδµ∥2+β0
,

τ ∗ = α1

∥Bkyδµ−∥b∥e1∥2+β1
.

(3.5)

Equation (3.5) and the numerical experiments in [4] indicate that the quantity

δ2 = τ ∗−1 = (∥Bky
(k) − ∥b∥e1∥2 + β1)α

−1
1 ,

which estimates the accurate noise level δ20. However, for α0 ∼ δ−d
0 with 0 < d < 2,

that is to say α0 ∼ τ d, 0 < d < 1, α0 is positive and it would been required by the
convergence. In this where α0 is replaced by α0τ

d, we rewrite the estimate of λ∗:

λ∗ =
α0τ

∗d

∥Rpyδµ∥2 + β0

. (3.6)

which help the algorithm as follows faster convergence to the optimal solution.
Now, we consider the following alternating iterative algorithm, through com-

bining the equation (3.5) with Tikhonov’s quasi-optimality principle to solve the the
projected problem (2.4). The algorithm constructs a finite parameter sequence of
{µi}, which convergence to the minimizer of criterion Φγ.

Algorithm 1. Alternating iterative algorithm
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1. Choose µ0, kmax, the parameter pairs (α0, α1) and (β0, β1).

2. Apply k LBD steps to A with starting vector b and form the matrix Bp.

3. Apply QR decomposition to LVk and form the matrix Rp.

4. For i = 0, 1, · · · , Imax.

5. Solve for yi+1 by the Tikhonov regularization method

yi+1 ∈ argmin
y

{∥Bky − ∥b∥e1∥2 + µk∥Rky∥2}.

Set xi+1 = Vkyi+1.

6. Update the parameter λi+1 and τi+1 by

τi+1 =
α1

∥Bpyi+1 − ∥b∥e1∥2 + β1

, λi+1 =
α0τ

d
i+1

∥Rpyi+1∥2 + β0

,

set µi+1 = λi+1τ
−1
i+1,

7. Check the stopping criterion, until

i = argmin
i

∥xi+1 − xi∥,

do µ∗ = µi.

8. Compute the regularized solution xk
µ∗ .

For large-scale problems, we use a projection method to change it into a small-
or medium-scale problem. We would point out that we do not specify the solver for
the regularization problem in step 5 deliberately. Therefore, the linear system may
be solved directly, or solved by other methods, i.e. the conjugate gradient method.
Our numerical experiments indicate that an accurate approximate solution suffices.

3.2 Stopping criteria analysis

The stopping rules are easy to find. We could choose the criteria base on the
changes or convergence of either the regularization parameter µ or the solution x.
We can stop the iteration when |µi − µ0| < ϵ1|µ0|, where ϵ1 is a small tolerance
parameter. We note that because the µ0 is often random. A disadvantage of the
stopping criterion is that the approximate solution have the greater error relative
to the true solution. To circumvent this trouble, we use another stopping criterion.
The following lemma which provides a surprising and important observation on the
monotonicity of the sequence µi+1 = λi+1τ

−1
i+1 which are generated by alternating

iterative algorithm. The monotonicity is the key about the demonstration of the
convergence of the total algorithm.
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Lemma 3.1. For any initial guess µ0, the sequence xi is generated by the iterative
algorithm and converges to a critical point x∗ of (3.1). Moreover, the sequence µk

is monotonically convergent, showing that there exists some µ∗, such that

lim
i→∞

µi = µ∗, (3.7)

from which it follows that
lim
i→∞

xδ
i = x∗. (3.8)

Proof. See [15 Lemma 4.1].

For each µi the corresponding regularized solution is now denoted by yδi , then
xδ
i = Vky

δ
i . For a parameter choice algorithm, we have to choose a certain i as the

stopping criteria. This is done by the quasi-optimality principle, the discredited
version we use in this paper could be found in [6]:

Definition 3.1 (quasi-optimality). For xδ
i and µi as in (3.5) the regularization

parameter µi∗ defined by the quasi-optimality principle is obtained as

i∗ = argmin
i≥0

∥xδ
i − xδ

i+1∥. (3.9)

Notice that because the sequence xi is convergent, then ∥xi − xi+1∥ is mono-
tone decreasing, especially in section 4.1 some examples illustrate the convergence
property of ∥xi − xi+1∥ and show that the sequence µi increase very quickly. So the
solution xi∗ approximate equals the solution x∗. The solution xi∗ is the iterative
optimal solutions for any given a max iterations. In other words, it is stopped if the
relative change of the iterates solution (x) at the low point. However this method
needs calculate the all iteration solutions, so in order to reduce iterative time, we
could set a critical value as the minimum jif maximum iterations is very large, or
we set a small maximum iterations.

4 Numerical results

In this section, we illustrate the efficiency of the Algorithms 1 when applied pa-
rameter selection method to typical large-scale linear ill-posed problems. For this
purpose the numerical results can be divided into two parts, Section 4.1 we choose
three benchmark linear inverse problems, e.g. baart, shaw, gravity, which are consid-
ered as the test problems, from Hansen’s package Regularization Tools [14]. Section
4.2 we consider the restoration problem of a grayscale image as the test problem.

In each case we generate triples A, x̂, b̂, so that Ax̂ = b̂. The size of A is
taken to be 256 × 256 and then simulated distinct noisy vector b, b = b̂+ e, where
e was generated by the Matlab randn function with the seed value set to zero. The
vector e is scaled to yield a specified noise level ξ = ∥e∥/∥b̂∥. The noise level ξ,
i.e., ξ = 5 × 10−3, is considered in section 4.1. In algorithm 1, the initial guess µ0
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is taken to be 1 × 10−6, and we get access to the i∗ when ∥xδ
i − xδ

i+1∥ falls below
10−4∥xδ

i+1∥. The parameter d is set to d = 1
4
. The choice of the parameter pairs

(α0, α1), (β0, β1) are based on the value of k. In the numerical examples, for the
regularization of small dimension inverse problem, we choice α0 = k

2
and α1 = k

2
.

The tridiagonal regularization operator L is a scaled approximation of the second
derivative operator.

The relative error (ReErr) is used to measure the quality of the regularized
solutions of different algorithms. It is defined as follows:

ReErr =
∥x− x̂∥
∥x̂∥

.

The accuracy of the solution xδ
µ is measured by ReERR. In follows, δ and δat stand

for the norms of true noise level and estimated noise level by Algorithm 1.

4.1 Test problems from Hansen’s package

Comparisons are made for the regularized solutions of the Algorithm 1 chosen by
different parameter selection method. In this example, numerical results are giv-
en to compare the quasi-optimal (q-o) method, L-curve (L-c) method against the
optimal (opt) choice of the regularization parameter on several test problems. To
illustrate the performance of algorithm on the above test problems, we run 10 re-
alizations and then compute average values of regularization parameters, average
relative errors. The optimal regularized solution produces the minimum relative
error, the parameter values are are summarized in parentheses, and comparison of
ReErr for three parameter selection methods on the projection problem in Table 1.
First we observe that the estimated residual noise δat agree very well with the exact

Table 1: Numerical results for three problems from Hansen’s MATLAB package.

(δ) δat (µat) ReErr (L-c) ReErr (q-o) ReErr (opt) ReErr
baart (1.45e-2) (6.98e-3) (2.64) (6.16e-5) (1.13e-6)

1.56e-2 1.65e-1 4.49e-1 1.79e-1 1.05e-1
shaw (1.86e-1) (6.59e-4) (4.28e-6) (3.36e-3) (2.34e-4)

1.84e-1 1.47e-1 3.37e-1 1.68e-1 1.49e-1
gravity (3.74e-1) (3.10e-3) (3.36e-3) (1.00e-10) (3.36e-3)

3.71e-1 1.49e-1 1.50e-1 7.1534 1.50e-1

one δ. Second observation is that the balancing principle gives an error fairly close
to the optimal one. This illustrates clearly the benefit of using iterative method for
large-scale inverse problem. The results of the comparison for three problems are
displayed in Fig.1- Fig.3, where the figures display the reconstructed solutions and
exact solution. In each of figures the third line show the sequence {µi} is monotonic
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Figure 1: General Tikhonov for Baart problem. The first four graphs show the approx-
imate solution with three parameter selected methods and the true solution(solid line).
Bottom: the convergence analysis of the parameter and the norm of difference of neigh-
bouring approximate solution.
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Figure 2: General Tikhonov for Shaw problem. The first four graphs show the approximate
solution (red dashed line) with three parameter selected methods and the true solution (solid
line). Bottom: the convergence analysis of the parameter and the norm of difference of
adjacent to approximate solution.
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Figure 3: General Tikhonov for Gravity problem. The first four graphs show the ap-
proximate solution (red dashed line) with three parameter selected methods and the true
figurename solution (solid line). Bottom: the convergence analysis of the parameter and
the norm of difference of adjacent to approximate solution.

Generalized Tikhonov regularization method

1327



DI ZHANG, TING-ZHU HUANG

increasing and the relative change of the regularization solutions which are solved
by the Algorithm 1 is monotone decreasing. Other quantities are shown in the third
line, the sequences {µi} are convergent and the convergent rates are very quickly,
such as in Fig.1, at about k = 3 the µi begin to flat. The stopping criterion for
Algorithm 1 may be based on this quantities, however we choose some combination
of the quantities as the stopping criteria. Combined the Fig.1 and Fig.2 with Table
1, the ReErr of the computed approximate solutions with L-curve parameter choice
method, are larger than the other two methods. In Fig.3 the computed approxi-
mate solutions with quasi-optimal method is deviating from the optimal solution,
therefore the ReErr is the largest of three princples. So we summarize that in three
problems the solutions for our method is more close to the true solution.

4.2 Example for grayscale

To test our algorithm on a large-scale problem we consider a denoising problem of
a greyscale image cameraman that is represented by an array of 256 × 256 pixels.
The pixels are stored columnwise in a vector in R65536. A block Toeplitz with
Toephlitz blocks blurring matrix A ∈ R65536×65536 is determined with Gaussian
point spread function and the width sigma= 4.0. Three different relative noise
values are generated with ξ = 5× 10−3, 5× 10−3, 5× 10−3. As we can see from the
figures, the computed solutions yield images that resemble the true image relatively
well. The stopping criterion is important which determined the time cost. The
conclusion in this case is that the alternating iterations i of the Algorithm 1 is
very small. By comparing with L-curve, quasi-optimal criterion when they achieved
the optimal solutions when the ReErr are identical, respectively the iterations are
i = 3, i = 2, i = 2 for different perturbation levels. However the quasi-optimal and
L-curve have to calculate all approximate solutions, and then choice the best one.
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ture image blurring and noisy image  l−curve  

 quasi−optimal optimal a−Tikh image restoration

Figure 4: General Tikhonov for greyscale image. Image restoration with relative noise
level 5× 10−2.

ture image blurring and noisy image  l−curve  

 quasi−optimal optimal a−Tikh image restoration

Figure 5: General Tikhonov for greyscale image. Image restoration with relative noise
level 5× 10−3.

Generalized Tikhonov regularization method

1329



DI ZHANG, TING-ZHU HUANG

ture image blurring and noisy image  l−curve  

 quasi−optimal optimal a−Tikh image restoration

Figure 6: General Tikhonov for greyscale image. Image restoration with relative noise
level 5× 10−4.

5 Conclusion

In this work we have presented a method for solving the general Tikhonov regulariza-
tion on large-scale ill-posed problems. We have shown that determining regularizing
parameters based on the k-dimensional subspace, our selection method is convenient.
The examples indicate that the combination of a-Tikh parameter choice method and
the iterative projection method is perfected. And our computing method involves
less computational expense for solving large-scale ill-posed problems.
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Abstract. We consider the Cauchy problem for stochastic Zakharov-Kuznetsov equation forced
by a random term of additive white noise type. We obtain a local existence and uniqueness result
for the solution of this problem. Our proposed technique is based on employing Banach contrac-
tion principle method, fixed point theory, Fourier analysis and some basic inequalities. We also get
global existence of solution in the function space Zs(T ) . Detailed computations and implemented
examples are explicitly provided.

Keywords: Stochastic; Well-Posedness; Zakharov-Kuznetsov.

1 Introduction

This paper is devoted to establish local and global well-posedness to stochastic Zakharov-Kuznetsov
equation (SZK) forced by a random term of additive white noise type i.e.,

{
du+ (u∂u∂x +

∂3u
∂x3
+ ∂3u
∂x∂y2

)dt = ΦdW, (x, y, t) ∈ R2 × R+

u(x, y, 0) = u0(x, y) for all (x, y) ∈ R2.
(1.1)

Where u is a stochastic process on R2 × R+ , W (t) is a cylindrical Wiener process on L2(R2)
and Φ is a linear bounded operator not depend on u i.e., the noise ΦdW is additive. The
notion of well-posedness will be the usual one in the context of nonlinear dispersive equations,
that is, it includes existence, uniqueness, persistence property, and continuous dependence upon
the data. Equation (1.1) can be considered as a 2-dimensional generalization of the stochastic
KdV equation and arises when modelling the propagation of weakly nonlinear ion-acoustic waves
in noisy plasma[1,2,3]. Recently, many researchers pay more attention to study of random waves,
which are important subjects of stochastic partial differential equation (SPDE). Wadati [4] first
answered the interesting question, How does external noise affect the motion of solitons? and
studied the diffusion of soliton of the KdV equation under Gaussian noise, which satisfies a diffusion
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equation in transformed coordinates. Wadati and Akutsu also studied the behaviors of solitons
under the Gaussian white noise of the stochastic KdV equations with and without damping [5].
In addition, a nonlinear partial differential equation which describes wave propagations in random
media was presented by Wadati [4]. Debussche and Printems [6,7], de Bouard and Debussche
[8,9], Konotop and Vazquez [10], Printems [11], Ghany [12] and others also researched stochastic
KdV-type equations. By local well-posedness (LWP) of a stochastic PDE we mean pathwise LWP
almost surely. That is, for almost every fixed ω ∈ Ω , the corresponding PDE is LWP. Similarly,
global well-posedness (GWP) of a stochastic PDE will be defined as pathwise GWP almost surely.
Linares and Pastor [13] studied the initial value problems (IVPs) associated with both the ZK and
modified ZK equations. They improved the results in [14,15] by showing that both IVPs are locally
well-posed for initial data in Hs(R2) , s > 0.75 . Moreover, by using the techniques introduced in
Birnir at al. [16,17], they proved that the IVP associated with the modified ZK equation is ill-posed,
in the sense that the flow-map data-solution is not uniformly continuous, for data in Hs(R2) ,
s 6 0 . It should be noted that the method employed in [13,14] to show local well-posedness,
was the one developed by Kenig, Ponce, and Vega [18] (when dealing with the generalized KdV
equation), which combines smoothing effects, Strichartz-type estimates, and a maximal function
estimate together with the Banach contraction principle. This paper is organized as follows: In
Section 2, we introduce some notations and some function spaces along with their embeddings and
state deterministic linear estimates from [19,20]. In Section 3, we state two Theorems, as main
result of our paper, that guarantees and establishes local and global well-posedness for stochastic
Zakharov-Kuznetsov equation forced by a random term of additive white noise type. In Section 4,
we prove our main results by establishing the type nonlinear estimate on the second iteration for
the integral formulation of the mild solution of equation (1.1).

2 Notations and Preliminaries

Suppose that S(Rd) and S
′
(Rd) denote the Schwartz space and its completion with respect to

the family of seminorms

‖f‖k,α := sup
x∈Rd
{(1 + ‖x‖kRd)|∂

αf(x)|}, α ∈ Nd0, k ∈ N0.

For a Banach space X and s ∈ R we denote by Hs(Rd;X) the space of all functions f ∈
S
′
(Rd;X) such that

‖f‖Hs(Rd;X) :=

(∫

Rd
(1 + ‖ζ‖2Rd)

s/2‖f̂(ζ)‖2Xdζ

)1/2
<∞

where .̂ denote the Fourier transform. In general case equation (1.1) can be considered on a
stochastic basis (Ω,F ,P; {Ft}t>0; {W (t)}t>0) , where (Ω,F ,P) a probability space, {Ft}t>0 a
filtration on Ω and {W (t)}t>0 a cylindrical Wiener process adapted to {Ft}t>0 . The mild
solution of equation (1.1) is given in the form

u(t) = U(t)u0 +

∫ t

0
U(t− s)uuxds+

∫ t

0
U(t− s)ΦdW (s) (2.1)
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where {U(t)}t>0 is the unitary group of operators generated by the deterministic Zakharov-
Kuznetsov equation, more precisely the solution of the linear equation

vt + vxxx + vxyy = 0, (x, y, t) ∈ R
2 × R+ (2.2)

with v(x, y, 0) = v0(x, y) for all (x, y) ∈ R2 is given by

v(x, y, t) = Û(t)v0(ζ, η) = e
itΦv̂0(ζ, η) (2.3)

where the phase function Φ is given by Φ(ζ, η) = ζ(ζ2 + η) . The solution of the linear equation

duL + (
∂3uL
∂x3

+
∂3uL
∂x∂y2

)dt = ΦdW (2.4)

with uL(x, y, 0) = 0 for all (x, y) ∈ R2 is given by

uL =

∫ t

0
U(t− s)ΦdW (s) (2.5)

Suppose that L0,s2 := L02(L
2(Rd);Hs(Rd)) denote the space of Hilbert-Schmidt operators from

L2(Rd) into Hs(Rd) . Its norm is given by

‖Φ‖
L
0,s
2
:=
∑

i>1

‖Φei‖
2
Hs(Rd)

where {ei}i>1 is any orthonormal basis of L2(Rd) . For simplicity we will use the following shorter
notations: Lp([0, T ];Lq(Rd)) := Lpt (L

q
x) and Lq(Rd;Lp([0, T ])) := L

q
x(L

p
t ) . For a fixed ω ∈ Ω we

define

Zs(T ) = {u ∈ L
2
ω(Ct(H

s
x,y)) ∩ L

2
ω(L

2
x,y(L

∞
t )), D

s∂xu ∈ L
2
ω(L

∞
x,y(L

2
t )), ∂xu ∈ L

2
ω(L

4
t (L

∞
x,y))} (2.6)

where the Riesz’s operator Ds [21] is defined by

D̂su(ζ, η) = (ζ2 + η2)sû(ζ, η), s ∈ R (2.7)

3 Main Results

In this section we give the precise statement of our results, more precisely, we give two theorems
below. Theorem 1 gives the sufficient conditions for obtaining local will posedness of equation (1.1).
Theorem 2 concerning the linearized stochastic Zakharov-Kuznetsov equation (2.4). As usual in
the context of nonlinear estimation, Theorem 2 is essential for proving Theorem 1. Eventually,
one can find that the results of Theorem 1 are true for arbitrary large T , this gives the global
well-posedness of equation (1.1).

Theorem 1.
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Assume that u0 ∈ L2ω(H
1
x,y) ∩ L

4
ω(L

2
x,y) is F0− measurable and Φ ∈ L

0,1
2 , then there ex-

ists a unique solution of equation (1.1) in Zs(T0) almost surely for any T0 and any s with
0.75 < s < 1.

By virtue the arguments of fixed point theory and the following theorem we can easily prove
the above theorem.

Theorem 2.
Assume that Φ ∈ L0,s̄2 for some s̄ > 0.75 then uL is almost surely in Zs(T ) for any T > 0 and
any s such that 0.75 < s < s̄ . Moreover there exists a constant C(s, s̄, T ) such that

E[‖uL‖
2
Zs(T )

] 6 C(s, s̄, T )‖Φ‖2
L
0,s̄
2

(3.1)

4 Computations and Proofs

The proof of Theorem 1 will require four key Propositions concerning the above mentioned spaces.
In this section we present these Propositions.

Proposition 3.
For any s 6 s̄ we have uL ∈ L2ω(L

∞
t (H

s
x,y) and

E[ sup
06t6T

‖uL‖
2
Hsx,y
] 6 C(T )‖Φ‖2

L
0,s
2

(4.1)

Proof. We use Itô formula on the functional ‖.‖2Hsx,y [16] and deduce

‖uL‖
2
Hsx,y
= 2

∫ t

0
(JsuL, JsΦdW (s))L2x,y +

∫ t

0
Tr(J2sΦΦ

∗)ds

where the Bessel’s operator Js is defined by

Ĵsu(ζ, η) = (1 + ζ
2 + η2)s/2û(ζ, η) (4.2)

and has the property [21]

‖Js.‖L2x,y = ‖.‖
2
Hsx,y

(4.3)

Now, we write Tr(J2sΦΦ
∗) = ‖Φ‖

L
0,s
2
and hence applying a martingale inequality[20]

sup
t

∫ t

0
(JsuL, JsΦdW (s))L2x,y 6 3E[(

∫ t

0
‖Φ∗uL‖

2
Hsx,y
ds)0.5]

6
1

4
E[sup

t
‖uL‖

2
Hsx,y
] + C(T )‖Φ‖

L
0,s
2

(4.4)

implies the required result.
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The proof of the above proposition implies directly the following

Corollary.

uL ∈ L
2
ω(Ct(H

s
x,y)) (4.5)

The above Proposition and its corollary give a draws attention regularity property of the solution
uL of the linear problem, that is, they decide that uL is a square integrable random variable with
values in L∞t (H

s
x,y) especially in Ct(H

s
x,y) for any s 6 s̄ .

Now, we will give a simple priori estimate of uL by giving the following result:

Proposition 4.
uL ∈ L2ω(L

2
x,y(L

∞
t ) and

E[
∫

R2
sup
06t6T

|uL|
2dxdy] 6 C(s̄, T )‖Φ‖2

L
0,s̄
2

(4.6)

Proof. Let {ei}i>1 be an orthonormal basis for L2(R2) and {hk}k>1 a partition of unity on
R2+ such that:
a) hk(ζ, η) = h1(

ζ
2k−1
, η
2k−1), (ζ, η) ∈ R

2
+, k > 1;

b) supphk ⊆ [2k−1, 2k+1]2, k > 1;
c) supph0 ⊆ [−1, 1]2.
We also consider h̃k ∈ C∞(R2) with supphk ⊆ [2k−2, 2k+2] such that h̃k > 0 and h̃k = 1 on
supphk . For k ∈ N , we define the group {Uk(t)}t∈R by

Ûk(t)f(ζ, η) = hk(|ζ|, |η|)Û(t)f(ζ, η) = e
itφhk(|ζ|, |η|)f̂(ζ, η) (4.7)

and the operator Φk by

Φ̂kei(ζ, η) = h̃k(|ζ|, |η|)Φ̂ei(ζ, η) (4.8)

Since, Uk(t)Φ = Uk(t)Φk implies U(t)Φ =
∑
k>1 Uk(t)Φk . Then, by using Minkowski’s integral

inequality we will get

E[
∫

R2
sup
t
|
∫ t

0
U(t− s)ΦdW (s)|2dxdy]0.5 6

∑

k>1

E[
∫

R2
sup
t
|
∫ t

0
Uk(t− s)ΦkdW (s)|

2dxdy]0.5

6 C(T, s̄)
∑

k>1

2sk‖Φk‖L0,02
6 C(T, s̄)(

∑

k>1

22(s−s̄)k)0.5(
∑

k>1

22s̄k‖Φk‖
2
L
0,0
2

)0.5 6 C(T, s, s̄)‖Φ‖
L
0,s̄
2

where, 0.75 < s < s̄ .

Remark.
From [16] We have used

E[
∫

R2
sup
t
|
∫ t

0
Uk(t− s)ΦkdW (s)|

2dxdy] 6 C(T, s̄)22sk‖Φk‖
2
L
0,0
2
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and for 0.75 < s < s̄ we were used

∑

k

22s̄k‖Φk‖
2
L
0,0
2

=
∑

k,i

22s̄k‖Φkei‖
2
Lx,y

and

∑

k

22s̄k‖ΦkuL‖
2
Lx,y 6 C(s̄)‖ΦuL‖

2
H s̄x,y

Its well known that, the Riesz’s operator Ds is a powerful tool for checking the regularity of the
solutions of nonlinear partial differential equations. Proposition 5 will clarify the success of the
solution uL under this checking.

Proposition 5.
Suppose 0 < δ < inf{s̄, 2} , then Ds̄−δ∂xuL ∈ L2ω((L

2
x,y(L

2
t )) and

E[ sup
x,y∈R

∫ T

0
|Ds̄−δ∂xuL|

2dt] 6 C(δ, T )‖Φ‖2
L
0,s̄
2

(4.9)

Proof. Let q = 4
δ . By virtue of the stochastic integral properties[20]:

E|
∫ t

0
D1+s̄U(t− τ)ΦdW (τ)|2dt 6

∫ t

0

∑

i>1

|D1+s̄U(t− τ)Φei|
2dτ

So, we can easily find that:

‖D1+s̄uL‖
q

L∞x,y(L
q
ω(L

2
t ))
= sup
x,y∈R

E[(
∫ T

0
|
∫ t

0
D1+s̄U(t− τ)ΦdW (τ)|2dt)q/2]

6 C sup
x,y∈R

∫ T

0
E[|
∫ t

0
D1+s̄U(t− τ)ΦdW (τ)|2]q/2dt

6 C sup
x,y∈R

∫ T

0
(

∫ t

0

∑

i>1

|D1+s̄U(t− τ)Φei|
2dτ)q/2dt

6 C
∫ T

0
(
∑

i>1

sup
x,y∈R

∫ t

0
|D1+s̄U(t− τ)Φei|

2dτ)q/2dt

As pointed in [21, Lemma 2.1], we have

sup
x,y∈R

∫ t

0
|D1+s̄U(t− τ)Φei|

2dτ 6 C‖Ds̄Φei‖
2
L2x,y
6 C‖Φei‖

2
H s̄x,y

(4.10)

hence

‖D1+s̄uL‖
q

L∞x,y(L
q
ω(L

2
t ))
6 C

∫ T

0
(
∑

i>1

‖Φei‖H s̄x,y)
q/2dt 6 C(T )‖Φ‖

L
0,s̄
2

(4.11)
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Similarly we can derive

‖Ds̄uL‖
q

L2x,y(L
q
ω(L

2
t ))
6 C‖Φ‖2

L
0,s̄
2

(4.12)

Inequality (4.11) and [9, proposition A.1] implies

D1+s̄−
δ
2uL ∈ L

q
x,y(L

q
ω(L

2
t )) (4.13)

and

‖D1+s̄−
δ
2uL‖Lqω(Lqx,y(L2t )) = ‖D

1+s̄− δ
2uL‖Lqx,y(Lqω(L2t )) 6 C‖Φ‖

2
L
0,s̄
2

(4.14)

Also we have

‖uL‖
q

L
q
ω(L

q
x,y(L

2
t ))
=

∫

R2
E[(
∫ T

0
|
∫ t

0
U(t− τ)ΦdW (τ)|2dt)q/2]dxdy

6 C
∫

R2

∫ T

0
E(|
∫ t

0
U(t− τ)ΦdW (τ)|2)q/2dtdxdy

6 C
∫

R2

∫ T

0
(

∫ t

0

∑

i>1

|U(t− τ)Φei|
2dτ)q/2dtdxdy

So,

‖uL‖Lqω(Lqx,y(L2t )) 6 C‖Φ‖L0,s̄2
(4.15)

Hence,

‖uL‖
q

L
q
ω(L

q
x,y(L

2
t ))
6 C

∫

R2
(

∫ T

0

∑

i>1

|U(t)Φei|
2dτ)q/2dxdy

Applying Minkowski’s intgral inequality gives,

‖uL‖
2
L
q
ω(L

q
x,y(L

2
t ))
6 C

∑

i>1

(

∫

R2
(

∫ T

0
|U(t)Φei|

2dτ)q/2dxdy)q/2

So,

‖uL‖Lqω(Lqx,y(L2t )) 6 C
∑

i>1

‖U(t)Φei‖
2
L∞t (L

q
x,y)
6 C‖Φ‖2

L
0,s̄
2

(4.16)

Obviously, equations (4.14) and (4.15) implies that D1+s̄−δuL ∈ L
q
ω(L∞x,y(L

2
t )) and

‖D1+s̄−δuL‖Lqω(L∞x,y(L2t )) 6 C‖Φ‖
2
L
0,s̄
2

(4.17)

Recalling the definition of the Hilbert transform [21]

Ĥf(ζ, η) = (
ζ

|ζ|
+
η

|η|
)f̂(ζ, η) (4.18)
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implies,

Ds̄−δ∂xuL =

∫ t

0
Ds̄−δ∂xU(t− τ)ΦdW (τ)

=

∫ t

0
D1+s̄−δ∂xU(t− τ)HΦdW (τ)

Then,

‖Ds̄−δ∂xuL‖Lqω(L∞x,y(L2t )) 6 C‖HΦ‖
2
L0 ,̄s2
6 C‖Φ‖2

L0 ,̄s2
(4.19)

Now we can present the last regularity property of the solution uL by giving the following result:

Proposition 6.
∂xuL ∈ L2ω(L

4
t (L

∞
x,y) and

E[(
∫ T

0
sup
x,y∈R

|∂xuL|
4dt)0.5] 6 ‖Φ‖2

L
0,s̄
2

(4.20)

Proof. Let ε = s̄− 0.75 and q = 4(1 + 1/ε) . Noting that D1+εuL ∈ L4t (L
∞
x,y(L

q
ω)) we have,

‖D1+εuL‖L4t (L∞x,y(L
q
ω))
=

∫ T

0
sup
x,y∈R

E[|
∫ t

0
Ds̄+1/4U(t− τ)ΦdW (τ)|q]4/q

6 C
∫ T

0
sup
x,y∈R

[
∑

i>1

∫ t

0
|Ds̄+1/4U(t− τ)Φeidτ |

2]4/2dt

6 C(T )[
∑

i>1

(

∫ T

0
sup
x,y∈R

|Ds̄+1/4U(t− τ)Φei|
4dτ)

1
2 ]2

Applying [21, Theorem 2.4] with α = 2, θ = 1, β = 1/2 we get

∫ T

0
sup
x,y∈R

|Ds̄+1/4U(t− τ)Φei|
4dτ 6 C‖Ds̄Φei‖

4
L2x,y

So,

‖D1+εuL‖L4t (L∞x,y(L
q
ω))
6 C‖Φ‖

L
0,s̄
2

Therefore,

‖uL‖L4t (L2x,y(L
q
ω))
6 C‖Φ‖

L
0,0
2
6 C‖Φ‖

L
0,s̄
2

By virtue of the above inequalities and [9, proposition A.1] we obtain for all t ∈ [0, T ] that

‖D1+ε/2uL‖Lqx,y(Lqω)) 6 C‖uL‖
2/q

L2x,y(L
q
ω))
‖D1+εuL‖

1−2/q
L∞x,y(L

q
ω)
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Since q = 4(1 + 1/ε) > 4 , so

‖D1+ε/2uL‖L4ω(L4t (L
q
x,y))
6 C‖D1+ε/2uL‖L4t (L

q
x,y(L

q
ω))
6

6 C‖uL‖L4t (L2x,y(L
q
ω))
‖D1+εuL‖

1−2/q
L4t (L

∞
x,y(L

q
ω))
6 C‖Φ‖

L
0,s̄
2

Using Fuibini’s theorem, we have

‖uL‖L4ω(L4t (L
q
x,y))
6 C‖uL‖L4t (L4ω(Hsx,y))

6 C(
∫ T

0
E[‖

∫ t

0
U(t− τ)ΦdW (τ)‖4H s̄x,y ]dt)

1/4

6 C(
∫ T

0
[

∫ t

0

∑

i>1

‖U(t− τ)Φei‖
2
H s̄x,y
dτ ]dt)1/4

So,

‖uL‖L4ω(L4t (L
q
x,y))
6 C‖Φ‖

L
0,s̄
2

Since qε/2 > 1 , Then

‖∂xuL‖L4ω(L4t (L∞x,y)) 6 C(T )‖Φ‖L0,s̄2
(4.21)

Now, Theorem 2 is a direct result from the global results of the above propositions. To prove
Theorem 1 i.e., to solve the stochastic Zakharov-Kuznetsov equation forced by a random term of
additive white noise (1.1). We will use a fixed point argument in Zs(T ) for some T > 0 and
s ∈ (0.75, 1) , then a priori estimate will give us the global solution in H1x,y . From Theorem 2, we
have uL ∈ Zs(T0), T0 > 0 for almost all ω ∈ Ω .

Proposition 7.[21] For any s > 0.75 and any T > 0 there exists C(T, s) nondecreasing with
respect to T such that:

‖
∫ T

0
U(t− τ)(u∂xv)dτ‖Zs(T ) 6 C(T, s)‖u‖Zs(T )‖v‖Zs(T ) (4.22)

for any u, v ∈ Zs(T ) and

‖U(t)u0‖Zs(T ) 6 C(T, s)‖u‖Hsx,y for all u0 ∈ H
s
x,y (4.23)

Proof of Theorem 1. Firstly, we introduce the mapping J defined by

J u(t) = U(t)u0 +
∫ t

0
U(t− τ)(u∂xu)dτ + uL(t) (4.24)

Let 0.75 < s < 1 , since Φ ∈ L0,12 so by Theorem 2 and Proposition 5 we have u0 ∈ Hs(R2) , J
maps Zs(T ) into itself. Moreover, let R0 satisfies:

R0 > C(T0, s)‖u0‖Hs(R2) + ‖uL‖Zs(T )
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and choose T such that:

C(T0, s)T
1
2R0 6 1

then, J maps the ball of center 0 and radius 2R0 in Zs(T ) into itself and

‖J u− J v‖Zs(T ) 6
1

2
‖u− v‖Zs(T ) (4.25)

for any u, v ∈ Zs(T ) with norm less than 2 R0 . By virtue of fixed point theorem, J has a unique
fixed point, denote by u , in this ball. It is obvious that this solution u for Equation (1.1) belongs
to the function space Zs(T ) .

5 Concluding Remarks

This paper is devoted to establish some methods like Banach contraction principle and successive
approximations method for handling stochastic nonlinear partial differential equations and for prov-
ing local and global well-posedness results for their solutions in selected function spaces. In fact, we
restricted our efforts in stochastic Zakharov-Kuznetsov equation, but we believe that, similar ideas
can be applied to other stochastic nonlinear partial differential equations in mathematical physics,
such as the generalized KdV, KdV-Burgers, Modified KdV-Burgers and Swada-Kotera equations.
Also we remark that, if we assume that u0 ∈ L2ω(H

s̄
x,y) ∩ L

4
ω(L

2
x,y) with 0.75 6 s̄ < 1 and u0 is

F0 −measurable , then we cannot construct a solution on a fixed interval, even a finite one of the
form [0, T0] . Moreover, by using a standard truncation argument we can extend our results under
the assumption that u0 ∈ H1(R2) almost surely.

Acknowledge. Authors Thanks the reviewers’ for their notes which improved the quality of
the paper.
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Abstract

In this paper, a modified nonlinear Uzawa algorithm for solving symmetric saddle point
problems is proposed, and also the convergence rate is analyzed. The results of numerical
experiments are presented when we apply the algorithm to Stokes equations discretized by
mixed finite elements.

Keywords: Convergence rate; Modified nonlinear Uzawa algorithm; Saddle point prob-
lems; Schur complement
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1 Introduction

Let H1 and H2 be finite-dimensional Hilbert spaces with inner product denoted by (·, ·). In this
paper, we propose a modified nonlinear Uzawa algorithm for solving systems of linear equations
with the following two-by-two block structure:

A
(

x
y

)
=

(
A BT

B −C

)(
x
y

)
=

(
f
g

)
, (1)

wheref ∈ H1, g ∈ H2 are given, and x ∈ H1, y ∈ H2 are unknown. Here A : H1 → H1

is assumed to be linear, symmetric and positive definite operator, B : H1 → H2 is a linear
map and BT : H2 → H1 is its adjoint. In addition, C : H2 → H2 is linear symmetric and
positive semidefinite. Such system is usually referred to as saddle point problem, which is
typically resulted from mixed or hybrid finite element approximations of second-order elliptic
problems, or the Stokes equation, including computational fluid dynamics as well as constrained
optimization problems [1, 2, 6-11,14].

On the solution methods for saddle point systems there is a very good reference [2].
In [1], Bramble et al, considered the linear system (1) with C = 0 and assumed that the

following LBB condition [13] holds, i.e.,

(BA−1BT v, v) ≡ sup
u∈H1

(v, Bu)2

(Au, u)
≥ c0‖v‖2, ∀v ∈ H2, (2)

∗This research was supported by Doctoral Research Project of NCWU (2001119) and by NSFC of Tianyuan
Mathematics Youth Fund (11226337, 11126323).
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for some positive number c0. A nonlinear Uzawa algorithm is first proposed by defining the
nonlinear approximate inverse of A as a map φ : H1 → H1, i.e., for any ϕ ∈ H1, φ(ϕ) is an
approximation to the solution ξ of Aξ = ϕ.

In [3], Cao considered the linear system (1), and assumed that the following stabilized
condition [7, 8] holds, i.e.,

((BA−1BT + C)v, v) ≥ c0‖v‖2, ∀v ∈ H2, (3)

for some positive number c0. Cao proposed another nonlinear Uzawa algorithm by defining
the nonlinear approximate inverse of approximate Schur complement (BQ−1

A BT + C) as a
map ψ : H2 → H2, i.e., for any ϕ ∈ H2, ψ(ϕ) is an approximation to the solution ξ of
(BQ−1

A BT + C)ξ = ϕ, where QA is a symmetric positive definite operator.
In [4], Lin and Cao proposed another nonlinear Uzawa algorithm by defining the nonlinear

approximate inverse of A and the Schur complement (BA−1BT + C). In [5], Lin and Wei
proposed a modified nonlinear Uzawa algorithm and modified the Cao’s results. In this paper,
we present another modified nonlinear Uzawa algorithm for solving the system (1). At the same
time, its convergence is analyzed.

The inexact Uzawa algorithms [1,3,4,6,14] are of interest because they are simple, efficient
and have minimal numerical computer memory requirements. this could be important in large-
scale scientific applications implemented for today’s computing architectures. Therefore, the
inexact Uzawa methods are widely used in the engineer community.

The paper is organized as follows. In section 2, we review the Uzawa type algorithms men-
tioned in section 1 and their convergence results. In section 3, we give our modified nonlinear
Uzawa algorithm (MNUAS) and analyze convergence results. In section 4, the MNUAS algo-
rithm is applied to solve system (1), which is resulted from the discretization of Stokes equations
by mixed finite element method and the results of the numerical experiments are presented.
Finally, the conclusions are drawn.

2 The Uzawa algorithms and convergence

First, some notions are given. Let Q be a symmetric and positive definite matrix, we define a
inner product

〈v, u〉Q = (Qv, u) =
(
Q

1
2 v, Q

1
2 u

)
, ∀v, u ∈ H2,

and denote the Euclidean norm by ‖ · ‖. So

‖v‖Q = 〈v, v〉
1
2

Q
≡

(
Q

1
2 v, Q

1
2 v

) 1
2 ≡

∥∥∥Q
1
2 v

∥∥∥
2
.

Denote residue of x and y as
ex
i = x− xi, ey

i = y − yi.

The Nonlinear Uzawa algorithm (which is related to the approximate inverse of the matrix
A, and is called as NUA algorithm) for solving system (1) is as follows ([1,3,4]).

Algorithm 1 (NUA algorithm) ([1, 3]) For x0 ∈ H1 and y0 ∈ H2 given, the iterative
sequence {(xi, yi)} is defined, QB is a symmetric positive definite operator, for i = 0, 1, ..., by

xi+1 = xi + φ(f −Axi −BT yi), (4)

yi+1 = yi + Q−1
B (Bxi+1 − Cyi − g). (5)
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It is assumed that
‖φ(v)−A−1v‖A ≤ δ‖v‖A−1 ,∀v ∈ H1, (6)

for some positive δ < 1. In [1], the authors also pointed out that (6) is a reasonable assumption
which is satisfied by the approximate inverse associated with the Preconditioned Conjugate
Gradient algorithm (PCG algorithm) [12].

It is assumed that the following inequality

(1− γ)(QBw, w) ≤ ((BA−1BT + C)w, w) ≤ (QBw, w),∀w ∈ H2 (7)

holds for some γ in the interval [0, 1). In practice, preconditioners satisfy (7) with γ bounded
away from one.

The result on the convergence of the NUA algorithm is given as follows [1,3].

Theorem 1 Assume that (6) and (7) hold. Let {(x, y)} be the solution pair of (1), and
{(xi, yi)} be defined by the Algorithm 1. Then, xi and yi converge to x and y, respectively,
if

δ <
1− γ

3− γ
. (8)

In this case, the following two inequalities hold:

δ

1 + δ
(Aex

i , ex
i ) + (QBey

i , ey
i ) ≤ ρ2i

(
δ

1 + δ
(Aex

0 , ex
0) + (QBey

0, e
y
0)

)
, (9)

and

(Aex
i , ex

i ) ≤ (1 + δ)(1 + 2δ)ρ2i−2

(
δ

1 + δ
(Aex

0 , ex
0) + (QBey

0, e
y
0)

)
, (10)

where

ρ =
γ + 2δ +

√
(γ + 2δ)2 + 4δ (1− γ)

2
. (11)

The following Algorithm 2 is the Nonlinear Uzawa method, which is relate to the approxi-
mate inverse of the approximate Schur complement matrix BQ−1

A BT + C. We call it as NUS
algorithm.

Algorithm2 (NUS algorithm) ([3]) For x0 ∈ H1 and y0 ∈ H2 given, QA is a symmetric
positive definite, the iterative sequence {(xi, yi)} is defined, for i = 0, 1, ..., by

xi+1 = xi + Q−1
A (f −Axi −BT yi), (12)

yi+1 = yi + ψ(Bxi+1 − Cyi − g), (13)

where ψ(w) is an approximation to the solution ξ of the system

(BQ−1
A BT + C)ξ = w.

It is assumed that

(1− ω)(QAv, v) ≤ (Av, v) ≤ (QAv, v),∀v ∈ H1, v 6= 0. (14)

holds for some ω in the interval [0, 1), and the approximate Schur complement matrix satisfies

‖ψ(w)− (BQ−1
A BT + C)−1w‖(BQ−1

A BT +C) ≤ ε‖w‖
(BQ

−1
A

BT +C)−1
,∀w ∈ H2. (15)

for some positive ε < 1. Analogous to (6) in [1], (15) is a reasonable assumption [3], which
is satisfied by the approximate inverse associated with the Conjugate Gradient algorithm (CG
algorithm).

In [3], Cao gave the following convergence result.
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Theorem 2 Assume that (14) and (15) hold. Let {(x, y)} be the solution pair of (1), and
{(xi, yi)} be defined by the Algorithm 2. Then, xi and yi converge to x and y, respectively, if

ω <
1
2

and ε < 1− 2ω. (16)

In this case, the following two inequalities hold:

ω(1 + ε)(QAex
i , ex

i ) + ((BQ−1
A BT + C)ey

i , ey
i )

≤ρ2i(ω(1 + ε)(QAex
0 , ex

0) + ((BQ−1
A BT + C)ey

0, e
y
0)), (17)

and

(QAex
i , ex

i ) ≤
(

1 +
ω

1 + ε

)
ρ2i−2×

(ω(1 + ε)(QAex
0 , ex

0) + (BQ−1
A BT + C)ey

0, e
y
0)), (18)

where

ρ =
ω + ε +

√
(ω + ε)2 + 4ω

2
. (19)

The following Algorithm 3 is another Nonlinear Uzawa method, which is relate to the
approximate inverse of the matrix A and the approximate inverse of the Schur complement
matrix BA−1BT + C. We call it as NUAS algorithm.

Algorithm 3 (NUAS algorithm) ([4]) For x0 ∈ H1 and y0 ∈ H2 given, the iterative se-
quence {(xi, yi)} is defined, for i = 0, 1, ..., by

xi+1 = xi + φ(f −Axi −BT yi), (20)
yi+1 = yi + ψ(Bxi+1 − Cyi − g), (21)

where φ(v) is an approximation to the solution ϕ of the system

Aϕ = v,

and ψ(w) is an approximation to the solution ξ of the system

(BA−1BT + C)ξ = ω.

Let
S = BA−1BT + C.

It is assumed that

‖φ(v)−A−1v‖A ≤ δ‖v‖A−1 ,∀v ∈ H1, (22)

‖ψ(w)− S−1w‖S ≤ ε‖w‖S−1 ,∀w ∈ H2, (23)

hold for some positive δ < 1 and ε < 1, respectively.
The result on the convergence of the NUAS algorithm is given as follow [4].

Theorem 3 Assume that (22) and (23) hold, Let {(x, y)} be the solution pair of (1), and
{(xi, yi)} be defined by the Algorithm 3. Then, xi and yi converge to x and y, respectively, if

0 < δ <
1
3

and 0 < ε <
1− 3δ

1 + δ
. (24)
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In this case, the following two inequalities hold:

δ(1 + ε)(Aex
i , ex

i ) + (1 + δ)(Sey
i , ey

i )

≤ρ2i(δ(1 + ε)(Aex
0 , ex

0) + (1 + δ)(Sey
0, e

y
0)), (25)

and

(Aex
i , ex

i ) ≤
(

1 + δ +
δ

(1 + ε)

)
ρ2i−2×

(δ(1 + ε)(Aex
0 , ex

0) + (1 + δ)(Sey
0, e

y
0)), (26)

where

ρ =
ε + 2δ + εδ +

√
(ε + 2δ + εδ)2 + 4δ

2
. (27)

In [5], Lin and Wei modified the Algorithm 2, and gave the following Modified NUS al-
gorithm (called MNUS algorithm).

Algorithm 4 (MNUS algorithm) For x0 ∈ H1 and y0 ∈ H2 given, the iterative sequence
{(xi, yi))} is defined, for i = 0, 1, ..., by

x̄i+1 = xi + Q−1
A (f −Axi −BT yi), (28)

yi+1 = yi + ψ(Bx̄i+1 − Cyi − g), (29)

xi+1 = x̄i+1 −Q−1
A BT (yi+1 − yi). (30)

The result on the convergence of the MNUS algorithm is given as follow [5].

Theorem 4 Assume that (14) and (15) hold. Let {(x, y)} be the solution pair of (1), and
{(xi, yi)} be defined by the Algorithm 4. Then, xi and yi converge to x and y, respectively, if

ω <
1
2

and ε < 1− 2ω. (31)

In this case, the following two inequalities hold:

ω(1 + ε)(QAex
i , ex

i ) + ε((BQ−1
A BT + C)ey

i , ey
i )

≤ρ2i(ω(1 + ε)(QAex
0 , ex

0) + ε((BQ−1
A BT + C)ey

0, e
y
0)), (32)

and

(QAex
i , ex

i ) ≤ε

(
1 +

ω(2 + ε)2

(1 + ε)

)
ρ2i−2×

(ω(1 + ε)(QAex
0 , ex

0) + ε((BQ−1
A BT + C)ey

0, e
y
0)), (33)

where

ρ =
ε + 2ω + εω +

√
(ε + 2ω + εω)2 − 4εω

2
. (34)

In [5], Lin and Wei compare the convergence rate between NUS algorithm and MNUS algo-
rithm, and also gave the conclusion that MNUS algorithm is better than NUS algorithm.

In fact, inequalities (22) and (23) contain exact inverse, and too many iterations may be
need in order to evaluate A−1u. A practical nonlinear Uzawa algorithm was proposed in [4].
But the authors only consider using QA replace A in inequality (23), the inequality (22) also
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contain A. Here, we replace A−1 with Q−1
A in both inequalities (22) and (23) to result in another

result for the algorithm 3.
First, we give two assumptions and some lemmas. For the symmetric and positive definite

matrix QA, φ(v) is an approximation to the solution ϕ of the system

QAϕ = v, (35)

and ψ(w) is an approximation to the solution ξ of the system

(BQ−1
A BT + C)ξ = w. (36)

Let
Sa = BQ−1

A BT + C.

It is assumed that

‖φ(v)−Q−1
A v‖QA

≤ δ‖v‖Q−1
A

,∀v ∈ H1, (37)

‖ψ(w)− S−1
a w‖Sa

≤ ε‖w‖S−1
a

,∀w ∈ H2, (38)

hold for some positive δ < 1 and ε < 1, respectively, and also the inequality (14) holds. Inequal-
ities (37) and (38) are also two reasonable assumptions which are satisfied by the approximate
inverse associated with the CG algorithm.
Lemma 1 For any v ∈ H1, we have the following inequality.

‖Bv‖S−1
a
≤ ‖v‖QA

. (39)

Proof.

(S−1
a Bv,Bv) ≡ ‖Bv‖2

S−1
a

= sup
ω∈H2

(S−1
a Bv, ω)2

(S−1
a ω, ω)

= sup
ω∈H2

(Bv, ω)2

(Saω, ω)
= sup

ω∈H2

(Q
1
2
Av, Q

− 1
2

A BT ω)2

(Saω, ω)

≤ sup
ω∈H2

(QAv, v)(BQ−1
A BT ω, ω)

(Saω, ω)

≤ (QAv, v) ≡ ‖v‖2QA
.

The proof of the lemma 1 is completed. 2

Lemma 2 For a symmetric positive definite matrix Q, ‖A‖Q = ‖Q 1
2 AQ

1
2 ‖2. Proof. By the

definition of the matrix norm [15], ‖A‖Q = max
x6=0

‖Ax‖Q

‖x‖Q
, then

‖A‖Q =max
x6=0

(
Q

1
2 Ax,Q

1
2 Ax

) 1
2

(
Q

1
2 x,Q

1
2 x

) 1
2

= max
y 6=0, y=Q

1
2 x

(
Q

1
2 AQ−

1
2 y, Q

1
2 AQ−

1
2 y

) 1
2

(y, y)
1
2

=max
y 6=0

‖Q 1
2 AQ−

1
2 y‖2

‖y‖2 = ‖Q 1
2 AQ

1
2 ‖2.
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Therefore, Lemma 2 holds. 2

Lemma 3 Assume inequality (14) holds, I is a unity matrix with appropriate dimension, we
have the following inequality

‖I −Q−1
A A‖QA

≤ ω, (40)

‖Av + BT w‖Q−1
A
≤ ‖v‖QA

+ ‖w‖Sa
. (41)

Proof. From inequality (14), we know that

((I −Q−1
A A)v, v) ≤ ω(v, v),

so ρ(I −Q−1
A A) ≤ ω, where ρ is the spectral radius of the corresponding operator.

By the Lemma 2, we have

||I −Q−1
A A||QA

= ||Q
1
2
A(I −Q−1

A A)Q−
1
2

A ||2
= ||I −Q

− 1
2

A AQ
− 1

2
A ||2

= ρ(I −Q
− 1

2
A AQ

− 1
2

A )

= ρ(I −Q−1
A A) ≤ ω

i.e., ||I −Q−1
A A||QA

≤ ω. It follows from the triangular inequality that:

||Av + BT w||Q−1
A
≤ ||Av||Q−1

A
+ ||BT w||Q−1

A

≤ ||QAv||Q−1
A

+ ||w||BQ−1
A BT

≤ ||v||QA
+ ||w||Sa

.

The proof of the Lemma 3 is completed. 2

Theorem 5 Assume that (37),(38) and (14) hold, Let {(x, y)} be the solution pair of (1), and
{(xi, yi)} be defined by the Algorithm 3. Then, xi and yi converge to x and y, respectively, if

0 < ω <
1
2

, 0 < δ <
1− 2ω

3
and 0 < ε <

1− 3δ − 2ω

1 + δ
. (42)

In this case, the following two inequalities hold:

(ε + 1)(δ + ω)(QAex
i , ex

i ) + (1 + δ)(Saey
i , ey

i )

≤ρ2i(ε + 1)(δ + ω)(QAex
0 , ex

0) + (1 + δ)(Saey
0, e

y
0), (43)

and

(QAex
i , ex

i ) ≤
(

1 + δ +
δ + ω

ε + 1

)
ρ2i−2×

((ε + 1)(δ + ω)(QAex
0 , ex

0) + (1 + δ)(Saey
0, e

y
0)), (44)

where

ρ =
ε + 2δ + εδ + ω +

√
(ε + 2δ + εδ + ω)2 + 4(δ + ω)

2
. (45)
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Proof. From Algorithm 3, then we have the following equations

ex
i+1 = ex

i − φ(Aex
i + BT ey

i ), (46)
ey
i+1 = ey

i − ψ(Cey
i −Bex

i+1). (47)

Eq. (46) gives

ex
i+1 =(Q−1

A − φ)(Aex
i + BT ey

i ) + ex
i −Q−1

A (Aex
i + BT ey

i )

=(Q−1
A − φ)(Aex

i + BT ey
i ) + (I −Q−1

A A)ex
i −Q−1

A BT ey
i .

Substituting ex
i+1 in Eq. (47) by the above equation, we have

Cey
i −Bex

i+1 = Saey
i −B(I −Q−1

A A)ex
i −B(Q−1

A − φ)(Aex
i + BT ey

i ). (48)

ey
i+1 =(S−1

a − ψ)(Cey
i −Bex

i+1) + ey
i − S−1

a (Cey
i −Bex

i+1)

=(S−1
a − ψ)(Cey

i −Bex
i+1)

+S−1
a B((I −Q−1

A A)ex
i + (Q−1

A − φ)(Aex
i + BT ey

i )). (49)

It follows from the triangular inequality that:

||ex
i+1||QA

=||(Q−1
A − φ)(Aex

i + BT ey
i ) + (I −Q−1

A A)ex
i −Q−1

A BT ey
i ||QA

≤||(Q−1
A − φ)(Aex

i + BT ey
i )||QA

+ ||(I −Q−1
A A)ex

i ||QA
+ ||Q−1

A BT ey
i ||QA

≤δ||Aex
i + BT ey

i ||Q−1
A

+ ||I −Q−1
A A||QA

||ex
i ||QA

+ ||ey
i ||Sa

(by(38))

≤δ(||ex
i ||QA

+ ||ey
i ||Sa

) + ω||ex
i ||QA

+ ||ey
i ||Sa

(by Lemma 3)
=(δ + ω)||ex

i ||QA
+ (1 + δ)||ey

i ||Sa
. (50)

Using triangular inequality, from Eq. (49) and Lemma 1 we have

||ey
i+1||Sa

=||(S−1
a − ψ)(Cey

i −Bex
i+1) + ey

i − S−1
a (Cey

i −Bex
i+1)||Sa

≤||(S−1
a − ψ)(Cey

i −Bex
i+1)||Sa

+ ||S−1
a B((I −Q−1

A A)ex
i + (Q−1

A − φ)(Aex
i + BT ey

i ))||Sa (by(49))

≤ε||Cey
i −Bex

i+1||S−1
a

+ ||(I −Q−1
A A)ex

i + (Q−1
A − φ)(Aex

i + BT ey
i )||QA

≤ε||ey
i ||Sa + (ε + 1)(||(I −Q−1

A A)ex
i ||QA

+ ||(Q−1
A − φ)(Aex

i + BT ey
i )||QA

)
≤ε||ey

i ||Sa + (ε + 1)((δ + ω)||ex
i ||QA

+ δ||ey
i ||Sa) (by(37) and Lemma 3)

=(ε + 1)(δ + ω)||ex
i ||QA

+ (ε + δ + εδ)||ey
i ||Sa . (51)

It follow from (50) and (51) that
( ‖ex

i ‖QA

‖ey
i ‖Sa

)
≤ M i

( ‖ex
0‖QA

‖ey
0‖Sa

)
, (52)

where M is given by

M =
(

δ + ω 1 + δ
(ε + 1)(δ + ω) ε + δ + εδ

)
.

Obviously, M is symmetric with respect to the following inner product of the two-dimensional
Euclidean space

[(
x1

y1

)
,

(
x2

y2

)]
≡

((
(ε + 1)(δ + ω) 0
0 1 + δ

)(
x1

y1

)
,

(
x2

y2

))

= (ε + 1)(δ + ω)x1x2 + (1 + δ) y1y2.
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Thus, from (52), we have

(ε + 1)(δ + ω)(QAex
i , ex

i ) + (1 + δ)(Saey
i , ey

i )

=
[( ‖ex

i ‖QA

‖ey
i ‖Sa

)
,

( ‖ex
i ‖QA

‖ey
i ‖Sa

)]

≤
[
M i

( ‖ex
0‖QA

‖ey
0‖Sa

)
,M i

( ‖ex
0‖QA

‖ey
0‖Sa

)]

≤ρ2i((ε + 1)(δ + ω)(QAex
0 , ex

0) + (1 + δ)(Saey
0, e

y
0)),

where ρ is the spectral radius of M . The eigenvalues of M are the roots of

λ2 − (2δ + ε + εδ + ω)λ− (ω + δ) = 0.

From above equation, we know that λ ∈ R and 2δ + ε + εδ + ω > 0. Obviously, the spectral
radius ρ of M is equal to its positive eigenvalue which is given by (45).

It is easy to see if (42) is satisfied, then ρ < 1. This completes the proof of (43).
To prove (44), we apply the following elementary inequality

(a + b)2 ≤ (1 + η)a2 + (1 + η−1)b2

to (50), and get for any η > 0,

||ex
i ||2QA

≤ (1 + η)(δ + ω)2||ex
i−1||2QA

+ (1 + η−1)(1 + δ)2||ey
i−1||2Sa

.

Inequality (44) follow from taking η = (1+ε)(1+δ)
δ+ω and applying (43). This completes the proof

of the theorem. 2

Remark 1. When ω = 0, Theorem 5 is the theorem 3, it is the result of [4]. In the ex-
periment, we compute the incomplete Cholesky factorization of A, i.e., A = LLT −R, where L
is the incomplete Cholesky factor. Let QA = LLT , which can insure ω < 1

2 in (14).

3 A new Nonlinear Uzawa method and convergence re-
sults

In this section, we propose a new Nonlinear Uzawa method by using the modified idea of
[5,9] to modified NUAS method. We call this algorithm as MNUAS algorithm.

Algorithm 5(MNUAS algorithm) For x0 ∈ H1 and y0 ∈ H2 given, the iterative sequence
{(xi, yi)} is defined, for i = 0, 1, ..., by

x̄i+1 = xi + φ(f −Axi −BT yi), (53)
yi+1 = yi + ψ(Bx̄i+1 − Cyi − g), (54)

xi+1 = x̄i+1 −Q−1
A BT (yi+1 − yi), (55)

where φ(v) is an approximation to the solution ϕ of the system

QAϕ = v,

for the symmetric positive definite operator QA and ψ(w) is an approximation to the solution
ξ of the system

(BQ−1
A BT + C)ξ = w.
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It is also assumed that (14), (37) and (38) hold. We will give the main results of the paper in
the following series.

Theorem 6 Assume that (14), (37) and (38) hold, Let {(x, y)} be the solution pair of (1), and
{(xi, yi)} be defined by the Algorithm 5. Then, xi and yi converge to x and y, respectively, if

0 < ω <
1
2

, 0 < δ <
1− 2ω

3
and 0 < ε <

1− 3δ − 2ω

1 + δ
. (56)

In this case, the following two inequalities hold:

(δ + ω)(1 + ε)(QAex
i , ex

i ) + (ε + 2δ + εδ)(Saey
i , ey

i )

≤ρ2i((δ + ω)(1 + ε)(QAex
0 , ex

0) + (ε + 2δ + εδ)(Saey
0, e

y
0)), (57)

and

(QAex
i , ex

i ) ≤
(

ε + 2δ + εδ +
(ε + 2)2(δ + ω)

1 + ε

)
ρ2i−2×

((δ + ω)(1 + ε)(QAex
0 , ex

0) + (ε + 2δ + εδ)(Saey
0, e

y
0)), (58)

where

ρ =
3δ + ε + 2εδ + 2ω + εω +

√
(3δ + ε + 2εδ + 2ω + εω)2 − 4ε(δ + ω)

2
. (59)

Proof. Let ēx
i+1 = x− x̄i+1. From (53)-(55), then we have the following equations:

ēx
i+1 = ex

i − φ
(
Aex

i + BT ey
i

)
, (60)

ey
i+1 = ey

i − ψ
(
Cey

i −Bēx
i+1

)
, (61)

ex
i+1 = ēx

i+1 + Q−1
A BT (ey

i − ey
i+1). (62)

In fact, by the proof of Theorem 5, we know that

||ey
i+1||Sa ≤ (ε + 1)(δ + ω)||ex

i ||QA
+ (ε + δ + εδ)||ey

i ||Sa . (63)

From (60) and (62), it can be concluded that

ex
i+1 = (Q−1

A − φ)(Aex
i + BT ey

i )−Q−1
A (Aex

i + BT ey
i ) + ex

i + Q−1
A BT (ey

i − ey
i+1)

= (Q−1
A − φ)(Aex

i + BT ey
i ) + (I −Q−1

A A)ex
i −Q−1

A BT ey
i+1. (64)

Using triangular inequality, from Eq.(64) we have

||ex
i+1||QA

= ||(Q−1
A − φ)(Aex

i + BT ey
i )||QA

+ ||(I −Q−1
A A)ex

i ||QA
+ ||Q−1

A BT ey
i+1||QA

≤ δ||Aex
i + BT ey

i ||Q−1
A

+ ||I −QAA||QA
||ex

i ||QA
+ ||ey

i+1||Sa
(by(37))

≤ (δ + ω)||ex
i ||QA

+ δ||ey
i ||Sa

+ ||ey
i+1||Sa

(by Lemma 3)

≤ (ε + 2)(δ + ω)||ex
i ||QA

+ (ε + 2δ + εδ)||ey
i ||Sa

. (by(63)) (65)

It follows from (63) and (65) that
( ‖ex

i ‖QA

‖ey
i ‖Sa

)
≤ N i

( ‖ex
0‖QA

‖ey
0‖Sa

)
, (66)
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where N is given by

N =
(

(ε + 2)(δ + ω) ε + 2δ + εδ
(ε + 1)(δ + ω) ε + δ + εδ

)
.

Obviously, N is symmetric with respect to the following inner product of the two-dimensional
Euclidean space

[(
x1

y1

)
,

(
x2

y2

)]
≡

((
(ε + 1)(δ + ω) 0
0 ε + 2δ + εδ

)(
x1

y1

)
,

(
x2

y2

))

= (ε + 1)(δ + ω)x1x2 + (ε + 2δ + εδ) y1y2.

Thus, from (66), we have

(ε + 1)(δ + ω)(QAex
i , ex

i ) + (ε + 2δ + εδ)(Saey
i , ey

i )

=
[( ‖ex

i ‖QA

‖ey
i ‖Sa

)
,

( ‖ex
i ‖QA

‖ey
i ‖Sa

)]

≤
[
N i

( ‖ex
0‖QA

‖ey
0‖Sa

)
, N i

( ‖ex
0‖QA

‖ey
0‖Sa

)]

≤ρ2i((ε + 1)(δ + ω)(QAex
0 , ex

0) + (ε + 2δ + εδ)(Saey
0, e

y
0)),

where ρ is the spectral radius of N . The eigenvalues of N are the roots of

λ2 − (3δ + ε + 2εδ + 2ω + εω)λ + 4ε(δ + ω) = 0.

From above equation, we know that λ ∈ R and λ > 0. Obviously, the spectral radius ρ of N is
equal to its max positive eigenvalue which is given by (59). It is easy to see if (56) is satisfied,
then ρ < 1. This completes the proof of (57).

To prove (58), we apply the following elementary inequality

(a + b)2 ≤ (1 + η) a2 +
(
1 + η−1

)
b2

to (65), and get for any η > 0,

||ex
i ||2QA

≤ (1 + η)[(ε + 2)(δ + ω)]2||ex
i−1||2QA

+ (1 + η−1)(ε + 2δ + εδ)2||ey
i−1||2Sa

.

Inequality (58) follow from taking η = (ε+1)(ε+2δ+εδ)
(ε+2)2(δ+ω) and applying (57). This completes the

proof of the theorem. 2

Corollary 1. In Algorithm 5, assume that QA = A hold, let {(x, y)} be the solution pair of (1),
and {(xi, yi)} be defined by the Algorithm 5. Then, xi and yi converge to x and y, respectively,
if

0 < δ <
1
3

and 0 < ε <
1− 3δ

1 + δ
. (67)

In this case, the following two inequalities hold:

δ(ε + 1)(QAex
i , ex

i ) + (ε + 2δ + εδ)(Saey
i , ey

i )

≤ρ2iδ(ε + 1)(QAex
0 , ex

0) + (ε + 2δ + εδ)(Saey
0, e

y
0), (68)

and

(QAex
i , ex

i ) ≤
(

ε + 2δ + εδ +
(ε + 2)2δ

1 + ε

)
ρ2i−2×

(δ(1 + ε)(QAex
0 , ex

0) + (ε + 2δ + εδ)(Saey
0, e

y
0)), (69)
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where

ρ =
3δ + ε + 2εδ +

√
(3δ + ε + 2εδ)2 − 4εδ

2
. (70)

Proof. For QA = A, hence ω = 0. In Theorem 6, let w = 0, we can complete this corollary. 2

In the rest of this section, we analyze the convergence factors between MNUAS Algorithm
and NUAS Algorithm under the same condition with different nonlinear approximate assump-
tion.

1. Under the conditions (22) and (23), denote by ρMN and ρN the convergence factors of
MNUAS and NUAS, respectively;

2. under the conditions (37) and (38), denote by ρIMN and ρIN the convergence factors of
MNUAS and NUAS, respectively.

Case 1: From Theorem 3 in [4], the convergence factor of NUAS is

ρN =
ε + 2δ + εδ +

√
(ε + 2δ + εδ)2 + 4δ

2
.

when δ À ε, the convergence factorρN is approximately equal to δ +
√

δ2 + δ. Thus

ρN ≈ δ +
√

δ2 + δ.

From the above corollary, the convergence factor of MNUAS is

ρMN =
3δ + ε + 2εδ +

√
(3δ + ε + 2εδ)2 − 4εδ

2
.

When δ À ε, the convergence factorρMN is approximately equal to 3δ. Thus

ρMN ≈ 3δ.

If 0 < δ < 1
3 , we have ρMN ≈ 3δ < δ +

√
δ2 + δ ≈ ρN .

Case 2: Theorem 5 gives the convergence factor of NUAS is

ρIN =
ε + 2δ + εδ + ω +

√
(ε + 2δ + εδ + ω)2 + 4(δ + ω)

2
.

when ω À δ, ε, the convergence factor ρIN is approximately equal to ω+
√

ω2+4ω
2 . Thus

ρIN ≈ ω +
√

ω2 + 4ω

2
.

Theorem 6 gives the convergence factor of MNUAS is

ρIMN =
3δ + ε + 2εδ + 2ω + εω +

√
(3δ + ε + 2εδ + 2ω + εω)2 − 4ε(δ + ω)

2
.

When ω À δ, ε, the convergence factor ρIMN is approximately equal to 2ω. Thus

ρIMN ≈ 2ω.

If 0 < ω < 1
2 , we have ρIMN ≈ 2ω < ω+

√
ω2+4ω
2 ≈ ρIN . From the above comparison of the

convergence factors, we expect that the MNUAS may be better than NUAS, if the nonlinear
approximation is appropriate.

In the next section, numerical experiments confirm our analysis of the results on the con-
vergence of the nonlinear Uzawa methods.
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4 Numerical experiments

The problem under consideration is the classic incompressible steady state Stokes problem
{ −ν∆u +∇p = f, in Ω,

divu = 0, in Ω,
(71)

here ν is the viscosity. Many discretization schemes for this problem will lead to saddle point
problems of the form (1) see for instance [2]. We generate the test problem (leaky lid-driven
cavity) with the IFISS software written by Howard Elman, Alison Ramage and David Silvester
[11]. The mixed finite element used is the bilinear-constant velocity-pressure Q1 − P0 pair
with global stabilization or local stabilization [10]. The finite element subdivision is based on
n × n uniform grids of square elements. Using the IFISS software to discretize (71), then the
coefficient matrix A of the linear system, which is equivalent to (1), is the following

A =
(

A BT

B −βC

)
,

where β is a stabilizing parameter [10]. A remark on the local stabilization was given by Cao
in [3] to state that D. Silvester pointed out that β should be 0.25 in the local stabilized case.
Consequently, Cao took β = 1 and 0.25 in the numerical experiments for global and local
stabilizations, respectively. Similarly, in our numerical experiments we also take β = 1 and 0.25
for global and local stabilizations, respectively.

Now we describe the algorithms and notions for the test problem. In our experiments, we
take ν = 1. NUS denotes the NUS algorithm only using the nonlinear approximation to the
inverse of Schur complement (BQ−1

A BT + C)−1. MNUS denotes the Modified algorithm of
NUS. NUAS denotes the NUAS algorithm using both the nonlinear approximations to Q−1

A

and (BQ−1
A BT + C)−1 at the same time. MNUAS denotes the Modified algorithm of NUAS.

In the next experiments, we only compare those four algorithm.
By using the sparsity of A, we may compute the incomplete Cholesky factorization of A,

i.e., A = LLT −R, where L is the incomplete Cholesky factor [12]. In the incomplete Cholesky
factorization, we consider the case in which the drop tolerance is tol=0.01 and the case with
no fill-in [12]. In NUS and MNUS, QA = LLT and ψ is defined by two steps of CG applied
to approximate the action of inverse of the approximate Schur complement. In NUAS and
MNUAS, φ is defined by two steps of CG applied to approximate the action of Q−1

A and ψ is
defined by two steps of CG applied to approximate the action of the inverse of the approximate
Schur complement BQ−1

A BT + C with QA = LLT .
All computations are performed in Matlab 7.0. The stop criterion for the iteration is

‖rk‖
‖r0‖ ≤ 10−6,

where r0 is the initial residual vector and rk is the kth residual vector of (1).
In Table 1-4, we show the iteration numbers and the CPU time (in seconds) of the four

algorithms in four mesh grids for global and local stabilizations, respectively. We can see from
these tables that all these algorithms are convergent, but NUS and NUAS converge rather slowly.
In contrast, MNUS and MNUAS converge rapidly. It means that the modified algorithms have
better convergerce rate. With the mesh grids refined, among all these algorithms, MNUAS
need the smallest number of steps in the four algorithm, and most case the CPU time is the
smallest. Finally, we give, in Figures 1-4, convergence plots for these algorithms. These figures
show that the modified algorithms converge more quickly, and MNUAS is better than NUAS.
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Table 1: Iteration number and CPU time for global stabilization (no fill-in)

Grid NUS MNUS NUAS MNUAS
8× 8 20(0.0310) 19(0.0310) 20(0.0320) 16(0.0310)

16× 16 58(0.2180) 36(0.1560) 35(0.1720) 22(0.1410)
32× 32 174(2.7970) 118(2.2500) 95(1.8440) 54(1.2340)
64× 64 >500(33.8590) 343(28.1400) 311(25.9070) 188(18.5320)

Table 2: Iteration number and CPU time for global stabilization (tol=0.01)

Grid NUS MNUS NUAS MNUAS
8× 8 22(0.0150) 21(0.0310) 23(0.0470) 21(0.0320)

16× 16 24(0.0940) 18(0.0930) 24(0.1250) 17(0.0940)
32× 32 59(0.9840) 36(0.7190) 45(0.9380) 24(0.5930)
64× 64 184(12.0780) 108(8.8900) 141(12.0160) 75(7.4070)

Table 3: Iteration number and CPU time for local stabilization (no fill-in)

Grid NUS MNUS NUAS MNUAS
8× 8 25(0.0310) 9(0.0160) 16(0.0470) 12(0.0310)

16× 16 61(0.2180) 24(0.1250) 38(0.1880) 20(0.1090)
32× 32 176(2.5160) 70(1.2660) 119(2.2030) 61(1.3280)
64× 64 485(27.7190) 309(21.7180) 419(29.8600) 171(15.0470)

Table 4: Iteration number and CPU time for local stabilization (tol=0.01)

Grid NUS MNUS NUAS MNUAS
8× 8 12(0.0160) 9(0.0150) 12(0.0160) 9(0.0160)

16× 16 27(0.0940) 9(0.0470) 19(0.0940) 12(0.0620)
32× 32 62(0.9530) 23(0.4380) 48(0.9370) 24(0.5620)
64× 64 163(9.8750) 70(5.4060) 126(9.6250) 66(6.0940)
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Figure 1: Global stabilization. 32× 32 mesh. Left: no fill-in; right: tol = 0.01
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Figure 2: Global stabilization. 64× 64 mesh. Left: no fill-in; right: tol = 0.01
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Figure 3: Local stabilization. 32× 32 mesh. Left: no fill-in; right: tol = 0.01
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Figure 4: Local stabilization. 64× 64 mesh. Left: no fill-in; right: tol = 0.01
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5 Conclusion

In this paper, we present a Modified Nonlinear Uzawa algorithm (MNUAS), which is modi-
fied the NUAS algorithm contained two nonlinear approximate inverses, for solving symmetric
saddle point problems. At the same time, its convergence result is given, and the convergence
factors are compared. Numerical experiments show that MNUAS algorithm needs less itera-
tions and CPU time than the NUAS algorithm when applied to the Stokes equation by mixed
finite element discretization.
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Abstract

In this paper, we discuss the existence of solutions for fractional differential equations of order
q ∈ (2, 3] with anti-periodic type integral boundary conditions. Our results are based on Leray-
Schauder nonlinear alternative and some standard tools of fixed point theory.

Key words and phrases: Fractional differential equations; antiperiodic; integral boundary conditions;
existence; nonlinear alternative of Leray Schauder type; fixed point theorems.
AMS (MOS) Subject Classifications: 34A08, 34B10, 34B15.

1 Introduction

Boundary value problems for nonlinear differential equations arise in a variety of areas of applied
mathematics, physics and variational problems of control theory. The existing literature mainly deals
with second-order boundary value problems and there are a few papers on third/higher order problems
([1]-[3]).

In the last few years, much work has been completed on boundary value problems of fractional
differential equations. For examples and details, we refer the reader to the books ([4]-[9]) and papers
([10]-[23]). In [19], the authors studied a boundary value problem of nonlinear fractional differential
equations of order q ∈ (1, 2] with non-separated integral boundary conditions. In this paper, we study
the existence of solutions for a boundary value problem of fractional differential equations of order
q ∈ (2, 3] with anti-periodic type integral boundary conditions. Precisely, we consider the following
problem 

cDqx(t) = f(t, x(t)), t ∈ [0, T ], T > 0, 2 < q ≤ 3,

x(j)(0)− λjx
(j)(T ) = µj

∫ T

0

gj(s, x(s))ds, j = 0, 1, 2
(1)

where cDq denotes the Caputo derivative of fractional order q, x(j)(·) denotes jth derivative of x(·) with
x(0)(·) = x(·), f, gj : [0, T ]× R → R are given continuous functions and λj , µj ∈ R (λj 6= 1).

We remark that problem (1) reduces to a fractional boundary value problem with anti-periodic type
boundary conditions for λj = −1, µj = 0, j = 0, 1, 2 [12].

The main aim of the present work is to establish some existence results for problem (1) by means
of Leray-Schauder nonlinear alternative, Banach contraction mapping principle and Krasnoselskii fixed
point theorem.
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2 Preliminary result

Let us recall some basic definitions of fractional calculus [4, 6].

Definition 2.1 For (n−1)−times absolutely continuous function g : [0,∞) → R, the Caputo derivative
of fractional order q is defined as

cDqg(t) =
1

Γ(n− q)

∫ t

0

(t− s)n−q−1g(n)(s)ds, n− 1 < q < n, n = [q] + 1,

where [q] denotes the integer part of the real number q.

Definition 2.2 The Riemann-Liouville fractional integral of order q is defined as

Iqg(t) =
1

Γ(q)

∫ t

0

g(s)
(t− s)1−q

ds, q > 0,

provided the integral exists.

In the sequel, the following lemma plays a pivotal role.

Lemma 2.3 For a given y ∈ C([0, T ],R) and 2 < q ≤ 3, the unique solution of the equation cDqx(t) =
y(t), t ∈ [0, T ] subject to the boundary conditions of (1) is given by

x(t) =
∫ t

0

(t− s)q−1

Γ(q)
y(s)ds− λ0ξ1

∫ T

0

(T − s)q−1

Γ(q)
y(s)ds

+λ1η2

∫ T

0

(T − s)q−2

Γ(q − 1)
y(s)ds+ λ2η1

∫ T

0

(T − s)q−3

Γ(q − 2)
y(s)ds

−µ0ξ1

∫ T

0

g0(s, x(s))ds+ µ1η2

∫ T

0

g1(s, x(s))ds

+µ2η1

∫ T

0

g2(s, x(s))ds,

(2)

where
η1 = ξ3

[
−λ0(λ1 + 1)T 2 + 2λ1(λ0 − 1)tT − (λ0 − 1)(λ1 − 1)t2

]
,

η2 = ξ2[λ0T − (λ0 − 1)t],

ξ1 =
1

λ0 − 1
, ξ2 =

1
(λ0 − 1)(λ1 − 1)

, ξ3 =
1

2(λ0 − 1)(λ1 − 1)(λ2 − 1)
.

Proof. For 2 < q ≤ 3, it is well known [6] that the solution of fractional differential equation cDqx(t) =
y(t) can be written as

x(t) =
∫ t

0

(t− s)q−1

Γ(q)
y(s)ds− c0 − c1t− c2t

2, t ∈ [0, T ], (3)

where c0, c1, c2 ∈ R are arbitrary constants. Applying the boundary conditions of (1), we get

(λ0 − 1)c0 + λ0Tc1 + λ0T
2c2 = µ0

∫ T

0

g0(t, x(s))ds+ λ0

∫ T

0

(T − s)q−1

Γ(q)
y(s)ds,

(λ1 − 1)c1 + 2λ1Tc2 = µ1

∫ T

0

g1(s, x(s))ds+ λ1

∫ T

0

(T − s)q−2

Γ(q − 1)
y(s)ds

2(λ2 − 1)c3 = µ2

∫ T

0

g2(s, x(s))ds+ λ2

∫ T

0

(T − s)q−3

Γ(q − 2)
y(s)ds.

(4)

Solving the system (4), we find the values of c0, c1 and c2. Substituting these values in (3), we obtain
(2).
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3 Main results

Let C = C([0, T ],R) denotes the Banach space of all continuous functions from [0, T ] → R endowed
with the usual sup-norm ( ‖x‖ = supt∈[0,T ] |x(t)|).

By Lemma 2.3, the problem (1) can be transformed to a fixed point problem as x = F (x), where
F : C → C is given by

(Fx)(t) =
∫ t

0

(t− s)q−1

Γ(q)
f(s, x(s))ds− λ0ξ1

∫ T

0

(T − s)q−1

Γ(q)
f(s, x(s))ds

+λ1η2

∫ T

0

(T − s)q−2

Γ(q − 1)
f(s, x(s))ds+ λ2η1

∫ T

0

(T − s)q−3

Γ(q − 2)
f(s, x(s))ds

−µ0ξ1

∫ T

0

g0(s, x(s))ds+ µ1η2

∫ T

0

g1(s, x(s))ds

+µ2η1

∫ T

0

g2(s, x(s))ds, t ∈ [0, T ].

(5)

For the sake of computational convenience, we introduce

Λ1 =
T q

Γ(q + 1)
{
1 + |λ0ξ1|+ |λ1η2|qT−1 + |λ2η1|q(q − 1)T−2

}
. (6)

Our first existence result is based on Leray-Schauder nonlinear alternative.

Theorem 3.1 (Nonlinear alternative for single valued maps)[24]. Let E be a Banach space, C a closed,
convex subset of E, U an open subset of C and 0 ∈ U. Suppose that F : U → C is a continuous, compact
(that is, F (U) is a relatively compact subset of C) map. Then either

(i) F has a fixed point in U, or

(ii) there is a u ∈ ∂U (the boundary of U in C) and λ ∈ (0, 1) with u = λF (u).

Theorem 3.2 Assume that f, gj : [0, 1]×R → R are continuous functions and the following conditions
hold:

(A1) there exist a function p ∈ L1([0, 1],R+), and ψ : R+ → R+ nondecreasing such that |f(t, x)| ≤
p(t)ψ(‖x‖) for each (t, x) ∈ [0, T ]× R;

(A2) there exist continuous nondecreasing functions ψj : [0,∞) → (0,∞) and functions pj ∈ L1([0, T ],R+)
such that

|gj(t, x)| ≤ pj(t)ψj(‖x‖), j = 0, 1, 2, for each (t, x) ∈ [0, T ]× R;

(A3) there exists a number M > 0 such that

M

ψ(M)Ω1‖p‖L1 + ψ0(M)|µ0ξ1|‖p0‖L1 + ψ1(M)|µ1η2|‖p1‖L1 + ψ2(M)|µ2η1|‖p2‖L1
> 1,

where

Ω1 =
T q−1

Γ(q)
{
1 + |λ0ξ1|+ |λ1η2|(q − 1)T−1 + |λ2η1|q(q − 1)(q − 2)T−2

}
.

Then the boundary value problem (1) has at least one solution on [0, 1].
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Proof. Consider the operator F : C → C defined by (5). It is easy to prove that F is continuous.
Next, we show that F maps bounded sets into bounded sets in C([0, T ],R). For a positive number ρ,
let Bρ = {x ∈ C([0, T ],R) : ‖x‖ ≤ ρ} be a bounded set in C([0, T ],R). Then, for each x ∈ Bρ,we have

|(Fx)(t)| ≤
∫ t

0

(t− s)q−1

Γ(q)
|f(s, x(s))|ds+ |λ0ξ1|

∫ T

0

(T − s)q−1

Γ(q)
|f(s, x(s))|ds

+|λ1η2|
∫ T

0

(T − s)q−2

Γ(q − 1)
|f(s, x(s))|ds+ |λ2η1|ψ(‖x‖)

∫ T

0

(T − s)q−3

Γ(q − 2)
p(s)|ds

+|µ0ξ1|
∫ T

0

|g0(s, x(s))|ds+ |µ1η2|
∫ T

0

|g1(s, x(s))|ds

+|µ2η1|
∫ T

0

|g2(s, x(s))|ds

≤ ψ(‖x‖)
{
T q−1

Γ(q)
+ |λ0ξ1|

T q−1

Γ(q)
+ |λ1η2|

T q−2

Γ(q − 1)
+ |λ2η1|

T q−3

Γ(q − 2)

} ∫ T

0

p(s)ds

+ψ0(‖x‖)|µ0ξ1|
∫ T

0

p0(s)ds+ ψ1(‖x‖)|µ1η2|
∫ T

0

p1(s)ds

+ψ2(‖x‖)|µ2η1|
∫ T

0

p2(s)ds

≤ ψ(‖x‖)Ω1‖p‖L1 + ψ0(‖x‖)|µ0ξ1|‖p0‖L1 + ψ1(‖x‖)|µ1η2|‖p1‖L1

+ψ2(‖x‖)|µ2η1|‖p2‖L1 .

Thus,

‖Fx‖ ≤ ψ(ρ)Ω1‖p‖L1 + ψ0(ρ)|µ0ξ1|‖p0‖L1 + ψ1(ρ)|µ1η2|‖p1‖L1 + ψ2(ρ)|µ2η1|‖p2‖L1 .

Now we show that F maps bounded sets into equicontinuous sets of C([0, T ],R). Let t′, t′′ ∈ [0, T ]
with t′ < t′′ and x ∈ Bρ, where Bρ is a bounded set of C([0, T ],R). Then we have

|(Fx)(t′′)− (Fx)(t′)|

≤

∣∣∣∣∣ψ(‖x‖)
∫ t′

0

[
(t′′ − s)q−1 − (t′ − s)q−1

Γ(q)

]
p(s)ds+

∫ t′′

t′

(t′′ − s)q−1

Γ(q)
f(s, x(s))ds

∣∣∣∣∣
+|(1− λ0)λ1ξ2||t′′ − t′|ψ(‖x‖)

∫ T

0

(T − s)q−2

Γ(q − 1)
p(s)ds+ |λ2ξ3|

[
2|(1− λ0)λ1|T |t′′ − t′|

+|(1− λ0)(1− λ1)||t′′
2 − t′

2|
]
ψ(‖x‖)

∫ T

0

(T − s)q−3

Γ(q − 2)
p(s)ds

+|(1− λ0)|µ1λ1ξ2||t′′ − t′|ψ1(‖x‖)
∫ T

0

p1(s)|ds

+|λ2ξ3µ2|
[
2|(1− λ0)λ1T |t′′ − t′|+ |(1− λ0)(1− λ1)||t′′

2 − t′
2|

]
ψ2(‖x‖)

∫ T

0

p2(s)ds.

Obviously the right hand side of the above inequality tends to zero independently of x ∈ Bρ as t′′−t′ → 0.
Therefore it follows by the Ascoli-Arzelá theorem that F : C([0, T ],R) → C([0, T ],R) is completely
continuous.

The result will follow from the Leray-Schauder nonlinear alternative (Theorem 3.1) once we have
proved the boundedness of the set of all solutions to equations x = λFx for λ ∈ [0, 1].

Let x be a solution. Then, for t ∈ [0, T ], and using the computations in proving that F is bounded,
we have

|x(t)| ≤ ψ(‖x‖)
{
T q−1

Γ(q)
+ |λ1ξ1|

T q−1

Γ(q)
+ |λ2η2|

T q−2

Γ(q − 1)
+ |λ3η1|

T q−3

Γ(q − 2)

} ∫ T

0

p(s)ds
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+ψ0(‖x‖)|µ1ξ1|
∫ T

0

p0(s)ds+ ψ1(‖x‖)|µ2η2|
∫ T

0

p1(s)ds

+ψ2(‖x‖)|µ3η1|
∫ T

0

p2(s)ds

≤ ψ(‖x‖)Ω1‖p‖L1 + ψ0(‖x‖)|µ1ξ1|‖p0‖L1 + ψ1(‖x‖)|µ2η2|‖p1‖L1

+ψ2(‖x‖)|µ3η1|‖p2‖L1 .

Consequently, we have

‖x‖
ψ(‖x‖)Ω1‖p‖L1 + ψ0(‖x‖)|µ0ξ1|‖p0‖L1 + ψ1(‖x‖)|µ1η2|‖p1‖L1 + ψ2(‖x‖)|µ2η1|‖p2‖L1

≤ 1.

In view of (A3), there exists M such that ‖x‖ 6= M . Let us set

U = {x ∈ C([0, T ],R) : ‖x‖ < M + 1}.

Note that the operator F : U → C([0, T ],R) is continuous and completely continuous. From the choice
of U , there is no x ∈ ∂U such that x = λFx for some λ ∈ (0, 1). Consequently, by the Leray-Schauder
alternative (Theorem 3.1), we deduce that F has a fixed point x ∈ U which is a solution of the problem
(1). �

Our next result is based on the celebrated fixed point theorem due to Banach.

Theorem 3.3 Assume that f, gj : [0, T ]× R → R are continuous functions satisfying the conditions:

(A4) |f(t, x)− f(t, y)| ≤ L|x− y|,∀t ∈ [0, T ], L > 0, x, y ∈ R;

(A5) |gj(t, x)− gj(t, y)| ≤ Lj |x− y|,∀t ∈ [0, T ], Lj > 0, j = 0, 1, 2, x, y ∈ R.

Then the boundary value problem (1) has a unique solution if

LΛ1 +
{
L0|µ0ξ1|+ L1|µ1η2|+ L2|µ2η1|

}
T < 1,

where Λ1 is given by (6).

Proof. Let us fix supt∈[0,T ] |f(t, 0)| = M, supt∈[0,T ] |gj(t, 0)| = Mj , j = 0, 1, 2 and choose

r ≥
MΛ1 +

{
M0|µ0ξ1|+M1|µ1η2|+M2|µ2η1|

}
T

1−
(
LΛ1 +

{
L0|µ0ξ1|+ L1|µ1η2|+ L2|µ2η1|

}
T

) .
Then we show that FBr ⊂ Br, where Br = {x ∈ C : ‖x‖ ≤ r}. For x ∈ Br, we have

|(Fx)(t)| ≤ sup
t∈[0,T ]

{∫ t

0

(t− s)q−1

Γ(q)
|f(s, x(s))|ds+ |λ0ξ1|

∫ T

0

(T − s)q−1

Γ(q)
|f(s, x(s))|ds

+|λ1η2|
∫ T

0

(T − s)q−2

Γ(q − 1)
|f(s, x(s))|ds+ |λ2η1|

∫ T

0

(T − s)q−3

Γ(q − 2)
|f(s, x(s))|ds

+|µ0ξ1|
∫ T

0

|g0(s, x(s))|ds+ |µ1η2|
∫ T

0

|g1(s, x(s))|ds

+|µ2η1|
∫ T

0

|g2(s, x(s))|ds

}

≤ sup
t∈[0,T ]

{∫ t

0

(t− s)q−1

Γ(q)

[
|f(s, x(s))− f(s, 0)|+ |f(s, 0)|

]
ds
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+|λ0ξ1|
∫ T

0

(T − s)q−1

Γ(q)

[
|f(s, x(s))− f(s, 0)|+ |f(s, 0)ds|

]
ds

+|λ1η2|
∫ T

0

(T − s)q−2

Γ(q − 1)

[
|f(s, x(s))− f(s, 0)|+ |f(s, 0)ds|

]
ds

+|λ2η1|
∫ T

0

(T − s)q−3

Γ(q − 2)

[
|f(s, x(s))− f(s, 0)|+ |f(s, 0)|

]
ds

+|µ0ξ1|
∫ T

0

[
|g0(s, x(s))− g0(s, 0)|+ |g0(s, 0)|

]
ds

+|µ1η2|
∫ T

0

[
|g1(s, x(s))− g1(s, 0)|+ |g1(s, 0)|

]
ds

+ |µ2η1|
∫ T

0

[
|g2(s, x(s))− g2(s, 0)|+ |g2(s, 0)|

]
ds

}

≤ (Lr +M)
T q

Γ(q + 1)
{
1 + |λ1ξ1|+ |λ2η2|qT−1 + |λ3η1|q(q − 1)T−2

}
+(L0r +M0)|µ0ξ1|T + (L1r +M1)|µ1η2|T + (L2r +M2)|µ2η1|T

= (LΛ1 + L0|µ0ξ1|T + L1|µ1η2|T + L2|µ2η1|T )r
+(MΛ1 +M0|µ0ξ1|T +M1|µ1η2|T +M2|µ2η1|T ) ≤ r.

Now, for x, y ∈ C and for each t ∈ [0, T ], we obtain

‖(Fx)(t)− (Fy)(t)‖ ≤ sup
t∈[0,T ]

{∫ t

0

(t− s)2

2
|f(s, x(s))− f(s, y(s))|ds

+|λ0ξ1|
∫ T

0

(T − s)q−1

Γ(q)
|f(s, x(s))− f(s, y(s))|ds

|λ1η2|
∫ T

0

(T − s)q−2

Γ(q − 1)
|f(s, x(s))− f(s, y(s))|ds

+|λ2η1|
∫ T

0

(T − s)q−3

Γ(q − 2)
|f(s, x(s))− f(s, y(s))|ds

+|µ0ξ1|
∫ T

0

|g0(s, x(s))− g0(s, y(s))|ds

+|µ1η2|
∫ T

0

|g1(s, x(s))− g1(s, y(s))|ds

+|µ2η1|
∫ T

0

|g2(s, x(s))− g2(s, y(s))|ds

}

≤ ‖x− y‖ LT q

Γ(q + 1)
{
1 + |λ1ξ1|+ |λ2η2|qT−1 + |λ3η1|q(q − 1)T−2

}
+L0‖x− y‖|µ0ξ1|+ L1‖x− y‖|µ1η2|T + L2|µ2η1|T‖x− y‖

= (LΛ1 + L0|µ0ξ1|T + L1|µ1η2|T + L2|µ2η1|T )‖x− y‖.

As LΛ1 + (L0|µ0ξ1|+ L1|µ1η2|+ L2|µ2η1|)T < 1, therefore F is a contraction. Thus, the conclusion of
the theorem follows by the contraction mapping principle (Banach fixed point theorem). �

Our final existence result is based on Krasnoselskii’s fixed point theorem [25].

Lemma 3.4 (Krasnoselskii’s fixed point theorem) [25]. Let M be a closed bounded, convex and nonempty
subset of a Banach space X. Let A,B be the operators such that (i) Ax+By ∈M whenever x, y ∈M ;
(ii) A is compact and continuous and (iii) B is a contraction mapping. Then there exists z ∈ M such
that z = Az +Bz.
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Theorem 3.5 Let f, gj : [0, T ]×R → R be continuous functions satisfying the assumptions (A4)−(A5).
In addition we suppose that

(A6) |f(t, x)| ≤ ν(t), ∀(t, x) ∈ [0, T ]× R, and ν ∈ C([0, T ],R+);

(A7) |gj(t, x)| ≤ νj(t), j = 0, 1, 2, ∀(t, x) ∈ [0, T ]× R, and νj ∈ C([0, T ],R+).

If
L(Λ1Γ(q + 1)− T q)

Γ(q + 1)
+

(
L0|µ0ξ1|+ L1|µ1η2|+ L2|µ2η1|

)
T < 1, (7)

then problem (1) has at least one solution on [0, T ].

Proof. Letting supt∈[0,T ] |ν(t)| = ‖ν‖, supt∈[0,T ] |νj(t)| = ‖νj‖, j = 0, 1, 2, we fix

r ≥ Λ1‖ν‖+ (|µ0ξ1|‖ν0‖+ |µ1η2|‖ν1‖+ |µ2η1|‖ν2‖)T

and consider Br = {x ∈ C : ‖x‖ ≤ r}. We define the operators P and Q on Br as

(Px)(t) =
∫ t

0

(t− s)q−1

Γ(q)
f(s, x(s))ds,

(Qx)(t) = −λ0ξ1

∫ T

0

(T − s)q−1

Γ(q)
f(s, x(s))ds+ λ1η2

∫ T

0

(T − s)q−2

Γ(q − 1)
f(s, x(s))ds

+λ2η1

∫ T

0

(T − s)q−3

Γ(q − 2)
f(s, x(s))ds− µ0ξ1

∫ T

0

g0(s, x(s))ds

+µ1η2

∫ T

0

g1(s, x(s))ds+ µ2η1

∫ T

0

g2(s, x(s))ds, t ∈ [0, T ].

For x, y ∈ Br, we find that

‖Px+Qy‖ ≤ Λ1‖ν‖+
(
|µ0ξ1|‖ν0‖+ |µ1η2|‖ν1‖+ |µ2η1|‖ν2‖

)
T ≤ r.

Thus, Px + Qy ∈ Br. It follows from the assumption (A4) together with (7) that Q is a contraction
mapping. Continuity of f implies that the operator P is continuous. Also, P is uniformly bounded on
Br as

‖Px‖ ≤ T q

Γ(q + 1)
‖µ‖.

Now we prove the compactness of the operator P.
We define sup(t,x)∈[0,T ]×Br

|f(t, x)| = fs < ∞, and consequently, for t1, t2 ∈ [0, T ] with t2 < t1, we
have

|(Px)(t2)− (Px)(t1)| ≤ fs

Γ(q)

∣∣∣∣∫ t1

0

[(t2 − s)q−1 − (t1 − s)q−1]ds+
∫ t2

t1

(t2 − s)q−1ds

∣∣∣∣ ,
which is independent of x. Thus, P is equicontinuous. So P is relatively compact on Br. Hence, by the
Arzelá-Ascoli Theorem, P is compact on Br. Thus all the assumptions of Lemma 3.4 are satisfied. So
the conclusion of Lemma 3.4 implies that the boundary value problem (1) has at least one solution on
[0, T ]. �
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Example 3.6 Consider the following boundary value problem

cD5/2x(t) = L(cos t+ tan−1 x(t)), t ∈ [0, 1],

x(0) + x(1) =
∫ 1

0

x(s)
(1 + s)2

ds,

x′(0) + x′(1) =
1
2

∫ 1

0

( esx(s)
1 + 2es

+
1
2

)
ds,

x′′(0) + x′′(1) =
1
3

∫ 1

0

( x(s)
1 + es

+
3
4

)
ds,

(8)

where

f(t, x) = L(cos t+ tan−1 x(t)), g0(t, x) =
x(t)

(1 + t)2
, g1(t, x) =

etx(t)
1 + 2et

+
1
2
, g2(t, x) =

x(t)
1 + et

+
3
4

(L to be fixed later), and λ1 = λ2 = λ3 = −1, µ1 = 1, µ2 = 1
2 , µ3 = 1

3 .

Clearly, ξ1 = −1/2, ξ2 = 1/4, ξ3 = −1/16, η1 = 1/16, η2 = 1/4,

|f(t, x)− f(t, y)| ≤ L|x− y|, |g0(t, x)− g0(t, y)| ≤ |x− y|, |g1(t, x)− g1(t, y)| ≤
1
3
|x− y|,

|g2(t, x)− g2(t, y)| ≤
1
2
|x− y|,L0 = 1, L1 =

1
3
,L2 =

1
2
.

Λ1 =
T q

Γ(q + 1)
{
1 + |λ1ξ1|+ |λ2η2|qT−1 + |λ3η1|q(q − 1)T−2

}
=

151
120

√
π
,

and
LΛ1 +

{
L0|µ1ξ1|+ L1|µ2η2|+ L2|µ3η1|

}
< 1

implies that L < 215
√

π
604 . Thus, all the conditions of Theorem 3.3 are satisfied. So there exists at least

one solution of the problem (8) on [0, 1].

Remark 3.7 The existence results for a third-order nonlinear boundary vale problem of ordinary dif-
ferential equations with anti-periodic type integral boundary conditions follow as a special case if we take
q = 3 in the results of this paper. We emphasize that these results are new.
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In this paper, we introduce a notion of weakly increasing mappings with two vari-

ables. Several coupled common fixed point theorems for weakly increasing mappings

in ordered metric spaces are established. Then, by using a scalarization method, we
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1 Introduction

Recently, there is a large literature about fixed point theorems in cone metric spaces and

ordered cone metric spaces, and such problems have attracted more and more authors. We

refer the reader to [1–12] and references therein for some of recent developments on such

topics. Especially, Altun et al. [3] introduced the notion of weakly increasing mapping,

and obtained the following result:

Theorem 1.1. Let (X,v, d) be an ordered complete cone metric space, and (f, g) be a

weakly increasing pair of self-maps on X w.r.t. v. Suppose that the following conditions

hold:
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(i) there exist α, β, γ ≥ 0 such that α + 2β + 2γ < 1 and

d(fx, gy) ¹ αd(x, y) + β[d(x, fx) + d(y, gy)] + γ[d(x, gy) + d(y, fx)]

for all comparable x, y ∈ X;

(ii) f or g is continuous, or

(ii′) if an nondecreasing sequence {xn} converges to x in X, then xn v x for all n ∈ N.

Then f and g have a common fixed point x∗ ∈ X.

In fact, Theorem 1.1 can be seen as an “ordered” variant of a result of Abbas and

Rhoades [2]. Very recently, Kadelburg et al. [8] generalized Theorem 1.1 and obtained the

following theorem:

Theorem 1.2. Let (X,v, d) be an ordered complete cone metric space, and (f, g) be a

weakly increasing pair of self-maps on X w.r.t. v. Suppose that the following conditions

hold:

(i) there exist p, q, r, s, t ≥ 0 such that p+ q + r + s+ t < 1 and q = r or s = t, such that

d(fx, gy) ¹ pd(x, y) + qd(x, fx) + rd(y, gy) + sd(x, gy) + td(y, fx)

for all comparable x, y ∈ X;

(ii) f or g is continuous, or

(ii′) if an nondecreasing sequence {xn} converges to x in X, then xn v x for all n ∈ N.

Then f and g have a common fixed point x∗ ∈ X.

The aim of this paper is to make further studies on such problems, and to extend the

results in [3, 8]. Inspired by [3, Definition 14], we introduce the following concept of weakly

increasing mappings with two variables:

Definition 1.3. Let (X,v) be a partially ordered set. Two mappings F, G : X ×X → X

are said to be weakly increasing if

F (x, y) v G(F (x, y), F (y, x)), G(x, y) v F (G(x, y), G(y, x))

hold for all (x, y) ∈ X ×X.
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Example 1.4. Let X = [1,∞), endowed with the usual ordering ≤. Let F, G : X×X → X

be defined by F (x, y) = x + 2y, G(x, y) = xy2. Then, for all (x, y) ∈ X ×X,

F (x, y) = x + 2y ≤ G(F (x, y), F (y, x)) = G(x + 2y, y + 2x) = (x + 2y)(y + 2x)2

and

G(x, y) = xy2 ≤ F (G(x, y), G(y, x)) = F (xy2, x2y) = xy2 + 2x2y.

Thus, F and G are two weakly increasing mappings.

2 Main results in ordered metric spaces

Throughout this section, we denote by (X,v, d) an ordered metric space, i.e., v is a partial

order on the set X, and d is a metric on X. In addition, we call that (x, y), (u, v) ∈ X×X

are comparable if x v u and y v v or u v x and v v y. We will prove several coupled

common fixed point theorems for two weakly increasing mappings.

Theorem 2.1. Let (X,v, d) be a complete ordered metric space, and F, G : X ×X → X

be two weakly increasing mappings w.r.t. v. Suppose that the following assumptions hold:

(i) there exists λ ∈ [0, 1
2) such that

d(F (x, y), G(u, v)) ≤ λ · z

for all comparable (x, y), (u, v) ∈ X ×X, where

z = max{d(x, u), d(y, v), d(x, F (x, y)), d(y, F (y, x)), d(u,G(u, v)), d(v, G(v, u)),

d(x,G(u, v)), d(y, G(v, u)), d(u, F (x, y)), d(v, F (y, x))};

(ii) F or G is continuous, or X has the following property:

(P) if an nondecreasing sequence {xn} converges to x in X, then xn v x for all

n ∈ N.

Then F and G has a coupled common fixed point, i.e., there exists (x∗, y∗) ∈ X ×X such

that

F (x∗, y∗) = G(x∗, y∗) = x∗

and

F (y∗, x∗) = G(y∗, x∗) = y∗.
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Proof. Take x0, y0 ∈ X. Define two sequences {xn}, {yn} in X as follows: x2n+1 =

F (x2n, y2n), x2n+2 = G(x2n+1, y2n+1), y2n+1 = F (y2n, x2n) and y2n+2 = G(y2n+1, x2n+1)

for all n ≥ 0.

Since F and G are weakly increasing, we have

x1 = F (x0, y0) v G(F (x0, y0), F (y0, x0)) = G(x1, y1)

= x2 v F (G(x1, y1), G(y1, x1)) = F (x2, y2) = x3 v · · · ,

y1 = F (y0, x0) v G(F (y0, x0), F (x0, y0)) = G(y1, x1)

= y2 v F (G(y1, x1), G(x1, y1)) = F (y2, x2) = y3 v · · · .

So the sequences {xn}, {yn} are nondecreasing.

Since

(x2n+1, x2n+2) = (F (x2n, y2n), G(x2n+1, y2n+1)), (y2n+1, y2n+2) = (F (y2n, x2n), G(y2n+1, x2n+1)),

by the condition (i), we have

max{d(x2n+1, x2n+2), d(y2n+1, y2n+2)} ≤ λz, (2.1)

where

z = max{d(x2n, x2n+1), d(y2n, y2n+1), d(x2n+1, x2n+2), d(y2n+1, y2n+2), d(x2n, x2n+2), d(y2n, y2n+2)}.

Now, we consider the following three cases:

1◦ if z = max{d(x2n, x2n+1), d(y2n, y2n+1)}, then

max{d(x2n+1, x2n+2), d(y2n+1, y2n+2)} ≤ λz ≤ λ

1− λ
max{d(x2n, x2n+1), d(y2n, y2n+1)};

2◦ if z = max{d(x2n+1, x2n+2), d(y2n+1, y2n+2)}, then by (2.1), we have

max{d(x2n+1, x2n+2), d(y2n+1, y2n+2)} = 0 ≤ λ

1− λ
max{d(x2n, x2n+1), d(y2n, y2n+1)};

3◦ if z = max{d(x2n, x2n+2), d(y2n, y2n+2)}, it follows from (2.1) that

max{d(x2n+1, x2n+2), d(y2n+1, y2n+2)} ≤ λz

≤ λ[max{d(x2n, x2n+1), d(y2n, y2n+1)}+ max{d(x2n+1, x2n+2), d(y2n+1, y2n+2)}],

which means that

max{d(x2n+1, x2n+2), d(y2n+1, y2n+2)} ≤ λ

1− λ
max{d(x2n, x2n+1), d(y2n, y2n+1)}.
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Thus, in all cases, we have

max{d(x2n+1, x2n+2), d(y2n+1, y2n+2)} ≤ λ

1− λ
max{d(x2n, x2n+1), d(y2n, y2n+1)}.

By a similar proof, one can also show that

max{d(x2n, x2n+1), d(y2n, y2n+1)} ≤ λ

1− λ
max{d(x2n−1, x2n), d(y2n−1, y2n)}.

So we get

max{d(xn, xn+1), d(yn, yn+1)} ≤ λ

1− λ
max{d(xn−1, xn), d(yn−1, yn)}.

Since λ ∈ [0, 1
2), 0 ≤ λ

1−λ < 1. Then, by a standard proof, one can conclude that

{xn}, {yn} are Cauchy sequences. Thus, there exist x∗, y∗ ∈ X such that xn → x∗ and

yn → y∗ as n →∞.

In order to show that x∗, y∗ is a coupled common fixed point of F and G, we consider

the following three cases:

Case I. F is continuous.

Obviously, x∗ = F (x∗, y∗) and y∗ = F (y∗, x∗). Noticing that

d(x∗, G(x∗, y∗)) = d(F (x∗, y∗), G(x∗, y∗)), d(y∗, G(y∗, x∗)) = d(F (y∗, x∗), G(y∗, x∗)),

by (i’), we obtain

max{d(x∗, G(x∗, y∗)), d(y∗, G(y∗, x∗))} ≤ λ max{d(x∗, G(x∗, y∗)), d(y∗, G(y∗, x∗))},

which yields that

x∗ = G(x∗, y∗), y∗ = G(y∗, x∗).

Case II. G is continuous.

The proof is similar to that of Case I.

Case III. X has the property (P).

In view of xn v x∗ and yn v y∗ for all n ∈ N, one can use (i’) to obtain the following:

max{d(F (x∗, y∗), x2n+2), d(F (y∗, x∗), y2n+2)} ≤ λz∗,

where

z∗ = max{d(x∗, x2n+1), d(y∗, y2n+1), d(x∗, F (x∗, y∗)), d(y∗, F (y∗, x∗)), d(x2n+1, x2n+2),

d(y2n+1, y2n+2), d(x∗, x2n+2), d(y∗, y2n+2), d(x2n+1, F (x∗, y∗)), d(y2n+1, F (y∗, x∗))}.
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Letting n →∞, we get

max{d(x∗, F (x∗, y∗)), d(y∗, F (y∗, x∗))} ≤ λ max{d(x∗, F (x∗, y∗)), d(y∗, F (y∗, x∗))}.

Thus x∗ = F (x∗, y∗) and y∗ = F (y∗, x∗). Analogously to the above proof, one can also

obtain that x∗ = G(x∗, y∗) and y∗ = G(y∗, x∗).

Theorem 2.2. Suppose that all the assumptions of Theorem 2.1 except for (i) are satisfied,

and the following assumption holds:

(i’) there exists λ ∈ [0, 1) such that

d(F (x, y), G(u, v)) ≤ λ · w

for all comparable (x, y), (u, v) ∈ X ×X, where

w = max{d(x, u), d(y, v), d(x, F (x, y)), d(y, F (y, x)), d(u,G(u, v)), d(v, G(v, u)),
d(x,G(u, v)) + d(u, F (x, y))

2
,
d(y, G(v, u)) + d(v, F (y, x))

2
}.

Then, the conclusion of Theorem 2.1 also holds.

Proof. Let {xn}, {yn} be as in the proof of Theorem 2.1. By using (i’) and the construction

of {xn}, {yn}, one can conclude

max{d(x2n+1, x2n+2), d(y2n+1, y2n+2)} ≤ λw, (2.2)

where

w = max{d(x2n, x2n+1), d(y2n, y2n+1), d(x2n+1, x2n+2), d(y2n+1, y2n+2),
d(x2n, x2n+2)

2
,
d(y2n, y2n+2)

2
}.

Noting that
d(x2n, x2n+2)

2
≤ max{d(x2n, x2n+1), d(x2n+1, x2n+2)}

and
d(y2n, y2n+2)

2
≤ max{d(y2n, y2n+1), d(y2n+1, y2n+2)},

it follows that

w = max{d(x2n, x2n+1), d(y2n, y2n+1), d(x2n+1, x2n+2), d(y2n+1, y2n+2)}.

We also note that if w = max{d(x2n+1, x2n+2), d(y2n+1, y2n+2)}, then (2.2) yields w = 0,

and thus w = max{d(x2n, x2n+1), d(y2n, y2n+1)}. So we conclude

w = max{d(x2n, x2n+1), d(y2n, y2n+1)}.
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Then, (2.2) equals to

max{d(x2n+1, x2n+2), d(y2n+1, y2n+2)} ≤ λ max{d(x2n, x2n+1), d(y2n, y2n+1)}.

Similarly, one can also obtain

max{d(x2n, x2n+1), d(y2n, y2n+1)} ≤ λ max{d(x2n−1, x2n), d(y2n−1, y2n)}.

So we get

max{d(xn, xn+1), d(yn, yn+1)} ≤ λ max{d(xn−1, xn), d(yn−1, yn)}.

Then, by a standard proof, one can conclude that {xn}, {yn} are Cauchy sequences.

Thus, there exist x∗, y∗ ∈ X such that xn → x∗ and yn → y∗ as n →∞. The remaining

proof is similar to that of Theorem 2.1. So we omit the details.

Example 2.3. Let X = {1, 2}, v= {(1, 1), (2, 2)}, d(x, y) = |x−y|, and F = G : X×X →
X defined by

F (1, 2) = F (1, 1) = 1, F (2, 1) = F (2, 2) = 2.

It is easy to verify that all the assumptions of Theorem 2.1-2.2 are satisfied. So F has a

coupled fixed point. In fact, (1, 2) is obviously a coupled fixed point of F .

3 Ordered cone metric space cases

In this section, we suppose that E is a Banach space, P is a convex cone in E with

intP 6= ∅, ¹ is the partial ordering induced by P , e ∈ intP , and ξe : E → R is defined by

ξe(y) = inf{r ∈ R : y ∈ re− P}, y ∈ E.

First, let us recall some definitions about cone metric space. For more details, we refer

the reader to [1–12]. and references therein.

Definition 3.1. Let X be a nonempty set and P be a cone in a Banach space E. Suppose

that a mapping d : X ×X → E satisfies:

(i) θ ¹ ρ(x, y) for all x, y ∈ X and ρ(x, y) = θ if and only if x = y ,where θ is the zero

element of P ;
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(ii) ρ(x, y) = ρ(y, x) for all x, y ∈ X;

(iii) ρ(x, y) ¹ ρ(x, z) + ρ(z, y) for all x, y, z ∈ X.

Then ρ is called a cone metric on X and (X, ρ) is called a cone metric space.

Definition 3.2. Let (X, ρ) be a cone metric space, and {xn}, {yn} be sequences in X.

(i) Let x ∈ X. If ∀c À θ, there exists N ∈ N such that for all n > N , ρ(xn, x) ¿ c,

then we call that {xn} converges to x, and we denote it by lim
n→∞xn = x or xn → x,

n →∞.

(ii) If ∀c À θ, there exists N ∈ N such that for all n,m > N , ρ(xn, xm) ¿ c, then {xn}
is called a Cauchy sequence in X.

(iii) (X, ρ) is called complete if every Cauchy sequence in (X, ρ) is convergent.

(iv) A mapping F : X ×X → X is called continuous if xn → x and yn → y imply that

F (xn, yn) → F (x, y) as n →∞.

Next, let us recall some properties about the scalarization function ξe.

Theorem 3.3. The following statements are true:

(a) ξe(·) is positively homogeneous and continuous on E;

(b) y, z ∈ E with y ¹ z implies ξe(y) ≤ ξe(z);

(c) ξe(y + z) ≤ ξe(y) + ξe(z) for all y, z ∈ E;

(d) if (X, ρ) is a complete cone metric space, then (X, ξe ◦ρ) is a complete metric space;

(e) xn → x in (X, ρ) ⇐⇒ xn → x in (X, ξe ◦ ρ), as n →∞.

Proof. (a)-(b) has been prove in [7]. (e) can be seen from the proof of [7, Theorem 2.2].

Now, by using the scalarization function ξe, one can deduce many results on cone metric

spaces from our theorems in Section 2. For example, we have the following theorem:

Theorem 3.4. Let (X,v, ρ) be an ordered complete cone metric space, i.e., v is a partial

order on the set X, and ρ is a complete cone metric on X with the underlying cone P .

Suppose that F, G : X ×X → X are two weakly increasing mappings w.r.t. v satisfying

the following assumptions:
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(H1) there exists λ ∈ [0, 1
2) and

z ∈ {ρ(x, u), ρ(y, v), ρ(x, F (x, y)), ρ(y, F (y, x)), ρ(u,G(u, v)), ρ(v, G(v, u)),

ρ(x,G(u, v)), ρ(y, G(v, u)), ρ(u, F (x, y)), ρ(v, F (y, x))}

such that

d(F (x, y), G(u, v)) ¹ λ · z

for all comparable (x, y), (u, v) ∈ X ×X;

(H2) F or G is continuous, or X has the following property:

(P) if an nondecreasing sequence {xn} converges to x in X, then xn v x for all

n ∈ N.

Then F and G has a coupled common fixed point.

Proof. Let d = ξe ◦ρ. By (d) of Theorem 3.3, (X, d) is a complete metric space. Moreover,

by (H1) and (a)-(c) of Theorem 3.3, one can show that (i) of Theorem 2.1 holds. In

addition, by (H2) and (e) of Theorem 3.3, we know that (ii) of Theorem 2.1 holds. So

Theorem 2.1 yields the conclusion.

Theorem 3.5. Suppose that all the assumptions of Theorem 3.4 except for (H1) are

satisfied, and the following assumption holds:

(H1’) there exists λ ∈ [0, 1) and

z ∈ {ρ(x, u), ρ(y, v), ρ(x, F (x, y)), ρ(y, F (y, x)), ρ(u,G(u, v)), ρ(v, G(v, u)),
ρ(x,G(u, v)) + ρ(u, F (x, y))

2
,
ρ(y, G(v, u)) + ρ(v, F (y, x))

2
}

such that

d(F (x, y), G(u, v)) ¹ λ · z

for all comparable (x, y), (u, v) ∈ X ×X.

Then F and G has a coupled common fixed point.

Proof. By using Theorem 2.2, one can get the conclusion by a similar proof to that of

Theorem 3.4.
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On strictly and semistrictly quasi α−preinvex functions∗
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Abstract

In this paper, two new classes of generalized convex functions are introduced, which are called strictly quasi

α−preinvex functions and semistrictly quasi α−preinvex functions, respectively. The characterization of quasi

α−preinvex functions is established under the condition of lower semicontinuity, or upper semicontinuity or

semistrict quasi α−preinvexity. Furthermore, the characterization of semistrictly quasi α−preinvex functions is

also obtained under the condition of quasi α−preinvexity or lower semiconitinuity. A similar result can also be

obtained for strictly quasi α−preinvex functions. Finally, an important result stating that ‘a local minimum of

either a strictly quasi α−preinvex functions or a semistrictly quasi α−preinvex functions over α−invex set is

also a global minimum’ is established.

Keywords: Convex programming; Quasi α−preinvex functions; Semistrictly quasi α−preinvex functions; Strictly quasi

α−preinvex functions; Semicontinuity.

1 Introduction

Convexity and generalized convexity play a central role in mathematical economics, engineering and op-
timization theory. Therefore, the research on convexity and generalized convexity is one of most important
aspects in mathematical programming. In recent years, the concept of convexity has been generalized and
extended in several directions using novel and innovative techniques. An important and significant generaliza-
tion of convexity is the introduction of invexity, preinvexity, semistrictly preinvexity and (semistrictly, strictly)
prequasi-invexity, see [1–10] and references therein. Recently, Jeyakumar and Mond in [11, 12] introduced and
studied another class of generalized convex functions, which is known as strongly α−invex function. Noor and
Noor in [13] introduced a new class of generalized convex functions, which is called the strongly α−preinvex
functions, and established the equivalence among the strongly α−preinvex functions, strongly α−invex func-
tions and strongly αη−monotonicity of their differential under some suitable conditions. Fan and Guo in [14]
have studied the relationships among (pseudo, quasi) α−preinvexity, (strict, strong, pseudo, quasi) α−invexity
and (strict, strong, pseudo, quasi) αη−monotonicity in a systematic way.

In this paper, we introduce two new classes of generalized convex functions, which are called strictly quasi
α−preinvex functions and semistrictly quasi α−preinvex functions. We establish the relationships between the
quasi α−preinvex functions, strictly quasi α−preinvex functions and semistrictly quasi α−preinvex functions
under some suitable and appropriate conditions. Finally, we prove that for general mathematical programming
problem, when object function are strictly quasi α−preinvex and semistrictly quasi α−preinvex , a local min-
imum of a strictly quasi α−preinvex and semistrictly quasi α−preinvex functions over an invex set are also a
global minimum.

The paper is organized as follows. in Section 2, two new concepts concerning strictly quasi α−preinvex
functions and semistrictly quasi α−preinvex functions are introduced. In Section 3, the characterization of
quasi α−preinvex functions are introduced under the condition of lower semicontinuity or upper semicontinuity
or semistrict quasi α−preinvexity. The characterization of strictly quasi α−preinvex functions are introduced
in Section 4. Applications of two new types of generalized convex functions are given in Section 5.
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2 Preliminaries

Let H be a real Hilbert space with inner product 〈., .〉 and norm ‖.‖ and K be a nonempty subset of H.
Let f : K −→ H and α : K × K −→ R \ {0} be two real-valued functions and η(., .) : K × K −→ R be a
vector-valued mapping.

Firstly, we recall the following well-known results and concepts.
Definition 2.1[13]. Let y ∈ K. Then the set K is said to be α-invex at y with respect to η(., .) and α(., .), if,
for all x ∈ K, t ∈ [ 0, 1],

y + tα(x, y)η(x, y) ∈ K.

K is said to be an α-invex set with respect to η and α if K is α-invex at each y ∈ K. The α-invex set K is also
called αη-connected set. Note that the convex set with α(x, y) = 1 and η(x, y) = x− y is an invex set, but the
converse is not true.

From now on, unless otherwise specified, we assume that K is a nonempty α−invex set with respect to η
and α.
Definition 2.2[13]. The function f on the α-invex set K is said to be α-preinvex with respect to α and η, if

f(y + tα(x, y)η(x, y)) ≤ tf(x) + (1− t)f(y), ∀x, y ∈ K, t ∈ [0, 1].

Remark 2.1[13]. Every convex function is a preinvex function, but the converse is not true. For example, the
function f(x) = −|x| is not a convex function, but it is a preinvex function with respect to η and α(x, y) = 1,
where

η(x, y) =

{
x− y, if x ≤ 0, y ≤ 0 and x ≥ 0, y ≥ 0,

y − x, otherwise.

Definition 2.3[13]. The function f on the α-invex set K is said to be quasi α-preinvex with respect to α and
η, if

f(y + tα(x, y)η(x, y)) ≤ max{f(x), f(y)}, ∀x, y ∈ K,∀t ∈ [0, 1].

Definition 2.4[15]. The function f on the α-invex set K is said to be strongly quasi α-preinvex with respect
to α and η, if there exists a constant β > 0 such that

f(y + λα(x, y)η(x, y)) ≤ max{f(x), f(y)} − βλ(1− λ)‖η(x, y)‖2, ∀x, y ∈ K, ∀λ ∈ [0, 1].

We now introduce two new kinds of generalized convex function termed strictly quasi α−preinvex functions
and semistrictly quasi α−preinvex functions as follows.
Definition 2.5. The function f on the α-invex set K is said to be strictly quasi α-preinvex with respect to
α and η, if for any x, y ∈ K,x 6= y, such that

f(y + λα(x, y)η(x, y)) < max{f(x), f(y)}, ∀λ ∈ (0, 1).

Definition 2.6. The function f on the α-invex set K is said to be semistrictly quasi α-preinvex with respect
to α and η, if for any x, y ∈ K, f(x) 6= f(y), such that

f(y + λα(x, y)η(x, y)) < max{f(x), f(y)}, ∀λ ∈ (0, 1).

Remark 2.2. It is obvious that strict quasi α−preinvexity implies semistrict quasi α−preinvexity as well
as quasi α−preinvexity. However, quasi α−preinvexity does not imply semistrict quasi α−preinvexity, and
semistrict quasi α−preinvexity does not imply quasi α−preinvexity.
Example 2.1. This example illustrates that a quasi α−preinvex function is not a semistrictly quasi α−preinvex

function. Let f(x) =

{
−x, if x > 0,

0, if x ≤ 0,
and η(x, y) = x− y, and

α(x, y) =


1, if x ≥ 0, y ≥ 0,

1, if x ≤ 0, y ≤ 0,

−1, if x ≤ 0, y ≥ 0,

−1, if x ≥ 0, y ≤ 0.

Then, it is easy to verify that f is a quasi α−preinvex function with respect to α and η. However, let
y = −1, x = 1, λ = 1

2 , we have f(y) = f(−1) = 0 > −1 = f(1) = f(x). That is f(y) 6= f(x). And

f(y + λα(x, y)η(x, y)) = f((−1) + (1/2)α(1,−1)η(1,−1)) = f(−2) = 0

= max{f(1), f(−1)} = 0.
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This shows that f is not a semistrictly quasi α−preinvex function for the same α and η.
Example 2.2. This example illustrates that a semistrictly quasi α−preinvex function is not a quasi α−preinvex

function. Let f(x) =

{
−|x|, if |x| ≤ 1,

−1, if |x| ≥ 1,
and

η(x, y) =



x− y, if x ≥ 0, y ≥ 0,

x− y, if x ≤ 0, y ≤ 0,

x− y, if x > 1, y < −1,

x− y, if x < −1, y > 1,

−1, if − 1 ≤ x ≤ 0, y ≥ 0,

y − x, if x ≥ 0,−1 ≤ y ≤ 0,

y − x, if 0 ≤ x ≤ 1, y ≤ 0,

y − x, if x ≤ 0, 0 ≤ y ≤ 1.

α(x, y) =



1, if x ≥ 0, y ≥ 0,

1, if x ≤ 0, y ≤ 0,

1, if x > 1, y < −1,

1, if x < −1, y > 1,

x− y, if − 1 ≤ x ≤ 0, y ≥ 0,

1, if x ≥ 0,−1 ≤ y ≤ 0,

1, if 0 ≤ x ≤ 1, y ≤ 0,

1, if x ≤ 0, 0 ≤ y ≤ 1.

Then, it is easy to verify that f is a semistrictly quasi α−preinvex function with respect to α and η. However,
let x = 2, y = −2, λ = 1

2 . Since

f(y + λα(x, y)η(x, y)) = f(−2 + 1
2α(2,−2)η(2,−2)) = f(0) = 0

> −1 = f(2) = f(−2) = max{f(x), f(y)},

f is not a quasi α−preinvex function for the same α and η.
Remark 2.3. Example 2.2 also shows that a semistrictly quasi α−preinvex function is not necessarily a
semistrictly prequasi-invex function.

Definitions 2.3 to 2.6, with α(x, y) ≡ 1, reduce to those of perquasi-invex, strongly perquasi-invex, strictly
prequasi-invex, semistrictly prequasi-invex functions. See references [6, 7, 9] for details.
Example 2.3. This example illustrates that a quasi α−preinvex function is not a strongly quasi α−preinvex

function. Let f(x) =

{
−|x|, if |x| ≤ 1,

−1, if |x| ≥ 1,
and

η(x, y) =


x− y, if x ≥ 0, y ≥ 0,

x− y, if x ≤ 0, y ≤ 0,

y − 1, if x ≤ 0, y ≥ 0,

1 + y, if x ≥ 0, y ≤ 0.

α(x, y) =


1, if x ≥ 0, y ≥ 0,

1, if x ≤ 0, y ≤ 0,

−1, if x ≤ 0, y ≥ 0,

−1, if x ≥ 0, y ≤ 0.

Then, it is easy to verify that f is a quasi α−preinvex function with respect to α and η. However, for any
β > 0, if we let x = 1, y = 2, λ = 1

2 , we get

f(y + λα(x, y)η(x, y)) = f(2 + 1
2α(1, 2)η(1, 2) = −1

> max{f(1), f(2)} − 1
2 (1− 1

2 )β‖(1− 2)‖2 = −1− 1
4β.

Thus, f is not a strongly quasi α−preinvex function for the same α and η.
Example 2.4. This example illustrates that a strictly quasi α−preinvex function is not a strongly quasi
α−preinvex function. Let f(x) = −|x|, and η(x, y) = x− y, and

α(x, y) =


1, if x ≥ 0, y ≥ 0,

1, if x ≤ 0, y ≤ 0,

−1, if x ≤ 0, y ≥ 0,

−1, if x ≥ 0, y ≤ 0.

Then, it is easy to verify that f is a strictly quasi α−preinvex function with respect to α and η. However,
for any β > 0, if we let x = 5

β , y = 1
β , λ = 1

2 , we get

f(y + λα(x, y)η(x, y)) = f( 1
β + 1

2 · 1 · (
5
β −

1
β )) = − 3

β

> max{f( 5
β ), f( 1

β )} − 1
2 (1− 1

2 )β( 5
β −

1
β )2 = − 5

β .

Thus, f is not a strongly quasi α−preinvex function for the same α and η.
Example 2.5. This example illustrates that a semistrictly quasi α−preinvex function is not a strongly quasi
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α−preinvex function. Let f(x) =

{
−|x|, if |x| ≤ 1,

−1, if |x| ≥ 1,
and η(x, y) = x− y, and

α(x, y) =



1, if x ≥ 0, y ≥ 0,

1, if x ≤ 0, y ≤ 0,

1, if x > 1, y < −1,

1, if x < −1, y > 1,

−1, if − 1 ≤ x ≤ 0, y ≥ 0,

−1, if x ≥ 0,−1 ≤ y ≤ 0,

−1, if 0 ≤ x ≤ 1, y ≤ 0,

−1, if x ≤ 0, 0 ≤ y ≤ 1.

Then, it is easy to verify that f is a semistrictly quasi α−preinvex function with respect to α and η. However,
for any λ > 0, if we let x = 2, y = −2, λ = 1

2 , we get

f(y + λα(x, y)η(x, y)) = f((−2) + 1
2α(2,−2)η(2,−2)) = f(0) = 0

> max{f(2), f(−2)} − 1
4β(2 + 2)2 = −1− 4β.

Thus, f is not a strongly quasi α−preinvex function for the same α and η.
Remark 2.4. From Example 2.4 and 2.5, we know that strongly quasi α−preinvex functions are different
from strictly quasi α−preinvex functions and semistrictly quasi α−preinvex functions and quasi α−preinvex
functions.

We also need the following assumptions introduced in [13].
Condition A

f(y + α(x, y)η(x, y)) ≤ f(x), ∀x, y ∈ K.

which plays an important part in studying the properties of the α−preinvex (α−invex) functions. For α(x, y) =
1, Condition A reduces to the following for preinvex functions.
Condition B

f(y + η(x, y)) ≤ f(x), ∀x, y ∈ K.

For the applications of Condition B see references [9, 16].
Condition C Let η(., .) : K ×K −→ R and α(., .) : K ×K −→ R\0 satisfy the assumptions

η(y, y + λα(x, y)η(x, y)) = −λη(x, y),

η(x, y + λα(x, y)η(x, y)) = (1− λ)η(x, y), ∀x, y ∈ K, λ ∈ [ 0, 1].

3 Characterizations of quasi α−preinvx functions

First of all, we give two important lemmas.
Lemma 3.1[15]. Let K be an α-invex set with respect to α and η, for any x, y ∈ K,λ ∈ [0, 1], if α and η satisfy
the assumptions

η(y, y + λα(x, y)η(x, y)) = −λη(x, y),

α(x, y) = α(y, y + λα(x, y)η(x, y)),

then ∀λ1, λ2 ∈ [0, 1] and λ2 < λ1, the following equalities hold
(i) η(y + λ1α(x, y)η(x, y), y + λ2α(x, y)η(x, y)) = (λ1 − λ2η(x, y),
(ii) α(x, y) = α(y + λ1α(x, y)η(x, y), y + λ2α(x, y)η(x, y)).
Lemma 3.2. Let K be an α-invex set with respect to α and η, and Condition A and C hold. Assume that
the following conditions are satisfied:
(i) there exists a θ ∈ (0, 1) such that, for all x, y ∈ K,

f(y + θα(x, y)η(x, y)) ≤ max{f(x), f(y)} (3.1)

(ii) for any x, y ∈ K,λ ∈ K[0, 1],

η(y, y + λα(x, y)η(x, y)) = −λη(x, y),

α(x, y) = α(y, y + λα(x, y)η(x, y)).
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Then the set defined by

A = {λ ∈ [0, 1]|f(y + λα(x, y)η(x, y)) ≤ max{f(x), f(y)}, ∀x, y ∈ K}

is dense in the interval [ 0, 1].
Proof. By contradiction. Suppose that A is not dense in [ 0, 1]. Then, there exists a λ0 ∈ (0, 1) and a
neighborhood N(λ0) of λ0 such that

N(λ0) ∩A = ∅. (3.2)

From Condition A and (3.1), we have

{λ ∈ A|λ ≥ λ0} 6= ∅
{λ ∈ A|λ ≤ λ0} 6= ∅.

Define

λ1 = inf{λ ∈ A|λ ≥ λ0} (3.3)

λ2 = sup{λ ∈ A|λ ≤ λ0} (3.4)

Then, by (3.2), we have 0 ≤ λ2 < λ1 ≤ 1.
Since {θ, (1− θ)} ∈ (0, 1), we can choose u1, u2 ∈ A satisfying u1 ≥ λ1, u2 ≤ λ2 such that

max{θ, (1− θ)}(u1 − u2) < λ1 − λ2. (3.5)

Next, let us consider λ = θu1 + (1− θ)u2. From λ2 < λ1 and Lemma 3.1, for any x, y ∈ K, we have

y + λα(x, y)η(x, y)

= y + (θu1 + (1− θ)u2)α(x, y)η(x, y)

= y + u2α(x, y)η(x, y) + θα(x, y) · (u1 − u2)η(x, y)

= y + u2α(x, y)η(x, y)

+θα(y + u1α(x, y)η(x, y), y + u2α(x, y)η(x, y))η(y + u1α(x, y)η(x, y), y + u2α(x, y)η(x, y)).

Hence, from (3.1) and the fact that u1, u2 ∈ A, we get

f(y + λα(x, y)η(x, y))

= f(y + u2α(x, y)η(x, y)

+θα(y + u1α(x, y)η(x, y), y + u2α(x, y)η(x, y))η(y + u1α(x, y)η(x, y), y + u2α(x, y)η(x, y)))

≤ max{f(y + u1α(x, y)η(x, y)), f(y + u2α(x, y)η(x, y))}
≤ max{max{f(x), f(y)},max{f(x), f(y)}}
= max{f(x), f(y)}.

That is, λ ∈ A.
If λ ≥ λ0, then it follows from (3.5) that

λ− u2 = θ(u1 − u2) < λ1 − λ2,

and therefore λ < λ1. Because of λ ≥ λ0 and λ ∈ A this is a contradiction to (3.3). Similarly, λ ≤ λ0 provides
a contradiction to (3.4). Hence, A is dense in [ 0, 1].
Theorem 3.1. Let K be an α-invex set with respect to α and η. If the following assumptions hold:
(i) Condition A and C are satisfied;
(ii) for any x, y ∈ K, θ ∈ [0, 1],

α(x, y) = α(x, y + θα(x, y)η(x, y)) = α(y, y + θα(x, y)η(x, y));

(iii) f is an upper semicontinuous function;
then f is quasi α−preinvex function on K if and only if exists a θ ∈ (0, 1), such that, for all x, y ∈ K

f(y + θα(x, y)η(x, y)) ≤ max{f(x), f(y)}.

Proof. The necessity is obvious from Definition of quasi α−preinvex functions. We only prove the sufficiency.
Suppose that f is not quasi α−preinvex functions on K. Then, there exist x, y ∈ K and λ ∈ (0, 1) such that

f(y + λα(x, y)η(x, y)) > max{f(x), f(y)}. (3.6)
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Let

z = y + λα(x, y)η(x, y),

A = {λ ∈ [0, 1]|f(y + λα(x, y)η(x, y)) ≤ max{f(x), f(y)},∀x, y ∈ K}.

From Lemma 3.2, there exists a {λn} ⊂ A, λn < λ such that λn → λ, n→∞.
Define yn = z − λn

1−λn
α(x, z)η(x, z). From Condition C and (ii), we have yn = y + λ−λn

1−λn
α(x, y)η(x, y). Then,

yn → y, n→∞.

Since K is an α−invex set, it follows that, for sufficiently large n, yn ∈ K.
Again from Condition C and (ii), we get

yn + λnα(x, yn)η(x, yn)

=y +
λ− λn
1− λn

α(x, y)η(x, y)

+ λnα(x, y +
λ− λn
1− λn

α(x, y)η(x, y))η(x, y +
λ− λn
1− λn

α(x, y)η(x, y))

=y +
λ− λn
1− λn

α(x, y)η(x, y) + λn ·
1− λ
1− λn

α(x, y)η(x, y)

=y + λα(x, y)η(x, y)

=z.

(3.7)

By the upper semicontinuity of f on K, for any ε > 0, there exists an N > 0 such that

f(yn) ≤ f(y) + ε, for n > N.

Therefore, from (3.7) and λn ∈ A, we have

f(z) = f(yn + λnα(x, yn)η(x, yn))

≤ max{f(x), f(yn)}
≤ max{f(x), f(y) + ε}, for n > N.

Since ε > 0 is arbitrarily small, we have

f(z) ≤ max{f(x), f(y)},

which contradicts the inequality (3.6). Thus, f is a quasi α−preinvex function for same α and η on K.
Remark 3.1. By [15, example 3.1], there exist α and η that satisfy both Condition C and the equality
α(x, y) = α(x, y + θα(x, y)η(x, y)) = α(y, y + θα(x, y)η(x, y)). For example, when α(x, y) ≡ 1, the Condition C
above is exectly the same as Condition C in [5].
Theorem 3.2. Let K be an α-invex set with respect to η and α. If the following assumptions hold:
(i) Condition A and C are satisfied;
(ii) for any x, y ∈ K, θ ∈ [0, 1],

α(x, y) = α(x, y + θα(x, y)η(x, y)) = α(y, y + θα(x, y)η(x, y));

(iii) f is lower semicontinuous functions;
then f is quasi α−preinvex functions on K if and only if for any x, y ∈ K, there exists a θ ∈ (0, 1) such that

f(y + θα(x, y)η(x, y)) ≤ max{f(x), f(y)}.

Proof. The necessity is obvious from Definition of quasi α−preinvex functions. We only prove the sufficiency.
By contradiction, we assume that there exist distinct x, y ∈ K and θ ∈ (0, 1) such that

f(y + θα(x, y)η(x, y)) > max{f(x), f(y)}.

Let

z = y + θα(x, y)η(x, y),

xt = z + tα(x, z)η(x, z).

From Condition C and (ii), we have

xt = y + θα(x, y)η(x, y) + tα(x, y + θα(x, y)η(x, y))η(x, y + θα(x, y)η(x, y))

= y + θα(x, y)η(x, y) + tα(x, y) · (1− θ)η(x, y)

= y + [θ + t(1− θ)]α(x, y)η(x, y).
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Let

B = {xt ∈ K|t ∈ (0, 1], f(xt) ≤ max{f(x), f(y)}},
u = inf{t ∈ (0, 1]|xt ∈ B}.

It is obvious that x1 ∈ B from Condition A, but x0 /∈ B. Thus, xt /∈ B, 0 ≤ t < u, and there exist tn ≥ u, xtn ∈ B
(from Lemma 3.2), such that

tn → u, u→∞.

Since f is a lower semicontinuous function, we have

f(xu) ≤ lim inf
n→∞

f(xtn) ≤ max{f(x), f(y)}.

Hence, xu ∈ B.
Similarly, let yt = z + (1− t)α(y, z)η(y, z). From Condition C and (ii), we have

yt = y + tθα(x, y)η(x, y).

Let

D = {yt ∈ K|t ∈ [0, 1), f(yt) = f(y + tθα(x, y)η(x, y)) ≤ max{f(x), f(y)}},
v = sup{t ∈ [0, 1)|yt ∈ D}.

It is obvious that

y0 = y ∈ D,
y1 = y + θα(y, z)η(y, z) = z /∈ D,
yt /∈ D, v < t ≤ 1,

and there exist tn ≤ v, ytn ∈ D (from Lemma 3.2), such that

tn → v, n→∞.

Since f is a lower semicontinuous function, we have

f(yn) ≤ lim inf
n→∞

f(ytn) ≤ max{f(x), f(y)}.

Hence, yv ∈ D.
Let

θ1 = vθ,

θ2 = θ + u− uθ.

Then, 0 ≤ θ1 < θ < θ2 ≤ 1.
Now, from Condition C and (ii), we have

xu + λα(yv, xu)η(yv, xu)

=y + θ2α(x, y)η(x, y)

+ λα(y + θ1α(x, y)η(x, y), y + θ2α(x, y)η(x, y))

· η(y + θ1α(x, y)η(x, y), y + θ2α(x, y)η(x, y))

=y + θ2α(x, y)η(x, y) + λα(x, y) · (θ1 − θ2)η(x, y)

=y + [λθ1 + (1− λ)θ2]α(x, y)η(x, y), ∀λ ∈ [0, 1].

Hence, from the definitions of θ1 and θ2, we have

f(xu + λα(yv, xu)η(yv, xu)) = f{y + [λθ1 + (1− λ)θ2]α(x, y)η(x, y)}
> max{f(x), f(y)}
≥ max{f(yv), f(xu)}, ∀λ ∈ (0, 1),

contradicting the assumptions of the theorem.
Theorem 3.3. Let K be an α−invex set with respect to α and η. If the following assumptions hold:
(i) Condition C is satisfied;
(ii) for any x, y ∈ K, θ ∈ [0, 1],

α(x, y) = α(x, y + θα(x, y)η(x, y)) = α(y, y + θα(x, y)η(x, y));

1397



Tang: strictly and semistrictly quasi α−preinvex functions

(iii) f is a semistrictly α−preinvex functions;
Then, f is a quasi α−preinvex function on K if and only if the following condition is satified:
there exists a θ ∈ (0, 1) such that, for all x, y ∈ K,

f(y + θα(x, y)η(x, y)) ≤ max{f(x), f(y)}. (3.8)

Proof. The necessity is obvious from Definition of quasi α−preinvex functions. We prove the sufficiency.
Suppose that there exist x, y ∈ K and λ ∈ (0, 1) such that

f(y + λα(x, y)η(x, y)) > max{f(x), f(y)}.

Without loss of generality, assume that f(x) ≥ f(y) and let z = y + λα(x, y)η(x, y). Then,

f(z) > f(x). (3.9)

If f(x) > f(y), it follows from the semistrict quasi α− preinvexity of f that

f(z) < f(x),

contradicting (3.9).
If f(x) = f(y), then (3.9) implies that

f(z) > f(x) = f(y). (3.10)

There are two cases to be considered.
Case 1 0 < λ < θ < 1. Let z1 = y + λ

θα(x, y)η(x, y). Thus, from Condition C and (ii), we have

y + θα(z1, y)η(z1, y)

= y + θα(y + λ
θα(x, y)η(x, y), y)η(y + λ

θα(x, y)η(x, y), y)

= y + θα(x, y)η(y + λ
θα(x, y)η(x, y), y + λ

θα(x, y)η(x, y)− λ
θα(x, y)η(x, y))

= y + θα(x, y)η(y + λ
θα(x, y)η(x, y), y + λ

θα(x, y)η(x, y)

+α(y, y + λ
θα(x, y)η(x, y))η(y, y + λ

θα(x, y)η(x, y)))

= y − θη(y, y + λ
θα(x, y)η(x, y))

= y + θα(x, y)η(x, y)

= z.

According to (3.8), we have f(z) ≤ max{f(z1), f(y)}. From (3.10) and the above inequality, it follows that

f(z) ≤ f(z1). (3.11)

Let b = λ(1−θ)
θ(1−λ) . Since 0 < λ < θ < 1, it is easy to show that 0 < b < 1. Thus, from Condition C and (ii), we

have

z + bα(x, z)η(x, z)

= y + λα(x, y)η(x, y) + bα(x, y + λα(x, y)η(x, y))η(x, y + λα(x, y)η(x, y))

= y + [λ+ b(1− λ)]α(x, y)η(x, y)

= y + [λ+ λ · (1−θ)θ ]α(x, y)η(x, y)

= y + λ
θα(x, y)η(x, y)

= z1.

Since f is a semistrictly quasi α−preinvex function, it follows from inequality (3.10) and the above equality that

f(z1) < max{f(x), f(z)} = f(z),

contradicting (3.11).
Case 2 0 < θ < λ < 1. In this case, we still get a contradiction by just exchanging the roles of θ and 1− θ and
the roles of λ and λ− θ in Case 1.
Theorem 3.4. Let K be an α-invex set with respect to α and η. If the following assumptions hold:
(i) Condition A and C are statisfied;
(ii) for any x, y ∈ K, θ ∈ [0, 1],

α(x, y) = α(x, y + θα(x, y)η(x, y)) = α(y, y + θα(x, y)η(x, y));

(iii) f is lower semicontinuous functions and if there exists a θ ∈ (0, 1) such that, for every x, y ∈ K, f(x) 6= f(y)
implies

f(y + (1− θ)α(x, y)η(x, y)) < max{f(x), f(y)}, ) (3.12)
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then f is a quasi α−preinvex function for same η and α on K.
Proof. By Theorem 3.2, we need only to show that, for each x, y ∈ K, there exists a λ ∈ (0, 1) such that

f(y + λα(x, y)η(x, y)) ≤ max{f(x), f(y)}, (3.13)

By contradiction, we assume that there exist x, y ∈ K such that

f(y + λα(x, y)η(x, y)) > max{f(x), f(y)}, ∀λ ∈ (0, 1). (3.14)

If f(x) 6= f(y), it follows from (3.12) that

f(y + (1− θ)α(x, y)η(x, y)) < max{f(x), f(y)},

which contradicts (3.14).
If f(x) = f(y), then (3.14) implies

f(y + λα(x, y)η(x, y)) > f(x) = f(y), ∀λ ∈ (0, 1). (3.15)

By (3.15), we obtain

f(y + λα(x, y)η(x, y) + (1− θ)α(x, y + λα(x, y)η(x, y))η(x, y + λα(x, y)η(x, y)))

= f(y + λα(x, y)η(x, y) + (1− θ)α(x, y) · (1− λ)η(x, y))

= f(y + [λ+ (1− θ)(1− λ)]α(x, y)η(x, y)

> f(y), ∀λ ∈ (0, 1).

(3.16)

And, from (3.12) and (3.15), we have

f [y + λα(x, y)η(x, y) + (1− θ)α(x, y + λα(x, y)η(x, y))η(x, y + λα(x, y)η(x, y))]

< max{f(x), f(y + λα(x, y)η(x, y))}
= f(y + λα(x, y)η(x, y)), ∀λ ∈ (0, 1).

(3.17)

Again by (3.12),(3.16), (3.17), we have

f(y + θγα(x, y)η(x, y))

= f(y + γα(x, y)η(x, y)− (1− θ)γα(x, y)η(x, y))

= f(y + γα(x, y)η(x, y) + (1− θ)α(y, y + γα(x, y)η(x, y))η(y, y + γα(x, y)η(x, y)))

< max{f(y), f(y + γα(x, y)η(x, y))}
= f(y + γα(x, y)η(x, y))

< f(y + λα(x, y)η(x, y)), ∀λ ∈ (0, 1),

where γ = λ+ (1− θ)(1− λ).
Let λ = θ

1+θ ∈ (0, 1). Then, the above inequality implies

f(y +
θ

1 + θ
α(x, y)η(x, y)) < f(y +

θ

1 + θ
α(x, y)η(x, y)),

which is a contradiction.

4 Characterizations of Strictly quasi α−preinvex Functions

Theorem 4.1. Let K be an α-invex set with respect to α and η. If the following assumptions hold:
(i) Condition C is satisfied;
(ii) for any x, y ∈ K, θ ∈ [0, 1],

α(x, y) = α(x, y + θα(x, y)η(x, y)) = α(y, y + θα(x, y)η(x, y));

Then f is a strictly quasi α−preinvex function on K if and only if the following two conditions hold:
(a) f is a quasi α−preinvex function on K;
(b) there exists an θ ∈ (0, 1) such that, for every pair of distinct points x, y ∈ K,

f(y + θα(x, y)η(x, y)) < max{f(x), f(y)}. (4.1)

Proof. The necessity is obvious from Definition 2.3 and 2.5. We prove the sufficiency. Suppose that f is not
a strictly quasi α−preinvex function for the same α and η on K. Then, there exist x, y ∈ K,x 6= y, λ ∈ (0, 1)
such that

f(y + λα(x, y)η(x, y)) ≥ max{f(x), f(y)}.
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Since f is quasi α−preinvex function, we have

f(y + λα(x, y)η(x, y)) ≤ max{f(x), f(y)}.

Hence,

f(y + λα(x, y)η(x, y)) = max{f(x), f(y)}. (4.2)

Let us choose β1, β2 so that

0 < β1 < λ < β2 < 1,

where λ = θβ1 + (1− θ)β2.
Let

x = y + β1α(x, y)η(x, y),

y = y + β2α(x, y)η(x, y).

Then, from Condition C and (ii), we get

y + θα(x, y)η(x, y)

= y + β2α(x, y)η(x, y)

+θα(y + β1α(x, y)η(x, y), y + β2α(x, y)η(x, y))η(y + β1α(x, y)η(x, y), y + β2α(x, y)η(x, y))

= y + β2α(x, y)η(x, y) + θα(x, y) · (β1 − β2)η(x, y)

= y + λα(x, y)η(x, y).

That is,

y + θα(x, y)η(x, y) = y + λα(x, y)η(x, y). (4.3)

Again, since f is quasi α−preinvex function, we have

f(x) ≤ max{f(x), f(y)}, (4.4)

f(y) ≤ max{f(x), f(y)}. (4.5)

By (4.1) and (4.3)-(4.5), we have

f(y + λα(x, y)η(x, y)) < max{f(x), f(y)},

which contradicts the inequality (4.2).
Theorem 4.2. Let f be a lower semicontinuous function and satisfy Condition A, and α(x, y) = α(x, y +
θα(x, y)η(x, y)) = α(y, y+ θα(x, y)η(x, y)),∀x, y ∈ K, θ ∈ [0, 1]. Then, f is a strictly quasi α−preinvex function
on K if and only if the following condition hold:
there exists an θ ∈ (0, 1), for every pair of distinct points x, y ∈ K, we have

f(y + θα(x, y)η(x, y)) < max{f(x), f(y)}.

Theorem 4.3. Let K be an α-invex set with respect to α and η, and η satisfy Condition C, and α(x, y) =
α(x, y+ θα(x, y)η(x, y)) = α(y, y+ θα(x, y)η(x, y)),∀x, y ∈ K, θ ∈ [0, 1]. Then, f is a strictly quasi α−preinvex
function on K if and only if f is a semistrictly quasi α−preinvex function and the following condition hold:
there exists an θ ∈ (0, 1), for every pair of distinct points x, y ∈ K, we have

f(y + θα(x, y)η(x, y)) < max{f(x), f(y)}. (4.6)

Proof. The necessity is obvious from Definition 2.5 and 2.6. We prove the sufficiency. Since f is a semistrictly
quasi α−preinvex function, it suffices to show that f(x) = f(y), x 6= y, implies

f(y + λα(x, y)η(x, y)) < max{f(x), f(y)}, ∀λ ∈ (0, 1).

From (4.6) and for each x, y ∈ K,x 6= y, we have

f(y + θα(x, y)η(x, y)) < f(x) = f(y). (4.7)

Let x = y + θα(x, y)η(x, y). Let λ ∈ (0, 1). If λ < θ, then, µ = (θ − λ)/θ ∈ (0, 1).
From Condition C and (ii), we have

x+ µα(y, x)η(y, x) = y + λα(x, y)η(x, y).
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Since f is semistrictly quasi α−preinvex functions for same η and α on K and (4.7) holds, we have

f(y + λα(x, y)η(x, y)) = f(x+ µα(y, x)η(y, x))

< max{f(y), f(x)}
= f(y).

If λ > θ, then

ν = (λ− θ)/(1− θ) ∈ (0, 1).

From Condition C and (ii), we have

x+ να(x, x)η(x, x) = y + λα(x, y)η(x, y).

Since f is semistrictly quasi α−preinvex function on K and (4.7) holds, we have

f(y + λα(x, y)η(x, y)) = f(x+ να(x, x)η(x, x))

< max{f(x), f(x)}
= f(x).

This completes the proof.

5 Applications of Strictly and Semistrictly quasi α−preinvex Func-

tions

Let the problem of minimizing f(x) subject to x ∈ K be denoted by (P ). The following two theorems show
that a local minimum of a strictly quasi α−preinvex functions and semistrictly quasi α−preinvex functions over
an α−invex set are also a global minimum.
Theorem 5.1. Let K be a nonempty α−invex set with respect to α and η, and f be a strictly quasi α−preinvex
for the same α and η on K. If x ∈ K is a local minimum to the problem (P ), then x is a global minimum.
Proof. Assume that x ∈ K is a local minimum to the problem (P ). Then there exists an ε-neighborhood
Nε(x) ⊂ K around x such that

f(x) ≤ f(x), ∀x ∈ K ∩Nε(x). (5.1)

Suppose that x is not a global minimum of (P ), then there exists a x∗ ∈ K such that

f(x∗) < f(x).

Since K is a nonempty α−invex set with respect to α and η, and f is strictly quasi α−preinvex function, for
any λ ∈ (0, 1), x+ λα(x∗, x)η(x∗, x) ∈ K, we have

f(x+ λα(x∗, x)η(x∗, x)) < max{f(x∗), f(x)}
< f(x)

i.e., for any λ ∈ (0, 1), we have

f(x+ λα(x∗, x)η(x∗, x)) < f(x).

Thus, for a sufficiently small λ > 0, we have

x+ λα(x∗, x)η(x∗, x) ∈ K ∩Nε(x),

which is a contradiction to (5.1). This completes the proof.
Theorem 5.2. Let K be a nonempty α−invex set with respect to α and η, and f be a semistrictly quasi
α−preinvex for the same α and η on K. If x ∈ K is a local minimum to the problem (P ), then x is a global
minimum.
Proof. Assume that x ∈ K is a local minimum to the problem (P ). Then there exists an ε-neighborhood
Nε(x) ⊂ K around x such that

f(x) ≤ f(x), ∀x ∈ K ∩Nε(x). (5.2)

Suppose that x is not a global minimum of (P ), then there exists an x∗ ∈ K such that

f(x∗) < f(x).
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Since K is a nonempty α−invex set with respect to η and α, and f is semistrictly quasi α−preinvex function,
for any λ ∈ (0, 1), x+ λα(x∗, x)η(x∗, x) ∈ K, we have

f(x+ λα(x∗, x)η(x∗, x)) < max{f(x∗), f(x)}
< f(x)

i.e., for any λ ∈ (0, 1), we have

f(x+ λα(x∗, x)η(x∗, x)) < f(x).

Thus, for a sufficiently small λ > 0, we have

x+ λα(x∗, x)η(x∗, x) ∈ K ∩Nε(x),

which is a contradiction to (5.2). This completes the proof.
Remark 5.1. Theorem 5.1 and 5.2 illustrat that strictly quasi α−preinvex functions and semistrictly quasi
α−preinvex functions are very important in mathematical programming.
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ON STABILITY OF FUNCTIONAL INEQUALITIES AT RANDOM LATTICE

ϕ-NORMED SPACES

SUNG JIN LEE AND REZA SAADATI∗

Abstract. We establish some stability results concerning the following functional inequalities

‖ f(x) + f(y) + f(z) ‖≤ ‖f(x + y + z)‖

and

‖ f(x) + f(y) + 2f(z) ‖≤
∥∥∥∥2f

(
x + y

2
+ z

)∥∥∥∥
in the setting of latticetic random ϕ-normed spaces.

1. Introduction and preliminaries

Let L = (L,≥L) be a complete lattice, i.e., a partially ordered set in which every nonempty subset

admits supremum and infimum, and 0L = inf L, 1L = supL. The space of latticetic random distribution

functions, denoted by ∆+
L , is defined as the set of all left continuous non-decreasing mappings F :

R ∪ {−∞,+∞} → L with F (0) = 0L, F (+∞) = 1L.

D+
L ⊆ ∆+

L is defined as D+
L = {F ∈ ∆+

L : l−F (+∞) = 1L}, where l−f(x) denotes the left limit of

the function f at the point x. The space ∆+
L is partially ordered by the usual point-wise ordering of

functions, i.e., F ≥ G if and only if F (t) ≥L G(t) for all t in R. The maximal element for ∆+
L in this

order is the distribution function given by

ε0(t) =

 0L, if t ≤ 0,

1L, if t > 0.

The concept of Menger probabilistic ϕ-normed space was introduced by Goleţ in [1].

Let ϕ be a function defined on the real field R into itself, with the following properties:

(a) ϕ(−t) = ϕ(t) for every t ∈ R;

(b) ϕ(1) = 1;

(c) ϕ is strictly increasing and continuous on [0,∞), ϕ(0) = 0 and limα→∞ ϕ(α) =∞;

(d) ϕ(st) = ϕ(s)ϕ(t) for every t, s > 0.

An example of such functions is: ϕ(t) = |t|p, p ∈ (0,∞) (see [2, Theorem 1.49]).
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2 LEE AND SAADATI

Definition 1.1. A latticetic random ϕ-normed space is a triple (X,µ,∧), where X is a vector space and

µ is a mapping from X into D+
L (for x ∈ X, the function µ(x) is denoted by µx, and µx(t) is the value

µx at t ∈ R) such that the following conditions hold:

(LRN1) µx(t) = ε0(t) for all t > 0 if and only if x = 0;

(LRN2) µαx(t) = µx

(
t

ϕ(α)

)
for all x in X, α 6= 0 and t ≥ 0;

(LRN3) µx+y(t+ s) ≥L ∧(µx(t), µy(s)) for all x, y ∈ X and t, s ≥ 0.

We note that from (LPN2) it follows µ−x(t) = µx(t) (x ∈ X, t ≥ 0).

It is also worth noting that latticetic random ϕ-normed spaces include, in a natural way, p-normed

spaces ([1, 3]).

Example 1.2. Let L = [0, 1]× [0, 1] and operation ≥L be defined by:

L = {(a1, a2) : (a1, a2) ∈ [0, 1]× [0, 1] and a1 + a2 ≤ 1},

(b1, b2) ≥L (a1, a2)⇐⇒ a1 ≤ b1, a2 ≥ b2, ∀a = (a1, a2), b = (b1, b2) ∈ L.

Then (L,≥L) is a complete lattice (see [4]). In this complete lattice, we denote its units by 0L = (0, 1)

and 1L = (1, 0). Let (X, ‖ · ‖) be a normed space. Let µ be a mapping defined by

µx(t) =
( t

t+ ‖x‖p
,
‖x‖p

t+ ‖x‖p
)
, ∀t ∈ R+, 0 < p ≤ 1.

Then (X,µ,∧) is a latticetic random ϕ-normed spaces. Note that, here, ϕ(α) = αp.

Definition 1.3. Let (X,µ,∧) be a latticetic random ϕ-normed spaces.

(1) A sequence (xn) in X is said to be convergent to x in X if, for every 0 < t ∈ R the sequence

(µxn−x(t)) is order convergent to 1L.

(2) A sequence (xn) in X is called Cauchy sequence if, for every 0 < t ∈ R the sequence (µxn−xm(t))

is order convergent to 1L whenever n,m tend to ∞.

(3) A latticetic random ϕ-normed spaces (X,µ,∧) is said to be complete if and only if every Cauchy

sequence in X is order convergent to a point in X.

Theorem 1.4. If (X,µ,∧) is a latticetic random ϕ-normed space and {xn} is a sequence such that

xn → x, then limn→∞ µxn(t) = µx(t).

Proof. The proof is the same as classical random normed spaces, see [5]. �

Lemma 1.5. Let (X,µ,∧) be a latticetic random ϕ-normed space and x ∈ X. If

µx(t) = C, for all t > 0,

then C = 1L and x = 0.

Proof. Let µx(t) = C for all t > 0. Since Ran(µ) ⊆ D+
L , we have C = 1L and by (LRN1) we conclude

that x = 0. �
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The generalized Hyers-Ulam–Rassias stability of the functional inequality (1.1) has been proved by

Fechner [6] and Gilányi [7]. Gilányi [8] showed that if f satisfies the functional inequality

‖ 2f(x) + 2f(y)− f(x− y) ‖≤‖ f(x+ y) ‖(1.1)

then f also satisfies the Jordan-von Neumann functional equation

2f(x) + 2f(y) = f(x− y) + f(x+ y),

see also [9]. Park, Cho and Han [10] investigated the Cauchy additive functional inequality

‖ f(x) + f(y) + f(z) ‖≤‖ f(x+ y + z) ‖(1.2)

and the Cauchy-Jensen additive functional inequality

‖ f(x) + f(y) + 2f(z) ‖≤‖ 2f

(
x+ y

2
+ z

)
‖(1.3)

and proved the generalized Hyers-Ulam–Rassias stability of the functional inequalities (1.2) and (1.3) in

Banach spaces. We also mention here the paper [11]. The stability of the Cauchy additive functional

equation in the settings of fuzzy, probabilistic and random normed spaces and random ϕ-normed spaces

has been recently investigated by Mirmostafaee, Mirzavaziri and Moslehian [12, 13], Alsina [14], Miheţ

[15], Miheţ and Radu [16] and Miheţ, Saadati and Vaezpour [3, 17, 18].

The aims of this paper are a synthesis of these two theories, probabilistic normed space [5] and vector-

lattice-normed space [19, 20] respectively, named by latticetic random ϕ-normed spaces and to prove the

generalized Hyers-Ulam–Rassias stability of the functional inequalities (1.2) and (1.3) in these spaces.

For more details on this preliminary part, the reader is referred to [21], [22], [23], [24], [25], [26], [27].

2. Main results

We start our work with the main result in a latticetic random ϕ-normed space.

Lemma 2.1. Let X be a linear space, (Z, µ,∧) be a latticetic random ϕ-normed space and f : X −→ Z

be a function such that

(2.1) µf(x)+f(y)+f(z)(t) ≥L µf(x+y+z)
(

t

ϕ(2)

)
(x, y, z ∈ X, t > 0).

Then f is Cauchy additive, i.e., f(x+ y) = f(x) + f(y) for all x, y ∈ X.

Proof. Putting x = y = z = 0 in (2.1), we obtain

µ3f(0)(t) ≥L µf(0)
(

t

ϕ(3)

)
≥L µf(0)

(
t

ϕ(2)

)
(t > 0).

By Lemma 1.5, it follows that f(0) = 0. Putting y = −x and z = 0 in (2.1), one obtains

µf(x)+f(−x)(t) ≥L µf(0)
(

t

ϕ(2)

)
= µ0

(
t

ϕ(2)

)
= 1L (t > 0),

hence

f(x) = −f(−x) (x ∈ X).
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Putting z = −x− y in (2.1) we deduce that

µf(x)+f(y)−f(x+y)(t) = µf(x)+f(y)+f(−x−y)(t)

≥L µf(0)

(
t

ϕ(2)

)
= µ0

(
t

ϕ(2)

)
= 1L.

and thus, from (LRN1),

f(x) + f(y) = f(x+ y), ∀x, y ∈ X.

�

Similarly one can prove the following

Lemma 2.2. Let X be a linear space, (Z, µ,∧) be a latticetic random ϕ-normed space and f : X −→ Z

be a function such that

(2.2) µf(x)+f(y)+2f(z)(t) ≥L µ2f( x+y2 +z)

(
ϕ(2)t

ϕ(3)

)
(x, y, z ∈ X, t > 0).

Then f is Cauchy additive.

Theorem 2.3. Let X be a linear space, Φ be a mapping from X3 to D+
L ( Φ(x, y, z)(t) is denoted by

Φx,y,z(t)), such that for some 0 < α < ϕ(2),

Φ2x,2y,2z(αt) ≥L Φx,y,z(t) (x, y, z ∈ X, t > 0)(2.3)

and (Y, µ,∧) be a complete a latticetic random ϕ-normed space.

If f : X → Y is an odd mapping satisfying the inequality

(2.4) ∧(µf(x)+f(y)+f(z)(t), µf(x+y+z)(t)) ≥L Φx,y,z(t) (x, y, z ∈ X, t > 0),

then there exists a unique Cauchy additive mapping A : X → Y such that

(2.5) µf(x)−A(x)(t) ≥L Φx,x,−2x((ϕ(2)− α)t) (x ∈ X, t > 0).

Proof. Putting x = y and z = −2x in (2.4) we get

µ2f(x)−f(2x)(t) = ∧(µ2f(x)−f(2x)(t), 1L)(2.6)

≥L ∧(µ2f(x)−f(2x)(t), µf(0)(t))

≥L Φx,x,−2x(t) (x ∈ X, t > 0).

From (2.6) we have

µ f(2x)
2 −f(x)

(
t

ϕ(2)

)
= µ2f(x)−f(2x)(t) ≥L Φx,x,−2x(t) (x ∈ X, t > 0).(2.7)

Replacing x by 2nx in (2.7), and using (2.3) we obtain

µ f(2n+1x)

2n+1 − f(2
nx)

2n

(
t

ϕ(2n+1)

)
≥L Φ2nx,2nx,−2n+1x(t) (x ∈ X, t > 0, n ∈ N),(2.8)
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that is,

µ f(2n+1x)

2n+1 − f(2
nx)

2n
(t) ≥L Φ2nx,2nx,−2n+1x(ϕ(2n+1)t)(2.9)

≥L Φx,x,−2x

(
ϕ(2n+1)t

αn

)
(x ∈ X, t > 0, n ∈ N)

Since f(2nx)
2n − f(x) =

∑n−1
k=0( f(2

k+1x)
2k+1 − f(2kx)

2k
), by (2.9) we have

µ f(2nx)
2n −f(x)

(
t
n∑
k=0

αk

ϕ(2k+1)

)
≥L (∧)

n−1
k=0 Φx,x,−2x(t) = Φx,x,−2x(t)

that is,

µ f(2nx)
2n −f(x)(t) ≥L Φx,x,−2x

(
t∑n

k=0
αk

ϕ(2k+1)

)
(2.10)

By replacing x with 2mx in (2.10) we obtain:

µ f(2n+mx)

2n+m − f(2
mx)

2m
(t) ≥L Φ2mx,2mx,−2m+1x

(
t∑n

k=0
αk

ϕ(2)m+k+1

)

≥L Φx,x,−2x

(
t∑n

k=0
αm+k

ϕ(2)m+k+1

)
(2.11)

≥L Φx,x,−2x

(
t∑n+m

k=m
αk

ϕ(2)k+1

)
.

As Φx,x,−2x

(
t∑n+m

k=m
αk

ϕ(2)k+1

)
tends to 1L as m,n tend to ∞, we conclude that ( f(2

nx)
2n ) is a Cauchy

sequence in (Y, µ,∧). Since (Y, µ,∧) is a complete latticetic random ϕ-normed space, this sequence

converges to some point A(x) ∈ Y . Fix x ∈ X and put m = 0 in (2.11) to obtain

µ f(2nx)
2n −f(x)(t) ≥L Φx,x,−2x

(
t∑n

k=0
αk

ϕ(2)k+1

)
,(2.12)

from which we obtain for every t, δ > 0

µA(x)−f(x)(t+ δ) ≥L ∧
(
µ
A(x)− f(2

nx)
2n

(δ) , µ f(2nx)
2n −f(x) (t)

)
(2.13)

≥L ∧

(
µ
A(x)− f(2

nx)
2n

(δ) ,Φx,x,−2x

(
t∑n

k=0
αk

ϕ(2)k+1

))
.

Taking the limit as n −→∞ and using (2.13) we get

µA(x)−f(x)(t+ δ) ≥L Φx,x,−2x(t(ϕ(2)− α)).(2.14)

Since δ was arbitrary, by taking δ −→ 0 one obtains

µA(x)−f(x)(t) ≥L Φx,x,−2x(t(ϕ(2)− α)).
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Now, we show that the mapping A is Cauchy additive:

µA(x)+A(y)+A(z)(t) ≥L ∧
(
µ
A(x)− f(2

nx)
2n

 t
(

1− 1
ϕ(2)

)
8

 , µ
A(y)− f(2

ny)
2n

 t
(

1− 1
ϕ(2)

)
8

(2.15)

, µ
A(z)− f(2

nz)
2n

 t
(

1− 1
ϕ(2)

)
8

 , µ
A(x+y+z)− f(2

n(x+y+z))
2n

 t
(

1− 1
ϕ(2)

)
8


, µ f(2n(x+y+z))

2n − f(2
nx)

2n − f(2
ny)

2n − f(2
nz)

2n

 t
(

1− 1
ϕ(2)

)
2


, µA(x+y+z)

(
t

ϕ(2)

))
for all x, y, z ∈ X and for all t > 0. The first four terms on the right-hand side of the above inequality

tend to 1L as n −→∞. Also, from (LRN3),

µ f(2n(x+y+z))
2n − f(2

nx)
2n − f(2

ny)
2n − f(2

nz)
2n

 t
(

1− 1
ϕ(2)

)
2


≥L ∧

(
µf(2nx)+f(2ny)+f(2nz)

(ϕ(2)n

4

(
1− 1

ϕ(2)

)
t
)
, µf(2n(x+y+z))

(ϕ(2)n

4

(
1− 1

ϕ(2)

)
t
)

≥L Φ2nx,2ny,2nz

(ϕ(2)n

4

(
1− 1

ϕ(2)

)
t
)

≥L Φx,y,z

(ϕ(2)n

4αn

(
1− 1

ϕ(2)

)
t
)
,

that is, the fifth term also tends to 1L when n tends to ∞. Therefore, we have

µA(x)+A(y)+A(z)(t) ≥L µA(x+y+z)

(
t

ϕ(2)

)
,

hence by Lemma 2.1 we conclude that the mapping A is Cauchy additive.

To prove the uniqueness of the Cauchy additive function A, assume that there exists a Cauchy additive

function B : X −→ Y which satisfies (2.5). Fix x ∈ X. Clearly A(2nx) = 2nA(x) and B(2nx) = 2nB(x)

for all n ∈ N. It follows from (2.5) that

µA(x)−B(x)(t) = µA(2nx)
2n −B(2nx)

2n
(t)

≥L ∧
(
µA(2nx)

2n − f(2
nx)

2n

(
t

2

)
, µB(2nx)

2n − f(2
nx)

2n

(
t

2

))
≥L Φ2nx,2nx,−2n+1x

(ϕ(2n)(ϕ(2)− α)t

2

)
≥L Φx,x,−2x

((
ϕ(2)

α

)n
(ϕ(2)− α)t

2

)
.

Since α < ϕ(2), we get

lim
n→∞

Φx,x,−2x

((
ϕ(2)

α

)n
(ϕ(2)− α)t

2

)
= 1L.

Therefore µA(x)−B(x)(t) = 1L for all t > 0, whence A(x) = B(x). �
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Corollary 2.4. Consider Example 1.2. If f : X → Y is a mapping such that, for some p < 1,

∧(µf(x)+f(y)+f(z)(t), µf(x+y+z)(t))

≥L
( t

t+ (‖x‖p + ‖y‖p + ‖z‖p)
,
‖x‖p + ‖y‖p + ‖z‖p

t+ (‖x‖p + ‖y‖p + ‖z‖p)

)
(x, y, z ∈ X, t > 0),

then there exists a unique Cauchy additive mapping A : X → Y such that

µf(x)−A(x)(t) ≥L
( (2− 2p)t

(2− 2p)t+ (2 + 2p)‖x‖p
,

(2 + 2p)‖x‖p

(2− 2p)t+ (2 + 2p)‖x‖p
)
.

for all x ∈ X and t > 0.

Proof. Let Φ : X3 −→ D+
L be defined by

Φx,y,z(t) =
( t

t+ (‖x‖p + ‖y‖p + ‖z‖p)
,
‖x‖p + ‖y‖p + ‖z‖p

t+ (‖x‖p + ‖y‖p + ‖z‖p)

)
.

Then the corollary is followed from Theorem 2.3 with α = 2p. �

Corollary 2.5. Consider Example 1.2. If f : X → Y is a mapping such that

∧(µf(x)+f(y)+f(z)(t), µf(x+y+z)(t)) ≥L
( t

t+ ε
,

ε

t+ ε

)
(x, y, z ∈ X, t > 0)

and f(0) = 0, then there exists a unique Cauchy additive mapping A : X → Y such that

µf(x)−A(x)(t) ≥L
( t

t+ ε
,

ε

t+ ε

)
.

for all x ∈ X and t > 0.

Proof. Let Φ : X3 −→ D+
L be defined by

Φx,y,z(t) =
( t

t+ ε
,

ε

t+ ε

)
.

Then the corollary is followed from Theorem 2.3 with α = 1. �

Theorem 2.6. Let X be a linear space, Φ be a mapping from X3 × [0,∞) to D+
L such that for some

0 < α < ϕ(3),

Φ3x,3y,3z(αt) ≥L Φx,y,z(t) (x, y, z ∈ X, t > 0).(2.16)

Let (Y, µ,∧) be a complete latticetic random ϕ-normed space. If f : X → Y is an odd mapping such that

(2.17) ∧(µf(x)+f(y)+2f(z)(t), µf( x+y2 +z)(t)) ≥L Φx,y,z(t) (x, y, z ∈ X, t > 0),

then there exists a unique Cauchy additive mapping A : X → Y such that

(2.18) µf(x)−A(x)(t) ≥L Φx,−3x,x((ϕ(3)− α)t) (x ∈ X, t > 0).

Proof. As the proof is similar to that of the preceding theorem, we only sketch it.

Putting y = −3x and z = x in (2.17) we get

µ3f(x)−f(3x)(t) ≥L Φx,−3x,x(t) (x ∈ X, t > 0).(2.19)

1409



8 LEE AND SAADATI

From this relation it follows

µ f(3nx)
3n −f(x)(t) ≥L Φx,−3x,x

(
t∑n

k=0
αk

ϕ(3)k+1

)
(2.20)

and then, as in the proof of Theorem 2.3,

µ f(3n+mx)

3n+m − f(3
mx)

3m
(t) ≥L Φx,−3x,x

(
t∑n+m

k=m
αk

ϕ(3)k+1

)
,

proving that, for every x, ( f(3
nx)

3n ) is a Cauchy sequence in (Y, µ,∧). Denote A(x) ∈ Y its limit. From

µ f(3nx)
3n −f(x)(t) ≥L Φx,−3x,x

(
t∑n

k=0
αk

ϕ(3)k+1

)
(2.21)

and

µA(x)−f(x)(t+ δ) ≥L ∧
(
µ
A(x)− f(3

nx)
3n

(δ) , µ f(3nx)
3n −f(x) (t)

)
(2.22)

≥L ∧

(
µ
A(x)− f(3

nx)
3n

(δ) ,Φx,−3x,x

(
t∑n

k=0
αk

ϕ(3)k+1

))

we obtain

µA(x)−f(x)(t) ≥L Φx,−3x,x(t(ϕ(3)− α)).

The additivity of A follows from

µA(x)+A(y)+2A(z)(t) ≥L ∧
(
µ
A(x)− f(3

nx)
3n


(

1− ϕ(2)
ϕ(3)

)
t

12

 , µ
A(y)− f(3

ny)
3n


(

1− ϕ(2)
ϕ(3)

)
t

12

(2.23)

, µ
2A(z)−2 f(3

nz)
3n


(

1− ϕ(2)
ϕ(3)

)
t

12

 , µ
2A( x+y2 +z)−

2f(3n(
x+y
2

+z))

3n


(

1− ϕ(2)
ϕ(3)

)
t

12


, µ 2f(3n(

x+y
2

+z))

3n − f(3
nx)

3n − f(3
ny)

3n − 2f(3nz)
3n


(

1− ϕ(2)
ϕ(3)

)
2t

3


, µ2A( x+y2 +z)

(
ϕ(2)t

ϕ(3)

))
(x, y, z ∈ X, t > 0)
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and

µ 2f(3n(
x+y
2

+z))

3n − f(3
nx)

3n − f(3
ny)

3n − 2f(3nz)
3n


(

1− ϕ(2)
ϕ(3)

)
2t

3


≥L ∧

(
µf(3nx)+f(3ny)+2f(3nz)


(

1− ϕ(2)
ϕ(3)

)
ϕ(3)nt

3

 , µ2f(3n( x+y2 +z))


(

1− ϕ(2)
ϕ(3)

)
ϕ(3)nt

3

)

≥L Φ3nx,3ny,3nz


(

1− ϕ(2)
ϕ(3)

)
ϕ(3)nt

3


≥L Φx,y,z


(

1− ϕ(2)
ϕ(3)

)
ϕ(3)nt

3αn

 ,

by using Lemma 2.2.

Finally, the uniqueness of the Cauchy additive mapping A subject (2.18) follows from

µA(x)−B(x)(t) = µA(3nx)
3n −B(3nx)

3n
(t)

≥L ∧
(
µA(3nx)

3n − f(3
nx)

3n

(
t

2

)
, µB(3nx)

3n − f(3
nx)

3n

(
t

2

))
≥L Φ3nx,−3n+1x,2nx

(ϕ(3)n(ϕ(3)− α)

2
t
)

≥L Φx,−3x,x

((
ϕ(3)

α

)n
(ϕ(3)− α)t

2

)
.

�
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A note on the second kind generalized q-Euler polynomials

C. S. RYOO

Department of Mathematics, Hannam University, Daejeon 306-791, Korea

Abstract. In this paper we introduce the second kind generalized q-Euler numbers En,χ,q and
polynomials En,χ,q(x). We obtain the Witt-type formulae of the second kind generalized q-Euler
numbers En,χ,q and polynomials En,χ,q(x) attached to χ.

Key words: The second kind Euler numbers and polynomials, the second kind q-Euler numbers
and q-Euler polynomials, the second kind generalized q-Euler numbers and polynomials

1. INTRODUCTION

Throughout this paper we use the following notations. By Zp we denote the ring of p-adic rational
integers, Q denotes the field of rational numbers, Qp denotes the field of p-adic rational numbers,
C denotes the complex number field, and Cp denotes the completion of algebraic closure of Qp. Let
νp be the normalized exponential valuation of Cp with |p|p = p−νp(p) = p−1. When one talks of
q-extension, q is considered in many ways such as an indeterminate, a complex number q ∈ C, or
p-adic number q ∈ Cp. If q ∈ C one normally assume that |q| < 1. If q ∈ Cp, we normally assume
that |q − 1|p < p−

1
p−1 so that qx = exp(x log q) for |x|p ≤ 1.

Let UD(Zp) be the space of uniformly differentiable function on Zp. For g ∈ UD(Zp) the
fermionic p-adic invariant q-integral on Zp is defined by Kim as follows:

I−q(g) =
∫

Zp

g(x)dμ−q(x) = lim
N→∞

1
[pN ]−q

pN−1∑

x=0

g(x)(−q)x, see [3, 4] . (1.1)

If we take gn(x) = g(x + n) in (1.1), then we see that

qnIq(gn) + (−1)n−1Iq(g) = [2]q
n−1∑

l=0

(−1)n−1−lqlg(l). (1.2)

Let a fixed positive integer d with (p, d) = 1, set

X = Xd = lim←−
N

(Z/dpN
Z),X1 = Zp,

X∗ =
⋃

0<a<dp
(a,p)=1

a + dpZp,

a + dpN
Zp = {x ∈ X | x ≡ a (mod dpN )},

where a ∈ Z satisfies the condition 0 ≤ a < dpN .
It is easy to see that

I−q(g) =
∫

X

g(x)dμ−q(x) =
∫

Zp

g(x)dμ−q(x). (1.3)

For g ∈ UD(Zp), the fermionic p-adic invariant integral on Zp is defined by

I−1(g) =
∫

X

g(x)dμ−1(x) =
∫

Zp

g(x)dμ−1(x) = lim
N→∞

pN−1∑

x=0

g(x)(−1)x. (1.4)

1424

J. COMPUTATIONAL ANALYSIS AND APPLICATIONS, VOL. 15, NO.8, 1424-1429, 2013, COPYRIGHT 2013 EUDOXUS PRESS, LLC



If we take gn(x) = g(x + n) in (1.4), then we see that

I−1(gn) = (−1)nI−1(g) + 2
n−1∑

l=0

(−1)n−1−lg(l). (1.5)

First, we introduce the second kind Euler numbers and Euler polynomials(see [5]). Ryoo [5] inves-
tigated the zeros of the second kind Euler polynomials En(x). The second kind Euler numbers En

are defined by the generating function:

F (t) =
2et

e2t + 1
=

∞∑

n=0

En
tn

n!
(|t| <

π

2
),

where we use the technique method notation by replacing En by En(n ≥ 0) symbolically. We
consider the second kind Euler polynomials En(x) as follows:

F (x, t) =
2et

e2t + 1
ext =

∞∑

n=0

En(x)
tn

n!
. (1.6)

Note that En(x) =
∑n

k=0

(
n
k

)
Ekxn−k. In the special case x = 0, we define En(0) = En.

In [8], we observed the zeros of the second kind q-Euler polynomials En,q(x). The second kind
q-Euler numbers En,q are defined by the generating function:

Fq(t) =
2et

qe2t + 1
=

∞∑

n=0

En,q
tn

n!
, (1.7)

We consider the second kind q-Euler polynomials En,q(x) as follows:

Fq(x, t) =
2et

qe2t + 1
ext =

∞∑

n=0

En,q(x)
tn

n!
. (1.8)

Many mathematicians have studied Euler numbers and Euler polynomials(see [1-10]). The
purpose of this paper is to construct the second kind generalized q-Euler polynomials En,χ,q(x)
attached to χ and derive a new l-series which interpolates the second kind generalized q-Euler
polynomials En,χ,q(x).

2. The second kind generalized q-Euler numbers and
polynomials

In this section, our goal is to give generating functions of the second kind generalized q-Euler
numbers and polynomials. These numbers will be used to prove the analytic continuation of the
l-series. Let q be a complex number with |q| < 1. Let χ be Dirichlet’s character with conductor
d ∈ N with d ≡ 1(mod 2). Then the second kind generalized q-Euler numbers associated with
associated with χ, En,χ,q, are defined by the following generating function

Fχ,q(t) =
2

∑d−1
a=0 χ(a)(−1)aqae(2a+1)t

qde2dt + 1
=

∞∑

n=0

En,χ,q
tn

n!
. (2.1)

We now consider the second kind generalized q-Euler polynomials associated with χ, En,χ,q(x), are
also defined by

Fχ,q(x, t) =
2

∑d−1
a=0 χ(a)(−1)aqae(2a+1)t

qde2dt + 1
ext =

∞∑

n=0

En,χ,q(x)
tn

n!
. (2.2)
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When χ = χ0, above (2.1) and (2.2) will become the corresponding definitions of the second kind
Euler numbers En and polynomials En(x).

Since
2

∑d−1
a=0 χ(a)(−1)aqae(2a+1)t

qde2dt + 1
ext

=
d−1∑

a=0

χ(a)(−1)aqa

(
2edte( 2a+1+x−d

d )dt

qde2dt + 1

)

=
∞∑

m=0

(
dm

d−1∑

a=0

χ(a)(−1)aqaEm,qd

(
2a + 1 + x − d

d

))
tm

m!
,

we have the following theorem.

Theorem 1. Let χ be Dirichlet’s character with conductor d ∈ N with d ≡ 1(mod 2). Then
we have

(1) En,χ,q(x) = dm
d−1∑

a=0

χ(a)(−1)aqaEm,qd

(
2a + 1 + x − d

d

)
,

(2) En,χ,q = dm
d−1∑

a=0

χ(a)(−1)aqaEm,qd

(
2a + 1 − d

d

)
,

(3) En,χ,q(x) =
n∑

l=0

(
n

l

)
El,χ,qx

n−l.

For n ∈ N with n ≡ 0(mod 2), we have

−2
∑d−1

a=0 χ(a)(−1)aqae(2a+1)t

qde2dt + 1
qnde2ndt +

2
∑d−1

a=0 χ(a)(−1)aqae(2a+1)t

qde2dt + 1

=
∞∑

m=0

(
2

nd−1∑

a=0

χ(a)(−1)aqa(2a + 1)m

)
tm

m!

By comparing coefficients of
tm

m!
in the above equation, we have the following theorem:

Theorem 2. Let χ be Dirichlet’s character with conductor d ∈ N with d ≡ 1 (mod 2), n a
positive even integer, and m ∈ N. Then we have

2
nd−1∑

a=0

χ(a)(−1)aqa(2a + 1)m = Em,χ,q − qndEm,χ,q(2nd).

Next, we introduce the second kind l-series and two variable l-series.

Definition 3. For s ∈ C, define two variable l-series as

lq(s, x|χ) = 2
∞∑

m=0

(−1)mχ(m)qm

(2m + 1 + x)s
.
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By using (2.2), we easily see that

Fχ,q(x, t) =
2

∑d−1
a=0 χ(a)(−1)aqae(2a+1)t

qde2dt + 1
ext

= 2
d−1∑

a=0

χ(a)(−1)aqae(2a+1+x)t
∞∑

l=0

(−1)lqlde2dlt

= 2
d−1∑

a=0

∞∑

l=0

χ(a)(−1)a+dlqa+dle(2a+1+x+dl)t

= 2
∞∑

m=0

χ(m)(−1)mqme(2m+1+x)t.

Then we have (
d

dt

)k

Fχ,q(x, t)

∣∣∣∣∣
t=0

= 2
∞∑

n=0

χ(n)(−1)nqn(2n + 1 + x)k, (2.3)

and (
d

dt

)k
( ∞∑

n=0

En,χ,q(x)
tn

n!

)
∣∣
t=0

= Ek,χ,q(x), for k ∈ N. (2.4)

By (2.3), (2.4), we have the following theorem.

Theorem 4. For any positive integer k, we have

Ek,χ,q(x) = lq(−k, x|χ).

Definition 5. For s ∈ C, define l-series as

lq(s | χ) = 2
∞∑

m=0

(−1)mχ(m)qm

(2m + 1)s
.

By simple calculation, we have the following theorem.

Theorem 6. For any positive integer k, we have

lq(−k | χ) = Ek,χ,q.

3. Witt-type formulae on Zp in p-adic number field

Our primary aim in this section is to obtain the Witt-type formulae of the second kind generalized
q-Euler numbers En,χ,q and polynomials En,χ,q(x) attached to χ. We assume that q ∈ Cp with
|q − 1|p < 1. Let χ be the primitive Dirichlet character with conductor d ∈ N with d ≡ 1(mod 2).
Let g(y) = χ(y)qye(2y+1+x)t. By (1.4), we derive

I1

(
χ(y)qye(2y+1+x)t

)
=

∫

X

χ(y)qye(2y+1+x)tdμ−1(y)

=
2

∑d−1
a=0 χ(a)(−1)aqae(2a+1)t

qde2dt + 1
ext

=
∞∑

n=0

En,χ,q(x)
tn

n!
.

(3.1)
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By using Taylor series of e(2y+1+x)t in the above equation (3.1), we obtain

∞∑

n=0

(∫

X

χ(y)qy(2y + 1 + x)ndμ−1(y)
)

tn

n!
=

∞∑

n=0

En,χ,q(x)
tn

n!
.

By comparing coefficients of
tn

n!
in the above equation, we have the Witt formula for the second kind

generalized q- Euler polynomials attached to χ as follows:

Theorem 7. For positive integers n, we have

En,χ,q(x) =
∫

X

χ(y)qy(2y + 1 + x)ndμ−1(y). (3.2)

Observe that for x = 0, the equation (3.2) reduces to (3.3).

Corollary 8. For positive integers n, we have

En,χ,q =
∫

X

χ(y)qy(2y + 1)ndμ−1(y). (3.3)

By (3.1) and (1.5), we have the following theorem:

Theorem 9. For positive integers n, we have

qndEm,χ,q(2nd) − (−1)nEm,χ,q = 2
nd−1∑

l=0

(−1)n−1−lχ(l)ql(2l + 1)m.

ACKNOWLEDGEMENT

This paper has been supported by the 2013 Hannam University Research Fund.

REFERENCES
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Analytic Approximation of Time-Fractional

Diffusion-Wave Equation Based on Connection of

Fractional and Ordinary Calculus

H. Fallahgoul∗, S. M. Hashemiparast†

Abstract

In this paper, we present a connection between fractional and ordinary derivative, which can be used
in various fields of science and engineering deal with dynamical systems for solving fractional ordinary
and partial differential equations. Some examples are given to show ability of the method for solving
the fractional nonlinear equations.

Keywords: Diffusion Equation; Fractional Calculus; Fractional Partial Differential Equation

AMS subject classifications: 35Kxx, 34K37, 35R11

1 Introduction

The theory of the fractional derivatives (FD) has a long history, but the application of FD goes back to
the 19th century. For example, Caputo and Mainardi found good agreement with experimental results
when using FD for the description of viscoelastic materials [3]. Recently, many works from various
fields of science have been described by fractional differential equation, for example, the time-fractional
diffusion-wave equation (TFDWE) and the space-fractional diffusion equation (SFDE) have been widely
researched [2]. A fractional diffusion equation can be interpreted a fractional Fick law replacing the
classical Fick law, which describes transport processes with a long memory [6].

Authors have considered FD of Reimann-Liouville, Caputo and Grounwald-Letnikov and their ap-
plications having different points of views of definitions [15]. Some approximations for these fractional
derivatives and Laplace transform of fractional derivative are also considered [7, 8]. Because of the wide
application of fractional derivatives—fractional ordinary differential equation (FODE) and fractional par-
tial differential equation (FPDE)—in the various fields of science and engineering, the connection between
fractional and ordinary derivative (OD), for solving related problems is important. A little works have
been done in this field1. In this paper, we are going to overcome this problem by providing a robust
connection between FD and OD.

In this paper, we provide a strategy for obtaining an analytic approximation of the SFDE and TFDWE.
Specifically, we employ analytic approximation method—homogony perturbation method—to compute
the fundamental solutions of the SFDE and TFDWE 2. These three methods offer efficient approaches
for solving nonlinear problems.

∗Department of Mathematics, Faculty of Science, K. N. Toosi University of Technology, hfallahgoul@dena.kntu.ac.ir and
hfallahgoul@gmail.com

†Department of Mathematics, Faculty of Science, K. N. Toosi University of Technology, hashemiparast@kntu.ac.ir
1In the time of writing this paper, we could not find any work.
2We only use the homogony perturbation method, the other analytic methods as Adomian decomposition method, and

variational iteration method can be used.
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We have organized our presentation as follows. In Sections 2, we will present a review of the homotopy
perturbation method (HPM). In Section 3, we provide a connection between FD and OD. Finally, some
experiments to clarify the methods are provided in Sections 4.

2 Homotopy Perturbation Method

The principals of the HPM and its applicability for various kinds of differential equations are given in
[9, 10]. For convenience of the reader, we will present a review of the HPM. To achieve our goal, we
consider the nonlinear differential equation

L(u) +N(u)) = f(r), r ∈ Ω, (1)

with boundary conditions

B(u,
∂u

∂n
) = 0, r ∈ Γ,

where L is a linear operator, while N is nonlinear operator, B is boundary operator, Γ is the boundary
of the domain Ω and f(r) is known analytic function. By the homotopy technique proposed by He in
[9, 10], we construct a homotopy of equation (1), v(r, p) : Ω× [0, 1] → R which satisfies

H(v, p) = (1− p)[L(v)− L(u0)] + p[L(v) +N(v)− f(r)] = 0

or

H(v, p) = L(v)− L(u0) + pL(u0) + p[N(v)− f(r)] = 0,

where r ∈ Ω and p ∈ [0, 1] is an impeding parameter, u0 is an initial approximation which satisfies the
boundary conditions. The changing process of p from zero to unity is just that of v(r, p) from u0 to u(r).
In topology, this called deformation, L(v)− L(u0) and L(v) +N(v)− f(r) are homotopic.

We assume that the solution of equation (1) can be expressed as

v = p0v0 + p1v1 + p2v2 + p3v3 + · · · , (2)

so, the approximate solution of equation (1) can be obtained as follows

u = lim
p→1

v = v0 + v1 + v2 + v3 + · · · . (3)

It is well known that the series (3) is convergent for most of the cases and also the rate of convergence is
dependent on L(u), see [10, 13].

3 The Connection of Fractional and Ordinary Calculus

In this section we will reach a formula that it provide a robust connection between fractional and ordinary
derivatives. Suppose 0 < � < 1, based on binomial series we will have

(1− L)� = 1− �L− �(1− �)

2!
− · · · =

∞∑
j=0

�jL
j , (4)

where the sequence {�j}∞j=0 is obtained from the following recurrence relation:

�0 = 0, �j =
j − 1− �

j
�j−1, j = 1, 2, · · · .
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Now, let D� and f be the fractional derivative of order � and arbitrary function, respectively. Ac-
cording to the equation (4), the following approximation can be obtained:

D�f = (1− 1 +D)�f,

=

 ∞∑
j=0

�jL
j

 f,

=

 ∞∑
j=0

�j

j∑
i=0

(−1)
i
Ci

jD
i

 f, (5)

where L = (1−D).

So, we will have

D�f ≃

 k∑
j=0

�j

j∑
i=0

(−1)iCi
jD

i

 f. (6)

In equation (6), the fractional derivative D�f is approximated based on a sequence of ordinary derivative.
In fact, equation (6) provide a connection between fractional and ordinary derivatives. Now, we will
compute some approximations of fractional derivative for different amount of k

• k = 0, → D�f ≃ �0D
0f.

• k = 1, → D�f ≃ (�0 + �1)D
0f − �1D

1f.

• k = 2, → D�f ≃ (�0 + �1 + �2)D
0f − (�1 + 2�2)D

1f + �2D
2f.

...

k = n, → D�f ≃ (
n∑

i=0

�i)D
0f − (

n∑
i=1

i�i)D
1f + · · ·+ (−1)n�nD

nf. (7)

In equation (7), the coefficients and the sign of coefficients are obtained from Fig1 to Fig3. The fol-
lowing algorithm can be arranged for the getting the approximation formula of fractional derivatives:

Figure 1: The coefficients of ordinary derivatives in the approximation of fractional derivatives.

Algorithm 1:

• Step 1. Select the numbers of series terms.
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Figure 2: The sign of the coefficients of ordinary derivatives in the approximation of fractional derivatives.

Figure 3: The sign of �iin the approximation of fractional derivatives and number of series terms.

• Step 2. Find the coefficients of terms from Fig1.

• Step 3. Find the sign of the coefficients from Fig2.

To show the efficiency of the described approximation, we apply some experiments used extensively
in many natural processes in physics [12], finance [1] and hydrology [2] are tested. We summarize the
described procedure for solving a problem in Algorithm 2:

Algorithm 2:

• Step 1. Select the number of series’s terms.

• Step 2. Find the approximate formula from Algorithm 1.

• Step 3. Find the equivalent problem for solving.

• Step 4. Select an analytic methods as HPM, VIM, and ADM.

• Step 5. Find the analytic approximation solution of the problem.

4 Application

In this section, we derive the analytic solution of SFDE and TFDWE by using the homotopy perturbation
method.
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Example 1 We first consider

∂�u(x, t)

∂t�
=
∂2u(x, t)

∂x2
, 0 < x < π, t ≥ 0, 1 < � ≤ 2, (8)

where the initial and boundary condition are u(x, 0) = sin(x) and u(0, t) = u(π, t) = 0, respectively.

Now, we will use Algorithm 2 for getting the solution of equation (8). If k = 0 the equivalent differential
equation will be

∂u(x, t)

∂t
=
∂2u(x, t)

∂x2
. (9)

To solve equation (9) with initial conditions u(x, 0) = sin(x) and ut(x, 0) = 0, according to the HPM, we
construct the following homotopy:

(1− p)

(
∂v

∂t
− ∂u0

∂t

)
+ p

(
∂v

∂t
− ∂2v

∂x2

)
= 0. (10)

Substituting equation (2) into equation (10), and comparing coefficients of terms with identical powers of
p, leads to:

p0 :
∂v0
∂t

− ∂u0
∂t

= 0

p1 :
∂v1
∂t

=
∂2v0
∂x2

− ∂u0
∂t

, v1(x, 0) = 0

p2 :
∂v2
∂t

=
∂2v1
∂x2

, v2(x, 0) = 0,

...

pn :
∂vn
∂t

= D
∂2vn−1

∂x2
, vn(x, 0) = 0.

For simplicity, we take v0(x, t) = u0(x, t) = sin(x). According to the above equations, we derive the
following recurrence equation

v1(x, t) = − sin(x)× t,

v2(x, t) = sin(x)× 1

2
t2,

v3(x, t) = − sin(x)× 1

6
t3,

...

vn(x, t) = (−1)n sin(x)× 1

Γ(n+ 1)
tn.

Therefore

u(x, t) =
∞∑
i=0

(−1)i sin(x)× 1

Γ(i+ 1)
ti.
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If k = 1, from Algorithm 2 we derive

∂�u

∂t�
≃ (�0 + �1)u− �1

∂u

∂t
.

So, the equivalent differential equation of equation (8) will be

(�0 + �1)u− �1
∂u

∂t
=
∂2u

∂x2
. (11)

To solve equation (11) with initial conditions u(x, 0) = sin(x) and ut(x, 0) = 0, according to the HPM,
we construct the following homotopy:

�1
∂v

∂t
= p

(
(�0 + �1)v −

∂2u

∂x2

)
. (12)

Substituting equation (2) into equation (12), and comparing coefficients of terms with identical powers of
p, leads to:

p0 : �1
∂v0
∂t

= 0,

p1 : �1
∂v1
∂t

= (�0 + �1)v0 −
∂2v0
∂x2

, v1(x, 0) = 0,

p2 : �1
∂v2
∂t

= (�0 + �1)v1 −
∂2v1
∂x2

, v2(x, 0) = 0,

...

pn : �1
∂vn
∂t

= (�0 + �1)vn−1 −
∂2vn−1

∂x2
, vn(x, 0).

For simplicity, we take v0(x, t) = u0(x, t) = sin(x). According to the above equations, we derive the
following recurrence equation

v1(x, t) =

((
�0 + �1 + 1

�1

)
sin(x)

)
× t,

v2(x, t) =

((
�0 + �1 + 1

�1

)2

sin(x)

)
× 1

2
t2,

v3(x, t) =

((
�0 + �1 + 1

�1

)3

sin(x)

)
× 1

6
t3,

...

vn(x, t) =

((
�0 + �1 + 1

�1

)n

sin(x)

)
× 1

Γ(n+ 1)
tn.

Therefore

u(x, t) =

∞∑
i=0

((
�0 + �1 + 1

�1

)i

sin(x)

)
× 1

Γ(i+ 1)
ti.

If k = 2, the equivalent differential equation of equation (8) will be obtained. Using HPM we get the
analytic solution for k = 2. So, Algorithm 2 provide a procedure for getting the analytic solution of
equation (8). Also, the solution can be verified through substitution in equation (8).
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Example 2 We first consider:

∂�u(x, t)

∂t�
=
∂2u(x, t)

∂x2
, 0 < x < 2, t ≥ 0, 1 < � ≤ 2, (13)

with the initial condition u(x, 0) = f(x), and ut(x, 0) = 0 where

f(x) =

{
x, 0 ≤ x ≤ 1,
2− x, 1 ≤ x ≤ 2,

(14)

and boundary condition u(0, t) = u(2, t) = 0.

Since f(x) is a periodic function with period 2. The Fourier series of f(x) in [0, 2] can be obtained as

f(x) =
∞∑

n=1

(
8(−1)n−1

(2n− 1)2π2

)
sin

(
(2n− 1)πx

2

)
,

so,we will have

u0(x) = u(x, 0) + tut(x, 0) =
∞∑

n=1

(
8(−1)n−1

(2n− 1)2π2

)
sin

(
(2n− 1)πx

2

)
. (15)

Now, we will use Algorithm 2 for getting the solution of equation (13). If k = 0 the equivalent differential
equation will be

∂u(x, t)

∂t
=
∂2u(x, t)

∂x2
. (16)

To solve equation (16) with initial conditions (15), according to the HPM, we construct the following
homotopy:

(1− p)

(
∂v

∂t
− ∂u0

∂t

)
+ p

(
∂v

∂t
− ∂2v

∂x2

)
= 0. (17)

Substituting equation (2) into equation (17), and comparing coefficients of terms with identical powers of
p, leads to:

p0 :
∂v0
∂t

− ∂u0
∂t

= 0,

p1 :
∂v1
∂t

=
∂2v0
∂x2

− ∂u0
∂t

, v1(x, 0) = 0,

p2 :
∂v2
∂t

=
∂2v1
∂x2

, v2(x, 0) = 0,

...

pn :
∂vn
∂t

= D
∂2vn−1

∂x2
, vn(x, 0) = 0.
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For simplicity, we take v0(x, t) = u0(x). According to the above equations, we derive the following
recurrence equation

v1(x, t) = −
∞∑

n=1

(
(2n− 1)πx

2

)2

×
(

8(−1)n−1

(2n− 1)2π2

)
sin

(
(2n− 1)πx

2

)
× t,

v2(x, t) =
∞∑

n=1

(
(2n− 1)πx

2

)4

×
(

8(−1)n−1

(2n− 1)2π2

)
sin

(
(2n− 1)πx

2

)
× 1

2
t2,

...

vk(x, t) = (−1)k
∞∑

n=1

(
(2n− 1)πx

2

)2k

×
(

8(−1)n−1

(2n− 1)2π2

)
× sin

(
(2n− 1)πx

2

)
× 1

Γ(k + 1)
tk.

Therefore

u(x, t) =

∞∑
k=1

(
(−1)k

∞∑
n=1

[(
(2n− 1)πx

2

)2k

×
(

8(−1)n−1

(2n− 1)2π2

)
× sin

(
(2n− 1)πx

2

)]
× 1

Γ(k + 1)
tk
)
. (18)

If k = 1, from Algorithm 1 we derive

∂�u

∂t�
≃ (�0 + �1)u− �1

∂u

∂t
.

So, the equivalent differential equation of equation (8) will be

(�0 + �1)u− �1
∂u

∂t
=
∂2u

∂x2
. (19)

To solve equation (19) with initial conditions u0(x), according to the HPM, we construct the following
homotopy:

�1
∂v

∂t
= p

(
(�0 + �1)v −

∂2u

∂x2

)
. (20)

Substituting equation (2) into equation (20), and comparing coefficients of terms with identical powers of
p, leads to:

p0 : �1
∂v0
∂t

= 0,

p1 : �1
∂v1
∂t

= (�0 + �1)v0 −
∂2v0
∂x2

, v1(x, 0) = 0,

p2 : �1
∂v2
∂t

= (�0 + �1)v1 −
∂2v1
∂x2

, v2(x, 0) = 0,

...
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pn : �1
∂vn
∂t

= (�0 + �1)vn−1 −
∂2vn−1

∂x2
, vn(x, 0).

For simplicity, we take v0(x, t) = u0(x). According to the above equations, we derive the following
recurrence equation

v1(x, t) =
∞∑

n=1

(
22(�0 + �1) + ((2n− 1)πx)2

22�1

)
×
(

8(−1)n−1

(2n− 1)2π2

)
sin

(
(2n− 1)πx

2

)
× t,

v2(x, t) =

∞∑
n=1

(
22(�0 + �1) + ((2n− 1)πx)2

22�1

)2

×
(

8(−1)n−1

(2n− 1)2π2

)
sin

(
(2n− 1)πx

2

)
× 1

2
t2,

...

vk(x, t) =
∞∑

n=1

(
22(�0 + �1) + ((2n− 1)πx)2

22�1

)k

×
(

8(−1)n−1

(2n− 1)2π2

)
sin

(
(2n− 1)πx

2

)
× 1

Γ(k + 1)
tk.

Therefore

u(x, t) =
∞∑
k=1

∞∑
n=1

[(
22(�0 + �1) + ((2n− 1)πx)2

22�1

)k

×
(

8(−1)n−1

(2n− 1)2π2

)
sin

(
(2n− 1)πx

2

)]
× 1

Γ(k + 1)
tk.

If k = 2, the equivalent differential equation of equation (13) will be obtained. Using HPM we get the
analytic solution for k = 2. So, Algorithm 1 provide a procedure for getting the analytic solution of
equation (13). Also, the solution can be verified through substitution in equation (13).

Example 3 Let us consider (1+1)-dimensional nonlinear fractional equation:

∂�u(x, t)

∂t�
− 2

∂2u(x, t)

∂x2
+ c2u(x, t)− σu3(x, t) = 0, (21)

t ≥ 0, 1 < � ≤ 2,

with initial conditions u(x, 0) = ε cos(kx), and ut(x, 0) = 0.

Now, we will use Algorithm 1 for getting the solution of equation (21). If k = 0 the equivalent
differential equation will be

∂u(x, t)

∂t
= 2

∂2u(x, t)

∂x2
− c2u(x, t) + σu3(x, t). (22)

To solve equation (22) with initial conditions u(x, 0) = ε cos(kx), and ut(x, 0) = 0, according to the HPM,
we construct the following homotopy:

∂u(x, t)

∂t
= p

(
2
∂2u(x, t)

∂x2
− c2u(x, t) + σu3(x, t)

)
. (23)
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Substituting equation (2) into equation (23), and comparing coefficients of terms with identical powers of
p, leads to:

p0 :
∂v0
∂t

= 0,

p1 :
∂v1
∂t

= 2
∂2v0(x, t)

∂x2
− c2v0(x, t) + σv30(x, t), v1(x, 0) = 0,

p2 :
∂v2
∂t

= 2
∂2v1(x, t)

∂x2
− c2v1(x, t) + σv31(x, t), v2(x, 0) = 0,

...

pn :
∂vn
∂t

= 2
∂2vn−1(x, t)

∂x2
− c2vn−1(x, t) + σv3n−1(x, t), vn(x, 0) = 0.

For simplicity, we take v0(x, t) = u0(x). According to the above equations, we derive the following
recurrence equation

v0(x, t) = (ε cos(kx)) ,

v1(x, t) =
(
(−2k2 + c2)ε cos(kx) + ε3 cos3(kx)

)
× t,

v2(x, t) =
[(
−ε2k2(−2k2 + c2) cos(kx)

)
+
(
3ε3k2 cos3(kx)

−6k2 sin2(kx) cos(kx)
)
,

−c2
(
(−2k2 + c2)ε cos(kx) + ε3 cos3(kx)

)
× 1

Γ(3)
t2,

+σ
(
(−2k2 + c2)ε cos(kx) + ε3 cos3(kx)

)3]× 1

Γ(3)
t2,

...

(24)

and so on.

If k = 1, from Algorithm 2 we derive

∂�u

∂t�
≃ (�0 + �1)u− �1

∂u

∂t
.

So, the equivalent differential equation of equation (21) will be

(�0 + �1)u− �1
∂u

∂t
= 2

∂2u(x, t)

∂x2
− c2u(x, t) + σu3(x, t). (25)

Using HPM we get the analytic solution for k = 1. So, Algorithm 2 provide a procedure for getting the
analytic solution of equation (21). Also, the solution can be verified through substitution in equation (21).

Example 4 Consider space-fractional diffusion equation [5]

∂u

∂t
= C

∂�

∂x�
u(x, t), x ∈ R, t > 0, 0 < � < 2, (26)
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subject to initial condition u(x, 0) = f(x), and Cis positive coefficient. We can see from Theorem 1
of [?], that the fundamental solution K(x,t) of equation (26) is the density of the stable distribution

S�((−Ct cos(�π2 ))
1
α , 1, 0), where the initial condition is u(x, 0) = δ(x).

Now, we will use Algorithm 2 for getting the solution of equation (26). If k = 0, the equivalent
differential equation of (6) will be

∂

∂t
u(x, t) ≃ Cu(x, t), x ∈ R, t > 0, 0 < � < 2. (27)

The problem (27) is a linear ordinary differential equation of first order. So, from the initial condition,the
solution of it will be

u(x, t) ≃ exp(t)δ(x).

If k = 1, the equivalent differential equation of (26) will be

∂

∂t
u(x, t) ≃ (�0 + �1)u(x, t)− �1

∂

∂x
u(x, t), x ∈ R, t > 0, 0 < � < 2. (28)

Now, we will use the analytic methods for getting the analytic solution of problem (28). To solve equation
(28) with initial condition u(x, 0) = δ(x), according to the homotopy perturbation technique, we construct
the following homotopy:

(1− p)

(
∂v

∂t
− ∂u0

∂t

)
+ p

(
∂v

∂t
− C

(
(�0 + �1)v(x, t)− �1

∂

∂x
v(x, t)

))
= 0, (29)

Substituting equation (2) into equation (29), and comparing coefficients of terms with identical powers of
p, leads to:

p0 :
∂v0
∂t

− ∂u0
∂t

= 0,

p1 :
∂v1
∂t

= −∂v0
∂t

+ C

(
(�0 + �1)v0(x, t)− �1

∂

∂x
v0(x, t)

)
, v1(x, 0) = 0,

p2 :
∂v2
∂t

= C

(
(�0 + �1)v1(x, t)− �1

∂

∂x
v1(x, t)

)
, v2(x, 0) = 0,

...

pn :
∂vn
∂t

= C

(
(�0 + �1)vn−1(x, t)− �1

∂

∂x
vn−1(x, t)

)
, vn(x, 0) = 0,

For simplicity we take v0(x, t) = u0(x, t) = δ(x). So we derive the following recurrent relation

v1(x, t) =

∫ t

0

(
C

(
(�0 + �1)v0(x, t)− �1

∂

∂x
v0(x, t)

))
dt

= C

(
(�0 + �1)δ(x)− �1

∂

∂x
δ(x)

)
× t,

...
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and so on.

Therefore

u(x, t) = lim
n→∞

un(x, t) = δ(x) +
∞∑
k=1

∫ t

0

(
C

(
(�0 + �1)vk−1(x, t)− �1

∂

∂x
vk−1(x, t)

))
dt.

If k = 2, the equivalent differential equation of (6) will be

∂

∂t
u(x, t) ≃ C

(
(�0 + �1 + �2)u(x, t)− (�1 + 2�2)

∂

∂x
u(x, t) + �2

∂2

∂x2
u(x, t)

)
,

x ∈ R, t > 0, 0 < � < 2,

using HPM we get the analytic solution for k = 2. So, Algorithm 2 provide a procedure for getting the
analytic solution of equation (26).

5 Conclusion

In this paper, we have shown that the HPM can be used successfully for finding the solutions of space-
fractional partial differential equation based on connection of FC and OD. It may be concluded that
this technique is very powerful and efficient in finding the analytical solutions SFDE and TFDWE. Some
experiments supported the theoritical results.

A Fractional Calculus

Fractional calculus goes back to the beginning of the theory of differential calculus and deals with the
generalization of standard integrals and derivatives to a non-integer, or even complex order [14, 16, 15].

In this section we give the basic definitions and some properties of the fractional calculus. More
detailed information may be found in the book by Samko et al. [16] and [11].

Let Ω = [a, b](∞ < a < b < ∞) be a finite interval on the real axis R. The Riemann-Liouville
fractional integrals I�a+ and I�b− of order � ∈ C (ℜ(�) > 0) are defined by

(I�a+f)(x) =
1

Γ(�)

∫ x

a

f(t)dt

(x− t)1−�
(x > a,ℜ(�) > 0),

and

(I�b−f)(x) =
1

Γ(�)

∫ b

x

f(t)dt

(t− x)1−�
(x < b,ℜ(�) > 0),

respectively. Here Γ(�) is the Gamma function.These integrals are called the left-sided and the right-sided
fractional integrals.

The Riemann-Liouville fractional derivatives D�
a+y and D�

b−y of order � ∈ C (ℜ(�) ≥ 0) are defined
by

(D�
a+y)(x) = (

d

dx
)n(In−�

b− y)(x)

=
1

Γ(n− �)
(
d

dx
)n
∫ x

a

y(t)dt

(x− t)�−n+1
, (x > a, n = [ℜ(�)] + 1),
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and

(D�
b−y)(x) = (− d

dx
)n(In−�

b− y)(x)

=
1

Γ(n− �)
(− d

dx
)n
∫ b

x

y(t)dt

(t− x)�−n+1
, (x < b, n = [ℜ(�)] + 1),

respectively, where [ℜ(�)] means the integral part of ℜ(�). If 0 < ℜ(�) < 1, then

(D�
a+y)(x) =

1

Γ(1− �)

d

dx

∫ x

a

y(t)dt

(x− t)�−[ℜ(�)]
(x > a, 0 < ℜ(�) < 1),

(D�
b−y)(x) = − 1

Γ(1− �)

d

dx

∫ b

x

y(t)dt

(t− x)�−[ℜ(�)]
(x < b, 0 < ℜ(�) < 1).

For f ∈ cµ, µ ≥ −1, �, � ≥ 0 and  > −1 the following properties will be easily obtained:

• I�Iβf(x) = I�+βf(x),

• I�Iβf(x) = IβI�f(x).
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Abstract The purpose of this paper is to consider a class of nondifferentiable multiob-

jective fractional programming problems in which every component of the objective and

constraints functions contains a term involving the support function of a compact convex

set. Usual duality theorems are established for two types of higher order dual models

under the assumptions of higher order (F, α, ρ, d)− V−type I functions.
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1. Introduction

In recent years, optimality conditions and duality theory for nondifferentiable multiob-

jective fractional programming problems involving different kinds of generalized convexity

assumptions have received much attention by many authors [6, 7, 8, 9] and the references

therein. Under the assumption of (C,α, ρ, d) convexity, Long [9] established sufficient

optimality conditions and duality results for a nondifferentiable multiobjective fractional

programming problem in which every component of the objective function contains a

term involving the support function of a compact convex set.
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Second and higher-order duality in nonlinear programming has been studied in the

last few years by many researchers. One practical advantage of second and higher-order

duality is that it provides tighter bounds for the value of objective function of the primal

problem when approximations are used because there are more parameters involved.

Mangasarian [10] first formulated a class of higher-order dual problems for a nonlinear

programming problem. Mond and Zhang [11] obtained duality results for various higher-

order dual problems under higher-order invexity assumptions. Motivated by the various

kinds of generalized convexity Liang et al. [7], introduced a unified form of generalized

convexity called (F, α, ρ, d)-convex function. Gulati and Agarwal [2] introduced second

order (F, α, ρ, d)-V-type I functions for a multiobjective programming problem and proved

duality results involving aforesaid functions.

Recently, Suneja et al. [12] formulated higher order Mond-Weir and Schaible type dual

programs for a nondifferentiable multiobjective fractional programming problem where

the objective functions and the constraints contain support function of compact convex

sets in Rn and established weak and strong duality results involving higher order (F, ρ, σ)-

type I functions. Gulati and Geeta [5] introduced a new class of higher-order (V, α, ρ, d)-

invex function and established duality results for Schaible type dual of a nondifferentiable

multiobjective fractional programming problem. Gulati and Agarwal [4] focus his study

on a nondifferentiable multiobjective programming problem where every component of

objective and constraint functions contain a term involving the support function of a

compact convex set and established duality theorems for Wolfe and unified higher order

dual problems involving higher order (F, α, ρ, d)-type I function.

Motivated by earlier work of Ahmad [1], Gulati and Agarwal [2] and Suneja et al.

[12], we establish higher order duality results for two types of dual models related to

nondifferentiable multiobjective fractional programming problem where the objective and

the constraints functions contain support functions of compact convex sets in Rn.

This paper is organized as follows: In Section 2, we have introduced the concept of

higher-order (F, α, ρ, d)-V-type I functions. In Sections 3 and 4, the duality results have

been established for higher order Mond-Weir and Schaible type duals of a multiobjective

nondifferentiable fractional problem. Finally, conclusion and further development are

given in Section 5.

2
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2. Preliminaries

Let Rn be n-dimensional Euclidean space and Rn
+ its non-negative orthant. If x, y ∈

Rn then x < y ⇔ xi < yi, i = 1, 2, . . . , n; x 5 y ⇔ xi 5 yi, i = 1, 2, . . . , n and x ≤ y ⇔

xi 5 yi, i = 1, 2, . . . , n and x ̸= y.

Definition 2.1. A functional F : X ×X ×Rn → R (X ⊆ Rn), is said to be sublinear in

its third argument, if ∀ x, x̄ ∈ X,

(i) F (x, x̄; a1 + a2) 5 F (x, x̄; a1) + F (x, x̄; a2) ∀ a1, a2 ∈ Rn,

(ii) F (x, x̄;αa) = αF (x, x̄; a) ∀ α ∈ R+, a ∈ Rn.

By (ii), it is clear that F (x, x̄; 0) = 0.

Definition 2.2. Let C be a compact convex set in Rn. The support function of C is

defined by

s(x|C) = max{xT y : y ∈ C}.

A support function, being convex and everywhere finite, has a subdifferential, that is,

there exists z ∈ Rn such that s(y|C) = s(x|C) + zT (y − x) for all y ∈ C.

The subdifferential of s(x|C) is given by

∂s(x|C) = {z ∈ C : zT = s(x|C)}.

For any set D ⊂ Rn, the normal cone to D at a point x ∈ D is defined by

ND(x) = {y ∈ Rn | yT (z − x) 5 0 for all z ∈ D}.

It is obvious that for a compact convex set C, y ∈ NC(x) if and only if s(y|C) = xT y, or

equivalently, x ∈ ∂s(y|C).

Consider the following multiobjective programming problem:

(P) Minimize f(x)

subject to x ∈ X0 = {x ∈ X : h(x) ≤ 0},

where X ⊆ Rn be open, f : X → Rk, h : X → Rm are continuously differentiable

functions.

Definition 2.3. A point x̄ ∈ X0 is an efficient solution of (P) if there exists no x ∈ X0

such that f(x) ≤ f(x̄).

Lemma 2.1. x0 ∈ X0 is an efficient solution of (P) if and only if x0 is an optimal solution

3
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of Pr(x
0) for each r = 1, 2, ..., k,

Pr(x
0) minimize fr(x)

subject to

fi(x) ≤ fi(x
0), for all i = 1, 2, ..., k, i ̸= r,

h(x) ≤ 0,

x ∈ X.

Let fi : X → R, hj : X → R,Ki : X×Rn → R and Hj : X×Rn → R be differentiable

functions where i = 1, 2, ..., k and j = 1, 2, ...,m. Let d : X ×X → R is a pseudo matric.

Definition 2.4. The pair of functions (f, h) is said to be higher-order (F, α, ρ, d) −

V−type I at u ∈ X, if there exist vectors α = (α1
1, ..., α

1
k, α

2
1, ..., α

2
m) and ρ = (ρ11, ..., ρ

1
k, ρ

2
1, ..., ρ

2
m),

where α1
i , α

2
j : X ×X → R+ \ {0} and ρ1i , ρ

2
j ∈ R such that for each x ∈ X0 and for all

p, q ∈ Rn, i = 1, 2, ..., k and j = 1, 2, ...,m,

fi(x)− fi(u) = F (x, u;α1
i (x, u)(∇fi(u) +∇pKi(u, p)))

+Ki(u, p)− pT∇pKi(u, p) + ρ1i d
2(x, u),

− hj(u) = F (x, u;α2
j (x, u)(∇hj(u) +∇qHj(u, q)))

+Hj(u, q)− qT∇qHj(u, q) + ρ2jd
2(x, u).

Remark 2.1.

(i) If Ki(u, p) = 1
2p

t∇2fi(u)p and Hj(u, q) = 1
2q

t∇2hj(u)q for i = 1, 2, ..., k and j =

1, 2, ...,m, then we obtain the second order (F, α, ρ, d)-V-type I introduced by Gulati

and Agarwal [2].

(ii) Let Ki(u, p) = 0 and Hj(u, q) = 0 for i = 1, 2, ..., k and j = 1, 2, ...,m. Then above

definition becomes that of (F, α, ρ, d)-V-type I [3].

(iii) If α1
i = α2

i = 1 for i = 1, 2, ..., k and j = 1, 2, ...,m, then the higher-order (F, α, ρ, d)-

V-type I reduces to the higher order (F, ρ, σ)-type I given by Suneja et al. [12].

We now consider the following the multiobjective nondifferentiable fractional program:

(FP) minimize

[
f1(x) + S(x|C1)

g1(x)− S(x|D1)
,
f2(x) + S(x|C2)

g2(x)− S(x|D2)
, ...,

fk(x) + S(x|Ck)

gk(x)− S(x|Dk)

]
subject to hj(x) + S(x|Ej) 5 0, j = 1, 2, ...,m,

where x ∈ X ⊆ Rn, fi, gi : X → R (i = 1, 2, ..., k) and hj : X → R (j = 1, 2, ...,m) are

4
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continuously differentiable functions.

fi(.) + S(.|Ci) = 0 and gi(.) − S(.|Di) > 0; Ci, Di and Ej are compact convex sets

in Rn and S(x|Ci), S(x|Di) and S(x|Ej) denote the support functions of compact convex

sets, Ci, Di and Ej , respectively.

Lemma 2.2. If u is an efficient solution of (FP), we have the following results.

(FPϵ̄) minimize fr(x)+S(x|Cr)
gr(x)−S(x|Dr)

subject to

fi(x)+S(x|Ci)
gi(x)−S(x|Di)

≤ ϵ̄i, i = 12, ..., k, i ̸= r,

hj(x) + S(x|Ej) 5 0, j = 1, 2, ...,m,

where ϵ̄i =
fi(u)+S(u|Ci)
gi(u)−S(u|Di)

.

Since gi(x)− S(x|Di) > 0, for each i = 1, 2, ..., k, therefore (FP ϵ̄) can be rewritten as

(FP1ϵ̄) minimize fr(x)+S(x|Cr)
gr(x)−S(x|Dr)

subject to

fi(x) + S(x|Ci)− ϵ̄i(gi(x)− S(x|Di)) ≤ 0, i = 12, ..., k, i ̸= r,

hj(x) + S(x|Ej) 5 0, j = 1, 2, ...,m.

Lemma 2.3. u is an efficient solution of (FP) if and only if u solves (FP1ϵ̄) for each

r = 1, 2, ..., k, where ϵ̄i =
fi(u)+S(u|Ci)
gi(u)−S(u|Di)

.

3. Higher order Mond-Weir type dual

In connection to (FP) we now consider the following higher order Mond-Weir type

dual problem [12]:

(MFD) maximize
[
f1(u)+uT z1
g1(u)−uT v1

, f2(u)+uT z2
g2(u)−uT v2

, ..., fk(u)+uT zk
gk(u)−uT vk

]
subject to

∇

 k∑
i=1

λi

(fi(u) + uT zi
gi(u)− uT vi

)
+

m∑
j=1

µj(hj(u) + uTwj)



+

k∑
i=1

λi∇pGi(u, p) +

m∑
j=1

µj∇qHj(u, q) = 0, (1)

m∑
j=1

µj{(hj(u) + uTwj) +Hj(u, q)− qT∇qHj(u, q)} = 0, (2)

k∑
i=1

λi
(
Gi(u, p)− pT∇qGi(u, p)

)
= 0, (3)

zi ∈ Ci, vi ∈ Di, i = 1, 2, ..., k, wj ∈ Ej , j = 1, 2, ...,m,

5
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µj = 0, j = 1, 2, ...,m,

λi = 0, i = 1, 2, ..., k,
k∑

i=1

λi = 1.

Theorem 3.1 (Weak duality). Let x and (u, z, v, µ, λ, w, p, q) be feasible solutions to

(FP) and (MFD), respectively such that

(i)
[
fi(.)+(.)T zi
gi(.)−(.)T vi

, hj(.) + (.)Twj

]
is higher-order (F, α, ρ, d) − V−type I with respect to

Gi and Hj , at u for i = 1, 2, ..., k and j = 1, 2, ...,m,

(ii)
k∑

i=1

λi

α1
i (x,u)

= 1, α2
j (x, u) = 1, j = 1, 2, ...,m,

(iii) λi > 0,
k∑

i=1

λiρ
1
i

α1
i (x,u)

+
∑m

j=1 µjρ
2
j = 0.

Then

fi(x) + S(x|Ci)

gi(x)− S(x|Di)
5 fi(u) + uT zi
gi(u)− uT vi

, i = 1, 2, ..., k, (4)

and

fr(x) + S(x|Cr)

gr(x)− S(x|Dr)
<
fr(u) + uT zr
gr(u)− uT vr

, for some r = 1, 2, ..., k, (5)

cannot hold.

Proof. Suppose on the contrary that inequalities (4) and (5) hold. Then as λi > 0, xT zi 5

S(x|Ci), x
T vi 5 S(x|Di) using hypothesis (ii), we get

k∑
i=1

λi
α1
i (x, u)

(fi(x) + xT zi
gi(x)− xT vi

− fi(u) + uT zi
gi(u)− uT vi

)
< 0. (6)

Because α2
j (x, u) = 1 for j ∈M , hypothesis (i) gives

fi(x) + xT zi
gi(x)− xT vi

− fi(u) + uT zi
gi(u)− uT vi

= F
(
x, u;α1

i (x, u)
(
∇
(fi(u) + uT zi
gi(u)− uT vi

)
+∇pGi(u, p)

))
+Gi(u, p)− pT∇pGi(u, p) + ρ1i d

2(x, u). (7)

− (hj(u) + uTwj) = F
(
x, u;

(
∇(hj(u) + uTwj) +∇qHj(u, q)

)
+Hj(u, q)− qT∇qHj(u, q) + ρ2jd

2(x, u). (8)

On multiplying the above inequalities (7) and (8) by λi

α1
i (x,u)

and µj , respectively, then

summing the two resultant inequalities, we obtain

k∑
i=1

λi
α1
i (x, u)

(fi(x) + xT zi
gi(x)− xT vi

− fi(u) + uT zi
gi(u)− uT vi

)
6
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= F
(
x, u;

k∑
i=1

λi
(
∇
(fi(u) + uT zi
gi(u)− uT vi

)
+∇pGi(u, p)

))

+

k∑
i=1

λi
α1
i (x, u)

(
Gi(u, p)−pT∇pGi(u, p))+

k∑
i=1

λiρ
1
i d

2(x, u)

α1
i (x, u)

, (9)

−
m∑
j=1

µj(hj(u) + uTwj) = F
(
x, u;

m∑
j=1

µj
(
∇(hj(u) + uTwj) +∇qHj(u, q))

)

+
m∑
j=1

µj
(
Hj(u, q)−qT∇qHj(u, q)

)
+

m∑
j=1

µjρ
2
jd

2(x, u). (10)

Using equation (1) and sublinearity of F , we have

0 = F
[
x, u;∇

( k∑
i=1

λi

(fi(u) + uT zi
gi(u)− uT vi

)
+

m∑
j=1

µj(hj(u) + uTwj)
)

+

k∑
i=1

λi∇pGi(u, p) +

m∑
j=1

µj∇qHj(u, q)
]

5 F
(
x, u;

k∑
i=1

λi
(
∇
(fi(u) + uT zi
gi(u)− uT vi

)
+∇pGi(u, p)

))

+ F
(
x, u;

m∑
j=1

µj
(
∇(hj(u) + uTwj) +∇qHj(u, q))

)
. (11)

The inequalities (9), (10), (11) and hypothesis (iii) give

0 5
k∑

i=1

λi
α1
i (x, u)

(fi(x) + xT zi
gi(x)− xT vi

− fi(u) + uT zi
gi(u)− uT vi

)
−

m∑
j=1

µj(hj(u) + uTwj)

−
k∑

i=1

λi
α1
i (x, u)

(
Gi(u, p)− pT∇pGi(u, p))−

m∑
j=1

µj
(
Hj(u, q)− qT∇qHj(u, q)

)
.

That is,
k∑

i=1

λi
α1
i (x, u)

(fi(x) + xT zi
gi(x)− xT vi

− fi(u) + uT zi
gi(u)− uT vi

)

=
m∑
j=1

µj(hj(u) + uTwj +Hj(u, q)− qT∇qHj(u, q))

+
k∑

i=1

λi
α1
i (x, u)

(
Gi(u, p)− pT∇pGi(u, p))

From the inequalities (2), (3) and the positivity of α1
i (x, u), i = 1, 2, ..., k, we have

k∑
i=1

λi
α1
i (x, u)

(fi(x) + xT zi
gi(x)− xT vi

− fi(u) + uT zi
gi(u)− uT vi

)
= 0,
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which contradicts (6). This completes the proof.

Theorem 3.2 (Strong duality). If u is an efficient solution of (FP), Gi(u, 0) = 0, i =

1, 2, ..., k,Hj(u, 0) = 0, j = 1, 2, ...,m, and a constraint qualification is satisfied for (FP ϵ̄)

for at least one r = 1, 2, ..., k, then there exist λ̄ ∈ Rk, µ̄ ∈ Rm, z̄i ∈ Rn, v̄i ∈ Rn and

w̄j ∈ Rn, i = 1, 2, ..., k, j = 1, 2, ...,m, such that (u, z̄, v̄, µ̄, λ̄, w̄, p = 0, q = 0) is a feasi-

ble solution of (MFD) and the corresponding values of the objective functions are equal.

Further if the conditions of Weak duality theorem 3.1 are satisfied for each feasible so-

lution x of (FP) and each feasible solution (ú, ź, v́, µ́, ẃ, p = 0, q = 0) of (MFD) then

(u, z̄, v̄, µ̄, λ̄, w̄, p = 0, q = 0) is an efficient solution of (MFD).

Proof. The proof follows along the lines of Theorem 3.2 [12] in light of the discussions

given above and hence being omitted.

4. Higher order Schaible type dual

Now we consider the following Schaible type higher order dual problem for (FP):

(SFD) maximize (γ1, γ2, ..., γk)

subject to

∇

 k∑
i=1

λi

[
(fi(u) + uT zi)− γi(gi(u)− uT vi)

]
+

m∑
j=1

µj(hj(u) + uTwj)



+

k∑
i=1

λi∇p

(
Ki(u, p)− γiGi(u, p)

)
+

m∑
j=1

µj∇qHj(u, q) = 0, (12)

k∑
i=1

λi{
[
(fi(u) + uT zi)− γi(gi(u)− uT vi)

]
+
(
Ki(u, p)− γiGi(u, p)

)
−pT∇p

(
Ki(u, p)− γiGi(u, p)

)
} = 0, (13)

m∑
j=1

µj{(hj(u) + uTwj) +Hj(u, q)− qT∇qHj(u, q)} = 0, (14)

zi ∈ Ci, vi ∈ Di, i = 1, 2, ..., k, wj ∈ Ej , j = 1, 2, ...,m,

µj = 0, j = 1, 2, ...,m,

λi ≥ 0, i = 1, 2, ..., k,

k∑
i=1

λi = 1,

γi = 0, i = 1, 2, ..., k.

8
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Theorem 4.1 (Weak duality). Let x and (u, γ, z, v, w, µ, λ, p, q) be feasible solutions of

(FP) and (SFD), respectively such that

(i) (fi(.)+ (.)T zi, hj(.)+ (.)Twj) is higher-order (F, α, ρ, d)−V−type I with respect to

Ki and Hj and [−(gi(.)− (.)T vi, hj(.)+(.)Twj ] is higher-order (F, α, ρ, d)−V−type

I with respect to −Gi and Hj , at u for i = 1, 2, ..., k and j = 1, 2, ...,m,

(ii) α1
i (x, u) = α2

j (x, u) = α̂(x, u), i = 1, 2, ..., k, j = 1, 2, ...,m,

(iii)
k∑

i=1
λiρ

3
i +

∑m
j=1 µjρ

2
i = 0, where ρ3i = ρ1i (1 + γi).

Then

fi(x) + S(x|Ci)

gi(x)− S(x|Di)
5 γi, i = 1, 2, ..., k, (15)

and

fr(x) + S(x|Cr)

gr(x)− S(x|Dr)
< γr, for some r = 1, 2, ..., k, (16)

cannot hold.

Proof. Suppose on the contrary that inequalities (15) and (16) hold. Then as λi ≥

0, i = 1, 2, ..., k, using hypothesis (ii), we get

k∑
i=1

λi
α̂(x, u)

(
fi(x) + xT zi − γi(gi(x)− xT vi)

)
< 0. (17)

Since (fi(.) + (.)T zi, hj(.) + (.)Twj) is higher-order (F, α, ρ, d) − V−type I with respect

to Ki and Hj and [−(gi(.)− (.)T vi), hj(.) + (.)Twj ] is higher-order (F, α, ρ, d)− V−type

I with respect to −Gi and Hj , at u for i = 1, 2, ..., k and j = 1, 2, ...,m, we have

((fi(x) + xT zi)− (fi(u) + uT zi)) = F
(
x, u;α1

i (x, u)
(
∇(fi(u) + uT zi) +∇pKi(u, p))

)
+Ki(u, p)− pT∇pKi(u, p) + ρ1i d

2(x, u) (18)

(−(gi(x)− xT vi) + (gi(u)− uT vi)) = F
(
x, u;−α1

i (x, u)
(
∇(gi(u)− uT vi)−∇pGi(u, p))

)
−Gi(u, p) + pT∇pGi(u, p) + ρ1i d

2(x, u) (19)

and

−(hj(u) + uTwj) = F
(
x, u;α2

i (x, u)
(
∇(hj(u) + uTwj) +∇qHj(u, q))

)
+Hj(u, q)− qT∇qHj(u, q) + ρ2i d

2(x, u) (20)
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On multiplying (19) by γi and adding with (18),we get

[(fi(x) + xT zi)− γi(gi(x)− xT vi)]− [(fi(u) + uT zi)− γi(gi(u)− uT vi)]

= F
[
x, u;α1

i (x, u)
(
∇(fi(u) + uT zi − γi(gi(u)− uT vi))

+∇p(Ki(u, p)− γiGi(u, p)
))]

+Ki(u, p)− γiGi(u, p)

− pT∇p(Ki(u, p)− γiGi(u, p)) + ρ3i d
2(x, u), (21)

where ρ3i = ρ1i (1 + γi).

Multiplying (21) by λi > 0 and (20) by µj = 0, i = 1, 2, ..., k, j = i, 2, ...,m, and adding,

we obtain

k∑
i=1

λi{[(fi(x)+xT zi)−γi(gi(x)−xT vi)]−[(fi(u)+u
T zi)−γi(gi(u)−uT vi)]}−

m∑
j=1

µj(hj(u)+u
Twj)

= F
[
x, u;

k∑
i=1

λiα
1
i (x, u)

(
∇(fi(u)+u

T zi−γi(gi(u)−uT vi))
)
+

m∑
j=1

µjα
2
i (x, u)

(
∇(hj(u)+u

Twj)

+

k∑
i=1

λiα
1
i (x, u)

(
∇p(Ki(u, p)− γiGi(u, p)

))
+

m∑
j=1

µjα
2
i (x, u)∇qHj(u, q)

]

+

k∑
i=1

λi

(
Ki(u, p)− γiGi(u, p)

)
+

m∑
j=1

µj

(
Hj(u, q)− qT∇qHj(u, q)

)

−
k∑

i=1

λip
T∇p(Ki(u, p)− γiGi(u, p)) +

( k∑
i=1

λiρ
3
i +

m∑
j=1

µjρ
2
i

)
d2(x, u). (22)

Using (13), (14) and hypothesis
∑k

i=1 λiρ
3
i +

∑m
j=1 µjρ

2
i = 0, (22) reduces to∑k

i=1 λi[(fi(x) + xT zi)− γi(gi(x)− xT vi)]

= F
[
x, u;

k∑
i=1

λiα
1
i (x, u)

(
∇(fi(u)+u

T zi−γi(gi(u)+uT vi))
)
+

m∑
j=1

µjα
2
i (x, u)

(
∇(hj(u)+u

Twj)

+

k∑
i=1

λiα
1
i (x, u)

(
∇p(Ki(u, p)− γiGi(u, p)

))
+

m∑
j=1

µjα
2
i (x, u)∇qHj(u, q)

])
(23)

As α1
i (x, u) = α2

i (x, u) = α̂(x, u), using the sublinearity of F , we have

k∑
i=1

λi
α̂(x, u)

[(fi(x) + xT zi)− γi(gi(x)− xT vi)]

= F
[
x, u;

k∑
i=1

λi

(
∇(fi(u) + uT zi − γi(gi(u)− uT vi))

)
+

m∑
j=1

µj
(
∇(hj(u) + uTwj)

+

k∑
i=1

λi

(
∇p(Ki(u, p)− γiGi(u, p)

))
+

m∑
j=1

µj∇qHj(u, q)
])

(24)
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Now by the feasibility condition (12) and the result F (x, u; 0) = 0, we get
k∑

i=1

λi
α̂(x,u) [(fi(x) + xT zi)− γi(gi(x)− xT vi)] = 0,

which contradicts (17). This completes the proof.

Theorem 4.2 (Strong duality). If u is an efficient solution of (FP) and Ki(u, 0) =

0, Gi(u, 0) = 0, i = 1, 2, ..., k,Hj(u, 0) = 0, j = 1, 2, ...,m, and a constraint qualifica-

tion is satisfied for (FP 1ϵ̄) for at least one r = 1, 2, ..., k, then there exist λ̄ ∈ Rk, µ̄ ∈

Rm, γ̄ ∈ Rk, z̄i ∈ Rn, v̄i ∈ Rn and w̄j ∈ Rn, i = 1, 2, ..., k, j = 1, 2, ...,m, such that

(u, γ̄, z̄, v̄, w̄, µ̄, λ̄, p = 0, q = 0) is a feasible solution of (SFD). Further if the conditions

of Weak duality theorem 4.1 are satisfied then (u, ᾱ, z̄, v̄, w̄, µ̄, λ̄, p = 0, q = 0) is an ef-

ficient solution of (SFD) and the corresponding values of the objective functions are equal.

Proof. The proof follows along the lines of Theorem 4.2 [12] in light of the discussions

given above and hence being omitted.

5. Conclusion

In the present analysis, we focus on a Mond-Weir type and Schaible type dual pro-

grams of a nondifferentiable multiobjective fractional programming problem in which

every component of the objective and constraints functions contains a term involving the

support function of a compact convex set and established weak and strong duality theo-

rems under the assumptions of higher order (F, α, ρ, d)-V-type I functions. The question

arise whether the duality results developed in this paper still holds for the nondiffer-

entiable minimax fractional programming problem involving the support function of a

compact convex set. This will orient the future research of the authors.
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Fuzzy implicative filters of BE-algebras with degrees in the interval

(0, 1]

Young Bae Jun1 and Sun Shin Ahn2∗
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660-701, Korea
2Department of Mathematics Education, Dongguk University, Seoul 100-715, Korea

Abstract. In defining a fuzzy filter and a fuzzy implicative filter in BE-algebras, several degrees are provided,

and then related properties are investigated.

1. Introduction

In [5], H. S. Kim and Y. H. Kim introduced the notion of a BE-algebra. S. S. Ahn and K. S.

So [3,4] introduced the notion of ideals in BE-algebras. S. S. Ahn et al. [1] fuzzified the concept

of BE-algebras, investigated some of their properties.

In this paper, we provide several degrees in defining a fuzzy filter and a fuzzy implicative filter.

It is a generalization of a fuzzy filter.

2. Preliminaries

We recall some definitions and results discussed in [3,4,5].

An algebra (X; ∗, 1) of type (2, 0) is called a BE-algebra if

(BE1) x ∗ x = 1 for all x ∈ X;

(BE2) x ∗ 1 = 1 for all x ∈ X;

(BE3) 1 ∗ x = x for all x ∈ X;

(BE4) x ∗ (y ∗ z) = y ∗ (x ∗ z) for all x, y, z ∈ X (exchange)

We introduce a relation “≤” on a BE-algebra X by x ≤ y if and only if x ∗ y = 1. A non-empty

subset S of a BE-algebra X is said to be a subalgebra of X if it is closed under the operation

“ ∗ ”. Noticing that x ∗ x = 1 for all x ∈ X, it is clear that 1 ∈ S. A BE-algebra (X; ∗, 1) is said
to be self distributive if x ∗ (y ∗ z) = (x ∗ y) ∗ (x ∗ z) for all x, y, z ∈ X.

Definition 2.1.([5]) Let (X; ∗, 1) be a BE-algebra and let F be a non-empty subset of X. Then

F is called a filter of X if

(F1) 1 ∈ F ;

(F2) x ∗ y ∈ F and x ∈ F imply y ∈ F .

02010 Mathematics Subject Classification: 03G25; 06F35; 08A72.
0Keywords: BE-algebra; enlarged filter; fuzzy enlarged (implicative) filter with degree.

∗ The corresponding author.
0E-mail: skywine@gmail.com; sunshine@dongguk.edu
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Example 2.2.([5]) Let X := {1, a, b, c, d, 0} be a BE-algebra with the following table:

∗ 1 a b c d 0

1 1 a b c d 0

a 1 1 a c c d

b 1 1 1 c c c

c 1 a b 1 a b

d 1 1 a 1 1 a

0 1 1 1 1 1 1

Then F1 := {1, a, b} is a filter of X, but F2 := {1, a} is not a filter of X, since a ∗ b ∈ F2 and

a ∈ F2, but b ̸∈ F2.

Proposition 2.3. Let (X; ∗, 1) be a BE-algebra and let F be a filter of X. If x ≤ y and x ∈ F

for any y ∈ X, then y ∈ F .

Proposition 2.4. Let (X; ∗, 1) be a self distributive BE-algebra. Then the following hold: for

any x, y, z ∈ X,

(i) if x ≤ y, then z ∗ x ≤ z ∗ y and y ∗ z ≤ x ∗ z.
(ii) y ∗ z ≤ (z ∗ x) ∗ (y ∗ z).
(iii) y ∗ z ≤ (x ∗ y) ∗ (x ∗ z).

A BE-algebra (X; ∗, 1) is said to be transitive if it satisfies Proposition 2.4(iii).

3. Fuzzy filters of BE-algebras with degrees in (0, 1]

In what follows let X denote a BE-algebra unless specified otherwise.

Definition 3.1. A fuzzy subset µ of a BE-algebra X is called a fuzzy filter of X if it satisfies

for all x, y ∈ X

(d1) µ(1) ≥ µ(x),

(d2) µ(x) ≥ min{µ(y ∗ x), µ(y)}.

Proposition 3.2. Let µ be a fuzzy filter of a BE-algebra X. Then for any x, y ∈ X, if x ≤ y,

then µ(x) ≤ µ(y).

Proof. Straightforward. �

Definition 3.3. Let F be a non-empty subset of a BE-algebra X which is not necessary a filter

of X. We say that a subset G of X is an enlarged filter of X related to F if it satisfies:

(1) F is a subset of G,

(2) 1 ∈ G,

(3) (∀y ∈ X)(∀x ∈ F )(x ∗ y ∈ F ⇒ y ∈ G).
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Obviously, every filter is an enlarged filter of X related to itself. Note that there exists an

enlarged filter of X related to any non-empty subset F of X.

Example 3.4. Let X = {1, a, b, c, d, 0} be a BE-algebra which is given in Example 2.2. Note

that F := {1, a} is not a filter since a ∗ b = a ∈ F , a ∈ F and b /∈ F . Then G := {1, a, b, c} is an

enlarged filter of X related to F and G is not a filter of X since b ∗ d = c, b ∈ G and d /∈ G.

In what follows let λ and κ be members of (0, 1], and let n and k denote a natural number and

a real number, respectively, such that k < n unless otherwise specified.

Definition 3.5. A fuzzy subset µ of a BE-algebra X is called a fuzzy filter of X with degree

(λ, κ) if it satisfies:

(1) (∀x ∈ X)(µ(1) ≥ λµ(x)),

(2) (∀x, y ∈ X)(µ(x) ≥ κmin{µ(y ∗ x), µ(y)}).

Note that if λ ̸= κ, then a fuzzy filter with degree (λ, κ) may not be a fuzzy filter with degree

(κ, λ), and vice versa. Obviously, every fuzzy filter is a fuzzy filter with degree (λ, κ), but the

converse may not be true.

Example 3.6. Let X := {1, a, b, c} be a BE-algebra in which the ∗-operation is given by the

following table:
∗ 1 a b c

1 1 a b c

a 1 1 b b

b 1 a 1 a

c 1 1 1 1

Define a fuzzy subset µ : X → [0, 1] by

µ =

(
1 a b c

0.4 0.3 0.7 0.7

)
Then µ is a fuzzy filter of X with degree (4

7
, 4
7
), but it is neither a fuzzy filter of X nor a fuzzy

filter of X with degree (4
5
, 4
5
) since

µ(1) = 0.4 � µ(b) = 0.7

and

µ(a) = 0.3 �
4

5
× 0.4 =

4

5
× µ(1) =

4

5
×min{µ(c ∗ a) = µ(1), µ(c)}.

Define a fuzzy subset ν : X → [0, 1] by

ν =

(
1 a b c

0.6 0.4 0.7 0.7

)
Then ν is a fuzzy filter of X with degree (4

5
, 3
5
), but it is neither a fuzzy filter of X nor a fuzzy

filter of X with degree (3
5
, 4
5
) since

ν(1) = 0.6 � ν(c) = 0.7
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and

ν(a) = 0.4 � 0.48 =
4

5
× 0.6 =

4

5
× ν(1) =

4

5
×min{ν(c ∗ a) = ν(1), ν(c)}.

Note that a fuzzy filter with degree (λ, κ) is a fuzzy filter if and only if (λ, κ) = (1, 1). Let λ1

and λ2 be members of (0, 1]. If λ1 > λ2, then every fuzzy filter with degree λ2, but the converse

is not true(See Example 3.6).

Proposition 3.7. Every fuzzy filter of a BE-algebra X with degree (λ, κ) satisfies the following

assertions.

(i) (∀x, y ∈ X)(µ(x ∗ y) ≥ λκµ(y)).

(ii) (∀x, y ∈ X)(y ≤ x ⇒ µ(x) ≥ λκµ(y)).

Proof. (i) For any x, y ∈ X, we have

µ(x ∗ y) ≥κmin{µ(y ∗ (x ∗ y)), µ(y)}
=κmin{µ(x ∗ (y ∗ y)), µ(y)}
=κmin{µ(x ∗ 1), µ(y)}
=κmin{µ(1), µ(y)}
≥κmin{λµ(y), µ(y)}
=κλµ(y).

(ii) Let x, y ∈ X be such that y ≤ x. Then y ∗ x = 1. Hence we have

µ(x) ≥κmin{µ(y ∗ x), µ(y)}
=κmin{µ(1), µ(y)}
≥κmin{λµ(y), µ(y)}
=λκµ(y)

for any x, y ∈ X. �

Corollary 3.8. Let µ be a fuzzy filter of a BE-algebra X with degree (λ, κ). If λ = κ, then

(i) (∀x, y ∈ X)(µ(x ∗ y) ≥ λ2µ(y)).

(ii) (∀x, y ∈ X)(y ≤ x ⇒ µ(x) ≥ λ2µ(y)).

Denote by F(X) the set of all filters of a BE-algebra X. Note that a fuzzy subset µ of a

BE-algebra X is a fuzzy filter of X if and only if

(∀t ∈ [0, 1])(U(µ; t) ∈ F(X) ∪ {∅}).

But we know that for any fuzzy subset µ of a BE-algebra X there exist λ, κ ∈ (0, 1) and t ∈ [0, 1]

such that

(1) µ is a fuzzy filter of X with degree (λ, κ),

(2) U(µ; t) /∈ F(X) ∪ {∅}.
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Example 3.9. Consider the fuzzy subset µ of X = {1, a, b, c} which is given Example 3.6. If

t ∈ (0.4, 0.6], then U(µ; t) = {1, b, c} is not a filter of X. But µ is a fuzzy filter of X with degree

(0.4, 0.6).

Theorem 3.10. Let µ be a fuzzy subset of a BE-algebra X. For any t ∈ [0, 1] with t ≤
max{λ, κ}, if U(µ; t) is an enlarged filter of X related to U(µ; t

max{λ,κ}), then µ is a fuzzy filter of

X with degree (λ, κ).

Proof. Assume that µ(1) < t ≤ λµ(x) for some x ∈ X and t ∈ (0, λ]. Then µ(x) ≥ t
λ
≥ t

max{λ,κ}
and so x ∈ U(µ; t

max{λ,κ}), i.e., U(µ; t
max{λ,κ}) ̸= ∅. Since U(µ; t) is an enlarged filter ofX related to

U(µ; t
max{λ,κ}), we have 1 ∈ U(µ; t), i.e., µ(1) ≥ t. This is a contradiction, and thus µ(1) ≥ λµ(x)

for all x ∈ X.

Now suppose that there exist a, b, c ∈ X such that µ(a) < κmin{µ(b ∗ a), µ(b)}. If we take

t := κmin{µ(b ∗ a), µ(b)}, then t ∈ (0, κ] ⊆ (0,max{λ, κ}]. Hence b ∗ a ∈ U(µ; t
κ
) ⊆ U(µ; t

max{λ,κ})

and b ∈ U(µ; t
κ
) ⊆ U(µ; t

max{λ,κ}). It follows from Definition 3.3(3) that a ∈ U(µ; t) so that

µ(a) ≥ t, which is impossible. Therefore

µ(x) ≥ κmin{µ(y ∗ x), µ(y)}

for all x, y ∈ X. Thus µ is a fuzzy filter of X with degree (λ, κ). �

Corollary 3.11. Let µ be a fuzzy subset of a BE-algebra X. For any t ∈ [0, 1] with t ≤ k
n
, if

U(µ; t) is an enlarged filter of X related to U(µ; n
k
t), then µ is a fuzzy filter of X with degree

( k
n
, k
n
).

Theorem 3.12. Let t ∈ [0, 1] be such that U(µ; t)(̸= ∅) is not necessary a filter of a BE-algebra

X. If µ is a fuzzy filter of X with degree (λ, κ), then U(µ; tmin{λ, κ}) is an enlarged filter of X

related to U(µ; t).

Proof. Since tmin{λ, κ} ≤ t, we have U(µ; t) ⊆ U(µ; tmin{λ, κ}). Since U(µ; t) ̸= ∅, there exists

x ∈ U(µ; t) and so µ(x) ≥ t. By Definition 3.5(1), we obtain µ(1) ≥ λµ(x) ≥ λt ≥ tmin{λ, κ}.
Therefore 1 ∈ U(µ; tmin{λ, κ}).

Let x, y, z ∈ X be such that y ∗ x ∈ U(µ; t) and y ∈ U(µ; t). Then µ(y ∗ x) ≥ t and µ(y) ≥ t.

It follows from Definition 3.5(2) that

µ(x) ≥κmin{µ(y ∗ x), µ(y)}
≥κt ≥ tmin{λ, κ}.

so that x ∈ U(µ; tmin{λ, κ}). Thus U(µ; tmin{λ, κ}) is an enlarged filter of X related to U(µ; t).

�

Proposition 3.13. Let µ be a fuzzy filter of a BE-algebra X with degree (λ, κ). If the inequality

x ≤ y ∗ z holds for any x, y, z ∈ X, then µ(z) ≥ min{κµ(y), λκ2µ(x)}.
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Proof. Suppose that x ≤ y ∗ z for all x, y, z ∈ X. Then x ∗ (y ∗ z) = 1 and hence we have

µ(y ∗ z) ≥κmin{µ(x ∗ (y ∗ z)), µ(x)}
=κmin{µ(1), µ(x)}
≥κmin{λµ(x), µ(x)}
=κλµ(x).

It follows that

µ(z) ≥κmin{µ(y ∗ z), µ(y)}
≥κmin{κλµ(x), µ(y)}
=min{κµ(y), κ2λµ(x)}

for all x, y, z ∈ X. �
Corollary 3.14. Let µ be a fuzzy filter of a BE-algebra X with degree (λ, κ). If λ = κ and the

inequality x ≤ y ∗ z holds for any x, y, z ∈ X, then

µ(z) ≥ min{λµ(y), λ3µ(x)}

for all x, y, z ∈ X.

Corollary 3.15. Let µ be a fuzzy filter of a BE-algebra X. If the inequality x ≤ y ∗ z holds for

any x, y, z ∈ X, then

µ(z) ≥ min{µ(y), µ(x)}
for all x, y, z ∈ X.

4. Fuzzy implicative filters of BE-algebras with degrees in (0, 1]

Definition 4.1. A non-empty subset F of a BE-algebra X is called an implicative filter of X if

it satisfies (F1) and

(F3) x ∗ (y ∗ z) ∈ F and x ∗ y ∈ F imply x ∗ z ∈ F

for all x, y, z ∈ X.

Example 4.2. Consider a BE-algebra X = {1, a, b, c, d, 0} which is given Example 2.2. It is

easy to see that the set F := {1, a, b} is an implicative filter of X.

Note that every implicative filter of a BE-algebra X is a filter of X.

Definition 4.3. A fuzzy subset µ of a BE-algebra X is called a fuzzy implicative filter of X if

it satisfies (d1) and

(d3) µ(x ∗ z) ≥ min{µ(x ∗ (y ∗ z)), µ(x ∗ y)}
for all x, y, z ∈ X.

Definition 4.4. Let F be a non-empty subset of a BE-algebra X which is not necessary an

implicative filter of X. We say that a subset G of X is an enlarged implicative filter of X related

to F if it satisfies:
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(1) F is a subset of G,

(2) 1 ∈ G,

(3) (∀x, y, z ∈ X)(x ∗ (y ∗ z) ∈ F and x ∗ y ∈ F ⇒ x ∗ z ∈ G).

Obviously, every implicative filter is an enlarged implicative filter of a BE-algebra X related to

itself. Note that there exists an enlarged implicative filter of X related to any non-empty subset

F of X.

Example 4.5. Consider a BE-algebra X = {1, a, b, c, d, 0} which is given in Example 2.2. Note

that F := {1, a} is not both a filter and an implicative filter of X. Then G := {1, a, b, c} is an

enlarged implicative filter of X related to F .

Proposition 4.6. Let F be a non-empty subset of a BE-algebra X. Every enlarged implicative

filter of X related to F is an enlarged filter of X related to F.

Proof. Let G be an enlarged implicative filter of X related to F . Putting x = 1 in Definition

4.4(3) and use (BE3), we have

(∀y, z ∈ X)(1 ∗ (y ∗ z) = y ∗ z ∈ F and 1 ∗ y = y ∈ F ⇒ 1 ∗ z = z ∈ G).

Hence G is an enlarged filter of X related to F . �

The converse of Proposition 4.6 is not true in general as seen in the following example.

Example 4.7. Let X := {1, a, b, c} be a BE-algebra([3]) in which the ∗-operation is given by

the following table:
∗ 1 a b c

1 1 a b c

a 1 1 a a

b 1 1 1 a

c 1 1 a 1

Let F := {1} and G := {1, c}. Then G is an enlarged filter of F but it is not an enlarged

implicative filter of F since b ∗ (a ∗ c) = 1 ∈ F, b ∗ a = 1 ∈ F and b ∗ c = a /∈ G.

Definition 4.8. A fuzzy subset µ of a BE-algebra X is called a fuzzy implicative filter of X with

degree (λ, κ) if it satisfies Definition 3.5(1)

(2) (∀x, y, z ∈ X)(µ(x ∗ z) ≥ κmin{µ(x ∗ (y ∗ z)), µ(x ∗ y)}).

Note that if λ ̸= κ, then a fuzzy implicative filter with degree (λ, κ) may not be a fuzzy

implicative filter with degree (κ, λ), and vice versa. Obviously, every fuzzy implicative filter is a

fuzzy implicative filter with degree (λ, κ), but the converse may not be true.

Example 4.9. Consider a BE-algebra X = {1, a, b, c, d, 0} which is given in Example 2.2. Define

a fuzzy subset µ : X → [0, 1] by

µ =

(
1 a b c d 0

0.7 0.8 0.8 0.4 0.5 0.4

)
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Then µ is a fuzzy implicative filter of X with degree (5
6
, 3
6
), but it is neither a fuzzy filter of X

nor a fuzzy implicative filter of X with degree (3
6
, 5
6
) since

µ(1) = 0.7 � µ(a) = 0.8

and

µ(1 ∗ 0) = µ(0) = 0.4 �0.42 =
5

6
× 0.5 =

5

6
× µ(d)

=
5

6
×min{µ(1 ∗ (a ∗ 0) = µ(d), µ(1 ∗ a) = µ(a)}.

Obviously, every fuzzy implicative filter of a BE-algebra X is a fuzzy implicative filter of X

with degree (λ, κ), but the converse may not be true. In fact, the fuzzy implicative filter µ of

X with degree (3
6
, 5
6
) in Example 4.9 is not a fuzzy implicative filter of X. Note that a fuzzy

implicative filter with degree (λ, κ) is a fuzzy implicative filter if and only if (λ, κ) = (1, 1).

Proposition 4.10. If µ is a fuzzy implicative filter of a BE-algebra X degree (λ, κ), then µ is

a fuzzy filter of X with degree (λ, κ).

Proof. Putting x := 1 in Definition 4.8(2), we have

µ(z) = µ(1 ∗ z) ≥κmin{µ(1 ∗ (y ∗ z)), µ(1 ∗ y)}
=κmin{µ(y ∗ z), µ(y)}

for any y, z ∈ X. Thus µ is a fuzzy filter of X with degree (λ, κ). �

The converse of Proposition 4.10 is not true in general as seen in the following example.

Example 4.11. Consider a BE-algebra X = {1, a, b, c} which is given in Example 4.7. Define a

fuzzy subset µ : X → [0, 1] by

µ =

(
1 a b c

0.6 0.3 0.3 0.7

)
Then µ is a fuzzy filter of X with degree (3

6
, 4
7
), but it is neither a fuzzy filter of X nor a fuzzy

implicative filter of X with degree (3
6
, 4
7
) since

µ(1) = 0.6 � µ(c) = 0.7

and

µ(b ∗ c) = µ(a) = 0.3 �0.34 =
4

7
× 0.6 =

4

7
× µ(1)

=
4

7
×min{µ(b ∗ (a ∗ c)) = µ(1), µ(b ∗ a) = µ(1)}.

Proposition 4.12. Every fuzzy implicative filter of a BE-algebra X with degree (λ, κ) satisfies

the following assertions.

(i) (∀x, y ∈ X)(µ(x ∗ y) ≥ λκµ(y)).

(ii) (∀x, y ∈ X)(x ≤ y ⇒ µ(y) ≥ λκµ(x)).
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Proof. It follows from Proposition 3.7 and Proposition 4.10. �
Corollary 4.13. Let µ be a fuzzy implicative filter of a BE-algebra X with degree (λ, κ). If

λ = κ, then

(i) (∀x, y ∈ X)(µ(x ∗ y) ≥ λ2µ(y)).

(ii) (∀x, y ∈ X)(x ≤ y ⇒ µ(y) ≥ λ2µ(x)).

Proposition 4.14. Let µ be a fuzzy implicative filter of a BE-algebra X with degree (λ, κ).

Then the following are hold:

(i) ∀x, y ∈ X)(µ(x ∗ y) ≥ λκµ(x ∗ (x ∗ y))).
(ii) (∀x, y, z ∈ X)(µ(y ∗ z) ≥ λκ2min{µ(x ∗ (y ∗ (y ∗ z))), µ(x)}).

Proof. (i) Assume that µ is a fuzzy implicative filter of a BE-algebra X with degree (λ, κ).

Putting z := y, y := x in Definition 4.8(2), we have

µ(x ∗ y) ≥κmin{µ(x ∗ (x ∗ y)), µ(x ∗ x)}
=κmin{µ(x ∗ (x ∗ y)), µ(1)}
≥κmin{µ(x ∗ (x ∗ y)), λµ(x ∗ (x ∗ y))}
=κλµ(x ∗ (x ∗ y))

for all x, y ∈ X. Thus (i) holds.

(ii) Since µ is a fuzzy filter of X with degree (λ, κ) and using (i), we have

µ(y ∗ z) ≥λκµ(y ∗ (y ∗ z))
≥λκ2min{µ(x ∗ (x ∗ (y ∗ z))), µ(x)}

for any x, y, z ∈ X. Hence (ii) holds.

�
Corollary 4.15. Let µ be a fuzzy implicative filter of a BE-algebra X with degree (λ, κ). If

λ = κ, then

(i) (∀x, y ∈ X)(µ(x ∗ y) ≥ λ2µ(x ∗ (x ∗ y))).
(ii) (∀x, y, z ∈ X)(µ(y ∗ z) ≥ κ3min{µ(x ∗ (y ∗ (y ∗ z))), µ(x)}).

Proposition 4.16. Let X be a self distributive BE-algebra X. Then µ is a fuzzy filter of X

with degree (λ, κ) if and only if it is a fuzzy implicative filter of X with degree (λ, κ).

Proof. Proposition 4.10, a fuzzy implicative filter of a BE-algebra X with degree (λ, κ) is a fuzzy

filter of X with degree (λ, κ).

Conversely, assume that µ is a fuzzy filter of a BE-algebra X with degree (λ, κ). Since X is a

self distributive BE-algebra, we have

µ(x ∗ z) ≥κmin{µ((x ∗ y) ∗ (x ∗ z)), µ(x ∗ y)}
=κmin{µ(x ∗ (y ∗ z)), µ(x ∗ y)}

for any x, y, z ∈ X. Hence X is a fuzzy implicative filter of X with degree (λ, κ). �
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Denote by FI(X) the set of all implicative filters of a BE-algebra X. Note that a fuzzy subset

µ of a BE-algebra X is a fuzzy implicative filter of X if and only if

(∀t ∈ [0, 1])(U(µ; t) ∈ FI(X) ∪ {∅}).

But we know that for any fuzzy subset µ of a BE-algebra X there exist λ, κ ∈ (0, 1) and t ∈ [0, 1]

such that

(1) µ is a fuzzy implicative filter of X with degree (λ, κ),

(2) U(µ; t) /∈ FI(X) ∪ {∅}.

Example 4.17. Let X := {1, a, b, c} be a set in which the ∗-operation is given by the following

table:
∗ 1 a b c

1 1 a b c

a 1 1 b c

b 1 a 1 c

c 1 1 b 1

Then X is self distributive BE-algebra. Define a fuzzy subset µ : X → [0, 1] by

µ =

(
1 a b c

0.4 0.3 0.2 0.6

)
If t ∈ (0.4, 0.6], then U(µ; t) = {1, c} is not an implicative filter of X since 1 ∗ (c ∗ a) = 1 ∈ {1, c},
and 1 ∗ c ∈ {1, c} but 1 ∗ a = a /∈ {1, c} . But µ is a fuzzy implicative filter of X with degree

(0.4, 0.6).

Theorem 4.18. Let µ be a fuzzy subset of a BE-algebra X. For any t ∈ [0, 1] with t ≤
max{λ, κ}, if U(µ; t) is an enlarged implicative filter of X related to U(µ; t

max{λ,κ}), then µ is a

fuzzy implicative filter of X with degree (λ, κ).

Proof. Assume that µ(1) < t ≤ λµ(x) for some x ∈ X and t ∈ (0, λ]. Then µ(x) ≥ t
λ
≥ t

max{λ,κ}
and so x ∈ U(µ; t

max{λ,κ}), i.e., U(µ; t
max{λ,κ}) ̸= ∅. Since U(µ; t) is an enlarged filter ofX related to

U(µ; t
max{λ,κ}), we have 1 ∈ U(µ; t), i.e., µ(1) ≥ t. This is a contradiction, and thus µ(1) ≥ λµ(x)

for all x ∈ X.

Now suppose that there exist a, b, c ∈ X such that µ(a ∗ c) < κmin{µ(a ∗ (b ∗ c)), µ(a ∗ b)}. If
we take t := κmin{µ(a ∗ (b ∗ c)), µ(a ∗ b)}, then t ∈ (0, κ] ⊆ (0,max{λ, κ}]. Hence a ∗ (b ∗ c) ∈
U(µ; t

κ
) ⊆ U(µ; t

max{λ,κ}) and a ∗ b ∈ U(µ; t
κ
) ⊆ U(µ; t

max{λ,κ}). It follows from Definition 4.8(2)

that a ∗ c ∈ U(µ; t) so that µ(a ∗ c) ≥ t, which is impossible. Therefore

µ(x ∗ z) ≥ κmin{µ(x ∗ (y ∗ z)), µ(x ∗ y)}

for all x, y, z ∈ X. Thus µ is a fuzzy implicative filter of X with degree (λ, κ). �

Corollary 4.19. Let µ be a fuzzy subset of a BE-algebra X. For any t ∈ [0, 1] with t ≤ k
n
,

if U(µ; t) is an enlarged implicative filter of X related to U(µ; n
k
t), then µ is a fuzzy implicative

filter of X with degree ( k
n
, k
n
).
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Theorem 4.20. Let t ∈ [0, 1] be such that U(µ; t)(̸= ∅) is not necessary an implicative filter of

a BE-algebra X. If µ is a fuzzy implicative filter of X with degree (λ, κ), then U(µ; tmin{λ, κ})
is an enlarged implicative filter of X related to U(µ; t).

Proof. Since tmin{λ, κ} ≤ t, we have U(µ; t) ⊆ U(µ; tmin{λ, κ}). Since U(µ; t) ̸= ∅, there exists

x ∈ U(µ; t) and so µ(x) ≥ t. By Definition 4.8(1), we obtain µ(1) ≥ λµ(x) ≥ λt ≥ tmin{λ, κ}.
Therefore 1 ∈ U(µ; tmin{λ, κ}).

Let x, y, z ∈ X be such that x ∗ (y ∗ z) ∈ U(µ; t) and x ∗ y ∈ U(µ; t). Then µ(x ∗ (y ∗ z)) ≥ t

and µ(x ∗ y) ≥ t. It follows from Definition 4.8(2) that

µ(x ∗ z) ≥κmin{µ(x ∗ (y ∗ z)), µ(x ∗ y)}
≥κt ≥ tmin{λ, κ}.

so that x ∗ z ∈ U(µ; tmin{λ, κ}). Thus U(µ; tmin{λ, κ}) is an enlarged implicative filter of X

related to U(µ; t). �
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Abstract. In this paper, we prove the Hyers-Ulam stability of an additive-quadratic functional
equation in paranormed spaces.

Keywords: Hyers-Ulam stability, paranormed space, additive-quadratic functional equation.

1. Introduction and preliminaries

The concept of statistical convergence for sequences of real numbers was introduced by Fast [9] and

Steinhaus [35] independently and since then several generalizations and applications of this notion

have been investigated by various authors (see [10, 19, 22, 23, 33]). This notion was defined in normed

spaces by Kolk [20].

We recall some basic facts concerning Fréchet spaces.

Definition 1.1. [37] Let X be a vector space. A paranorm P : X → [0,∞) is a function on X such

that

(1) P (0) = 0;

(2) P (−x) = P (x) ;

(3) P (x+ y) ≤ P (x) + P (y) (triangle inequality)

(4) If {tn} is a sequence of scalars with tn → t and {xn} ⊂ X with P (xn − x) → 0, then

P (tnxn − tx) → 0 (continuity of multiplication).

The pair (X,P ) is called a paranormed space if P is a paranorm on X.

The paranorm is called total if, in addition, we have

(5) P (x) = 0 implies x = 0.

A Fréchet space is a total and complete paranormed space.

The stability problem of functional equations originated from a question of Ulam [36] concerning the

stability of group homomorphisms. Hyers [13] gave a first affirmative partial answer to the question

of Ulam for Banach spaces. Hyers’ Theorem was generalized by Aoki [2] for additive mappings

02010 Mathematics Subject Classification: Primary 35A17; 39B52; 39B72.
∗Corresponding author.
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and by Th.M. Rassias [27] for linear mappings by considering an unbounded Cauchy difference. A

generalization of the Th.M. Rassias theorem was obtained by Găvruta [12] by replacing the unbounded

Cauchy difference by a general control function in the spirit of Th.M. Rassias’ approach.

In 1990, Th.M. Rassias [28] during the 27th International Symposium on Functional Equations

asked the question whether such a theorem can also be proved for p ≥ 1. In 1991, Gajda [11]

following the same approach as in Th.M. Rassias [27], gave an affirmative solution to this question

for p > 1. It was shown by Gajda [11], as well as by Th.M. Rassias and Šemrl [32] that one cannot

prove a Th.M. Rassias’ type theorem when p = 1 (cf. the books of P. Czerwik [5], D.H. Hyers, G.

Isac and Th.M. Rassias [14]).

In 1982, J.M. Rassias [25] followed the innovative approach of the Th.M. Rassias’ theorem [27] in

which he replaced the factor ∥x∥p + ∥y∥p by ∥x∥p · ∥y∥q for p, q ∈ ℝ with p+ q ̸= 1.

The functional equation

f(x+ y) + f(x− y) = 2f(x) + 2f(y)

is called a quadratic functional equation. In particular, every solution of the quadratic functional

equation is said to be a quadratic mapping. A Hyers-Ulam stability problem for the quadratic func-

tional equation was proved by Skof [34] for mappings f : X → Y , where X is a normed space and Y

is a Banach space. Cholewa [3] noticed that the theorem of Skof is still true if the relevant domain

X is replaced by an Abelian group. Czerwik [4] proved the Hyers-Ulam stability of the quadratic

functional equation. The stability problems of several functional equations have been extensively

investigated by a number of authors and there are many interesting results concerning this problem

(see [1, 8, 15, 17, 18, 24, 26], [29]–[31]).

Throughout this paper, assume that (X,P ) is a Fréchet space and that (Y, ∥ ·∥) is a Banach space.

In this paper, we prove the Hyers-Ulam stability of the following additive-quadratic functional

equation

2f

(
x+ y

2

)
+ f

(
x− y

2

)
+ f

(
y − x

2

)
= f(x) + f(y) (1.1)

in paranormed spaces.

One can easily show that an odd mapping f : X → Y satisfies (1.1) if and only if the odd mapping

mapping f : X → Y is an additive mapping, i.e.,

2f

(
x+ y

2

)
= f(x) + f(y).

One can easily show that an even mapping f : X → Y satisfies (1.1) if and only if the even mapping

f : X → Y is a quadratic mapping, i.e.,

2f

(
x+ y

2

)
+ 2f

(
x− y

2

)
= f(x) + f(y).

2. Hyers-Ulam stability of the functional equation (1.1): an odd mapping case

For a given mapping f , we define

Df(x, y) : = 2f

(
x+ y

2

)
+ f

(
x− y

2

)
+ f

(
y − x

2

)
− f(x)− f(y).

In this section, we prove the Hyers-Ulam stability of the functional equation Df(x, y) = 0 in

paranormed spaces: an odd mapping case.

Note that P (2x) ≤ 2P (x) for all x ∈ Y .
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Theorem 2.1. Let ϕ : Y → [0,∞) be a function such that

π(x, y) :=
∞∑
j=0

2jϕ
( x
2j
,
y

2j

)
< +∞

for all x, y ∈ Y . Let f : Y → X be an odd mapping such that

P (Df(x, y)) ≤ ϕ(x, y) (2.1)

for all x, y ∈ Y . Then there exists a unique additive mapping A : Y → X such that

P (f(x)−A(x)) ≤ π(x, 0) (2.2)

for all x ∈ Y .

Proof. Considering f as an odd mapping, we have

P

(
2f

(
x+ y

2

)
− f(x)− f(y)

)
≤ ϕ(x, y) (2.3)

for all x, y ∈ Y .

Letting y = 0 in (2.3), we get

P
(
f(x)− 2f

(x
2

))
≤ ϕ(x, 0)

for all x, y ∈ Y .

Hence

P
(
2nf

( x
2n

)
− 2mf

( x

2m

))
≤

m−1∑
j=n

2jϕ
( x
2j
, 0
)

(2.4)

holds for all non-negative integers n and m with m > n and all x ∈ Y . It follows from (2.4) that the

sequence {2kf( x
2k
)} is a Cauchy sequence for all x ∈ Y . Since X is complete, the sequence {2kf( x

2k
)}

converges. So the mapping A : Y → X can be defined as

A(x) := lim
k→∞

2kf
( x
2k

)
for all x ∈ Y .

By (2.1),

P (DA(x, y)) = lim
k→∞

P
(
2kDf

( x
2k
,
y

2k

))
≤ lim

k→∞
2kϕ

( x
2k
,
y

2k

)
= 0

for all x, y ∈ Y . So DA(x, y) = 0. Since f : Y → X is odd, A : Y → X is odd. So the mapping

A : Y → X is additive. Moreover, letting n = 0 and passing the limit m→ ∞ in (2.4), we get (2.2).

So there exists an additive mapping A : Y → X satisfying (2.2).

Now, let T : Y → X be another additive mapping satisfying (2.2). Then we have

P (A(x)− T (x)) = P
(
2qA

( x
2q

)
− 2qT

( x
2q

))
≤ P

(
2q
(
A
( x
2q

)
− f

( x
2q

)))
+ P

(
2q
(
T
( x
2q

)
− f

( x
2q

)))
≤ 2× 2qπ(

x

2q
, 0),

which tends to zero as q → ∞ for all x ∈ Y . So we can conclude that A(x) = T (x) for all x ∈ Y . This

proves the uniqueness of A. Thus the mapping A : Y → X is the unique additive mapping satisfying

(2.2). �
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Corollary 2.2. Let r, θ be positive real numbers with r > 1, and let f : Y → X be an odd mapping

such that

P (Df(x, y)) ≤ θ(∥x∥r + ∥y∥r) (2.5)

for all x, y ∈ Y . Then there exists a unique additive mapping A : Y → X such that

P (f(x)−A(x)) ≤ 2r

2r − 2
θ∥x∥r

for all x ∈ Y .

Proof. Letting ϕ(x, y) := θ(∥x∥r + ∥y∥r) in Theorem 2.1, we obtain the result. �

Theorem 2.3. Let ϕ : X → [0,∞) be a function such that

π(x, y) :=

∞∑
j=1

1

2j
ϕ
(
2jx, 2jy

)
<∞

for all x, y ∈ X. Let f : X → Y be an odd mapping such that

∥Df(x, y)∥ ≤ ϕ(x, y) (2.6)

for all x, y ∈ X. Then there exists a unique additive mapping A : X → Y such that

∥f(x)−A(x)∥ ≤ π(x, 0) (2.7)

for all x ∈ X.

Proof. Considering f as an odd mapping, we have∥∥∥∥2f (x+ y

2

)
− f(x)− f(y)

∥∥∥∥ ≤ ϕ(x, y) (2.8)

for all x, y ∈ X.

Letting y = 0 and replacing x by 2x in (2.8), we get

∥2f(x)− f(2x)∥ ≤ ϕ(2x, 0)

for all x, y ∈ X.

Hence ∥∥∥∥ 1

2n
f(2nx)− 1

2m
f(2mx)

∥∥∥∥ ≤
m−1∑
j=n

1

2j+1
ϕ(2j+1x, 0) (2.9)

holds for all non-negative integers n and m with m > n and all x ∈ X. It follows from (2.9) that

the sequence { 1
2k
f(2kx)} is a Cauchy sequence for all x ∈ X. Since Y is complete, the sequence

{ 1
2k
f(2kx)} converges. So the mapping A : X → Y can be defined as

A(x) := lim
k→∞

1

2k
f
(
2kx
)

for all x ∈ X.

By (2.6),

∥DA(x, y)∥ = lim
k→∞

∥∥∥∥ 1

2k
Df

(
2kx, 2ky

)∥∥∥∥ ≤ lim
k→∞

1

2k
ϕ
(
2kx, 2ky

)
= 0

for all x, y ∈ X, and DA(x, y) = 0 follows. Also, since f : X → Y is odd, A : X → Y is odd. So the

mapping A : X → Y is additive. Moreover, letting n = 0 and passing the limit m → ∞ in (2.9), we

get (2.7). So there exists an additive mapping A : X → Y satisfying (2.7).
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Now, let T : X → Y be another additive mapping satisfying (2.7). Then we have

∥A(x)− T (x)∥ =

∥∥∥∥ 1

2q
A (2qx)− 1

2q
T (2qx)

∥∥∥∥
≤

∥∥∥∥ 1

2q
(A (2qx)− f (2qx))

∥∥∥∥+ ∥∥∥∥ 1

2q
(T (2qx)− f (2qx))

∥∥∥∥
≤ 2× 1

2q
π(2qx, 0),

which tends to zero as q → ∞ for all x ∈ X. So we have A(x) = T (x) for all x ∈ X. This proves the

uniqueness of A. Thus the mapping A : X → Y is the unique additive mapping satisfying (2.7). �

Corollary 2.4. Let r, θ be positive real numbers with r < 1, and let f : X → Y be an odd mapping

such that

∥Df(x, y)∥ ≤ θ(P (x)r + P (y)r) (2.10)

for all x, y ∈ X. Then there exists a unique additive mapping A : X → Y such that

∥f(x)−A(x)∥ ≤ 2r

2− 2r
θP (x)r

for all x ∈ X.

Proof. Letting ϕ(x, y) := θ(P (x)r + P (y)r) in Theorem 2.3, we obtain the result. �

3. Hyers-Ulam stability of the functional equation (1.1): an even mapping case

In this section, we prove the Hyers-Ulam stability of the functional equation Df(x, y) = 0 in

paranormed spaces: an even mapping case.

Note that P (2x) ≤ 2P (x) for all x ∈ Y .

Theorem 3.1. Let ϕ : X → [0,∞) be a function such that

π(x, y) :=

∞∑
j=1

1

4j
ϕ
(
2jx, 2jy

)
< +∞

for all x, y ∈ X. Let f : X → Y be an even mapping such that f(0) = 0 and

∥Df(x, y)∥ ≤ ϕ(x, y) (3.1)

for all x, y ∈ X. Then there exists a unique quadratic mapping Q : X → Y such that

∥f(x)−Q(x)∥ ≤ π(x, 0) (3.2)

for all x ∈ X.

Proof. Letting y = 0 in (3.1), we get

∥4f
(x
2

)
− f(x)∥ ≤ ϕ(x, 0) (3.3)

for all x ∈ X.

Replacing x by 2j+1x in (3.3), we get

∥4f
(
2jx
)
− f

(
2j+1x

)
∥ ≤ ϕ

(
2j+1x, 0

)
for all x ∈ X. Hence

∥ 1

4m
f (2mx)− 1

4n
f (2ny) ∥ ≤

m∑
j=n+1

1

4j
ϕ
(
2jx, 0

)
(3.4)
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for all non-negative integers n and m with m > n and all x ∈ X.

It follows from (3.4) that that the sequence { 1
4k
f
(
2kx
)
} is a Cauchy sequence for all x ∈ X. Since

Y is complete, the sequence { 1
4k
f
(
2kx
)
} converges. So one can define the mapping Q : X → Y by

Q(x) := lim
k→∞

1

4k
f
(
2kx
)

for all x ∈ X.

By (3.1),

∥DQ(x, y))∥ = lim
k→∞

∥ 1

4k
Df

(
2kx, 2ky

)
∥ ≤ lim

k→∞

1

4k
ϕ
(
2kx, 2ky

)
= 0

for all x, y ∈ X. So DQ(x, y) = 0. Since f : X → Y is even, Q : X → Y is even. So the mapping

Q : X → Y is quadratic. Moreover, letting n = 0 and passing the limit m→ ∞ in (3.4), we get (3.2).

So there exists a quadratic mapping Q : X → Y satisfying (3.2).

Let T : X → Y be a quadratic mapping satisfying (3.2). Since T satisfies 4T
(
x
2

)
= T (x), we have

T (x) = 1
4q T (2qx) for all integer q. Hence

∥Q(x)− T (x)∥ = ∥ 1

4q
Q (2qx)− 1

4q
T (2qx) ∥

≤ ∥ 1

4q
(Q (2qx)− f (2qx)) ∥+ ∥ 1

4q
(T (2qx)− f (2qx)) ∥

≤ 2× 1

4q
π (2qx, 0) ,

which tends to zero as q → ∞ for all x ∈ X. So Q(x) = T (x) for all x ∈ X. This proves the uniqueness

of Q. Thus the mapping Q : X → Y is the unique quadrative mapping satisfying (3.2). �

Corollary 3.2. Let r, θ be positive real numbers with r < 2, and let f : X → Y be an even mapping

such that f(0) = 0 and

∥Df(x, y)∥ ≤ θ(P (x)
r
+ P (y)

r
)

for all x, y ∈ Y . Then there exists a unique quadrative mapping Q : X → Y such that

∥f(x)−Q(x)∥ ≤ 2r

4− 2r
θP (x)

r

for all x ∈ Y .

Proof. Letting ϕ(x, y) := θ(P (x)
r
+ P (y)

r
) in Theorem 3.1, we obtain the result. �

Theorem 3.3. Let ϕ : Y → [0,∞) be a function such that

π(x, y) :=

∞∑
j=0

4jϕ
( x
2j
,
y

2j

)
< +∞

for all x, y ∈ Y . Let f : Y → X be an even mapping such that f(0) = 0 and

P (Df(x, y)) ≤ ϕ(x, y) (3.5)

for all x, y ∈ Y . Then there exists a unique quadratic mapping Q : Y → X such that

P (f(x)−Q(x)) ≤ π(x, 0) (3.6)

for all x ∈ Y .
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Proof. Letting y = 0 in (3.5), we get

P
(
4f
(x
2

)
− f(x)

)
≤ ϕ(x, 0) (3.7)

for all x ∈ Y .

Replacing x by x
2j in (3.7), we get

P
(
4f
( x

2j+1

)
− f

( x
2j

))
≤ ϕ

( x
2j
, 0
)

for all x ∈ Y . Hence

P
(
4mf

( x

2m

)
− 4nf

( x
2n

))
≤

m−1∑
j=n

4jϕ
( x
2j
, 0
)

(3.8)

for all non-negative integers n and m with m > n and all x ∈ Y .

It follows from (3.8) that that the sequence {4kf
(

x
2k

)
} is a Cauchy sequence for all x ∈ Y . Since X

is complete, the sequence {4kf
(

x
2k

)
} converges. So one can define the mapping Q : Y → X by

Q(x) := lim
k→∞

4kf
( x
2k

)
for all x ∈ Y .

By (3.5),

P (DQ(x, y))) = lim
k→∞

P
(
4kDf

( x
2k
,
y

2k

))
≤ lim

k→∞
4kϕ

( x
2k
,
y

2k

)
= 0

for all x, y ∈ Y . So DQ(x, y) = 0. Since f : Y → X is even, Q : Y → X is even. So the mapping

Q : Y → X is quadratic. Moreover, letting n = 0 and passing the limit m→ ∞ in (3.8), we get (3.6).

So there exists a quadratic mapping Q : Y → X satisfying (3.6).

Let T : Y → X be a quadratic mapping satisfying (3.6). Since T satisfies 4T
(
x
2

)
= T (x), we have

T (x) = 4qT
(

x
2q

)
for all integer q. Hence

P (Q(x)− T (x)) = P
(
4qQ

( x
2q

)
− 4qT

( x
2q

))
≤ P

(
4q
(
Q
( x
2q

)
− f

( x
2q

)))
+ P

(
4q
(
T
( x
2q

)
− f

( x
2q

)))
≤ 2× 4qπ

( x
2q
, 0
)
,

which tends to zero as q → ∞ for all x ∈ X. So Q(x) = T (x) for all x ∈ X. This proves the uniqueness

of Q. Thus the mapping Q : Y → X is the unique quadrative mapping satisfying (3.6). �

Corollary 3.4. Let r, θ be positive real numbers with r > 2, and let f : X → Y be an even mapping

such that f(0) = 0 and

P (Df(x, y)) ≤ θ(∥x∥r + ∥y∥r)

for all x, y ∈ Y . Then there exists a unique quadrative mapping Q : Y → X such that

P (f(x)−Q(x)) ≤ 2r

2r − 4
θ∥x∥r

for all x ∈ Y .

Proof. Letting ϕ(x, y) := θ(∥x∥r + ∥y∥r) in Theorem 3.3, we obtain the result. �

Let fo(x) :=
f(x)−f(−x)

2 and fe(x) :=
f(x)+f(−x)

2 . Then fo is odd and fe is even. fo, fe satisfy the

functional equation (1.1) if and only if f does.
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Theorem 3.5. Let r, θ be positive real numbers with r > 2. Let f : Y → X be a mapping satisfying

f(0) = 0 and (2.5). Then there exist an additive mapping A : Y → X and a quadratic mapping

Q : Y → X such that

P (2f(x)−A(x)−Q(x)) ≤
(

2r+1

2r − 2
+

2r+1

2r − 4

)
θ∥x∥r

for all x ∈ Y .

Theorem 3.6. Let r, θ be positive real numbers with r < 1. Let f : X → Y be a mapping satisfying

f(0) = 0 and (2.10). Then there exist an additive mapping A : X → Y and a quadratic mapping

Q : X → Y such that

∥2f(x)−A(x)−Q(x)∥ ≤
(

2r+1

2− 2r
+

2r+1

4− 2r

)
θP (x)r

for all x ∈ X.

Acknowledgments

C. Park was supported by Basic Science Research Program through the National Research Founda-

tion of Korea funded by the Ministry of Education, Science and Technology (NRF-2012R1A1A2004299),

and T.M. Kim and S.H. Park were supported by R & E Program in 2012.

References

[1] J. Aczel and J. Dhombres, Functional Equations in Several Variables, Cambridge Univ. Press,
Cambridge, 1989.

[2] T. Aoki, On the stability of the linear transformation in Banach spaces, J. Math. Soc. Japan 2
(1950), 64–66.

[3] P.W. Cholewa, Remarks on the stability of functional equations, Aequationes Math. 27 (1984),
76–86.

[4] S. Czerwik, On the stability of the quadratic mapping in normed spaces, Abh. Math. Sem. Univ.
Hamburg 62 (1992), 59–64.

[5] P. Czerwik, Functional Equations and Inequalities in Several Variables, World Scientific Pub-
lishing Company, New Jersey, Hong Kong, Singapore and London, 2002.

[6] M. Eshaghi-Gordji, S. Abbaszadeh and C. Park, On the stability of a generalized quadratic and
quartic type functional equation in quasi-Banach spaces, J. Inequal. Appl. 2009, Article ID
153084, 26 pages (2009).

[7] M. Eshaghi-Gordji, S. Kaboli-Gharetapeh, C. Park and S. Zolfaghari, Stability of an additive-
cubic-quartic functional equation, Adv. Difference Equat. 2009, Article ID 395693, 20 pages
(2009).

[8] M. Eshaghi Gordji and M.B. Savadkouhi, Stability of a mixed type cubic-quartic functional equa-
tion in non-Archimedean spaces, Appl. Math. Letters 23 (2010), 1198–1202.

[9] H. Fast, Sur la convergence statistique, Colloq. Math. 2 (1951), 241–244.
[10] J.A. Fridy, On statistical convergence, Analysis 5 (1985), 301–313.
[11] Z. Gajda, On stability of additive mappings, Internat. J. Math. Math. Sci. 14 (1991), 431–434.
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Abstract

In the present paper we establish several fuzzy differential subordinations regardind the operator RDm
λ,α,

given by RDm
λ,α : An → An, RDm

λ,αf(z) = (1−α)Rmf(z)+αDm
λ f(z), where Rmf(z) denote the Ruscheweyh

derivative, Dm
λ f(z) is the generalized Sălăgean operator andAn = {f ∈ H(U), f(z) = z+an+1z

n+1+. . . , z ∈
U} is the class of normalized analytic functions withA1 = A. A certain fuzzy class, denoted byRDFm (δ, λ, α) ,
of analytic functions in the open unit disc is introduced by means of this operator. By making use of the
concept of fuzzy differential subordination we will derive various properties and characteristics of the class
RDFm (δ, λ, α) . Also, several fuzzy differential subordinations are established regarding the operator RDm

λ,α.

Keywords: fuzzy differential subordination, convex function, fuzzy best dominant, differential operator, gen-
eralized Sălăgean operator, Ruscheweyh derivative.
2000 Mathematical Subject Classification: 30C45, 30A20, 34A40.

1 Introduction

One of the most recently study methods in the one complex variable functions theory is the admissible
functions method known as ”the differential subordination method” introduced by S.S. Miller and P.T. Mocanu
in [11], [12] and developed in [13]. The application of this method allows to one obtain some special results and
to prove easily some classical results from this domain. More results obtained by the differential subordinations
method are differential inequalities. From the development of this method has been written a large number of
papers and monographs in the one complex variable functions theory domain.

A justification of the introduction of the differential subordinations theory was presented in [14], ”knowing
the properties of differential expression for a function we can determine the properties of that function on a
given interval.” By publication of the papers [14] and [15] the authors wanted to launch a new research direction
in mathematics that combines the notions from the complex functions domain with the fuzzy sets theory.

In the same way as mentioned, the author can justify that by knowing the properties of a differential
expression on a fuzzy set for a function one can be determined the properties of that function on a given fuzzy
set. The author has analyzed the case of one complex functions, leaving as ”open problem” the case of real
functions.

The author is aware that this new research alternative can be realized only through the joint effort of
researchers from both domains. The ”open problem” statement leaves open the interpretation of some notions
from the fuzzy sets theory such that each one interpret them personally according to their scientific concerns,
making this theory more attractive.

The notion of fuzzy subordination was introduced in [14]. In [15] the authors have defined the notion of
fuzzy differential subordination. In this paper we will study fuzzy differential subordinations obtained with the
differential operator defined in [4].

Denote by U the unit disc of the complex plane, U = {z ∈ C : |z| < 1} and H(U) the space of holomorphic
functions in U .

Let An = {f ∈ H(U) : f(z) = z + an+1z
n+1 + . . . , z ∈ U} with A1 = A and H[a, n] = {f ∈ H(U) : f(z) =

a+ anz
n + an+1z

n+1 + . . . , z ∈ U} for a ∈ C and n ∈ N.
Denote by K =

{
f ∈ A : Re zf ′′(z)

f ′(z) + 1 > 0, z ∈ U
}
, the class of normalized convex functions in U .

1
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In order to use the concept of fuzzy differential subordination, we remember the following definitions:

Definition 1.1 [10] A pair (A,FA), where FA : X → [0, 1] and A = {x ∈ X : 0 < FA(x) ≤ 1} is called fuzzy
subset of X. The set A is called the support of the fuzzy set (A,FA) and FA is called the membership function
of the fuzzy set (A,FA). One can also denote A = supp(A,FA).

Remark 1.1 [8] In the development work we use the following notations for fuzzy sets:
Ff(D) (f (z)) =supp

(
f (D) , Ff(D)·

)
= {z ∈ D : 0 < Ff(D)f (z) ≤ 1},

Fp(U)p (z) =supp
(
p (U) , Fp(U)·

)
= {z ∈ U : 0 < Fp(U) (p (z)) ≤ 1}.

We give a new definition of membership function on complex numbers set using the module notion of a
complex number z = x+ iy, x, y ∈ R, |z| =

√
x2 + y2 ≥ 0.

Example 1.1 Let F : C → R+ a function such that FC (z) = |F (z)|, ∀ z ∈ C. Denote by FC (C) = {z ∈ C :
0 < F (z) ≤ 1} = {z ∈ C : 0 < |F (z)| ≤ 1} =supp(C, FC) the fuzzy subset of the complex numbers set. We call
the subset FC (C) = UF (0, 1) the fuzzy unit disk.

Definition 1.2 ([14]) Let D ⊂ C, z0 ∈ D be a fixed point and let the functions f, g ∈ H (D). The function f
is said to be fuzzy subordinate to g and write f ≺F g or f (z) ≺F g (z), if are satisfied the conditions:

1) f (z0) = g (z0) ,
2) Ff(D)f (z) ≤ Fg(D)g (z), z ∈ D.

Definition 1.3 ([15, Definition 2.2]) Let ψ : C3×U → C and h univalent in U , with ψ (a, 0; 0) = h (0) = a. If
p is analytic in U , with p (0) = a and satisfies the (second-order) fuzzy differential subordination

Fψ(C3×U)ψ(p(z), zp′ (z) , z2p′′(z); z) ≤ Fh(U)h(z), z ∈ U, (1.1)

then p is called a fuzzy solution of the fuzzy differential subordination. The univalent function q is called a
fuzzy dominant of the fuzzy solutions of the fuzzy differential subordination, or more simple a fuzzy dominant, if
Fp(U)p(z) ≤ Fq(U)q(z), z ∈ U , for all p satisfying (1.1). A fuzzy dominant q̃ that satisfies Fq̃(U)q̃(z) ≤ Fq(U)q(z),
z ∈ U , for all fuzzy dominants q of (1.1) is said to be the fuzzy best dominant of (1.1).

Lemma 1.1 ([13, Corollary 2.6g.2, p. 66]) Let h ∈ A and L [f ] (z) = G (z) = 1
z

∫ z
0
h (t) dt, z ∈ U. If

Re
(
zh′′(z)
h′(z) + 1

)
> − 1

2 , z ∈ U, then L (f) = G ∈ K.

Lemma 1.2 ([16]) Let h be a convex function with h(0) = a, and let γ ∈ C∗ be a complex number with
Re γ ≥ 0. If p ∈ H[a, n] with p (0) = a, ψ : C2 × U → C, ψ (p (z) , zp′ (z) ; z) = p (z) + 1

γ zp
′ (z) an analytic

function in U and

Fψ(C2×U)

(
p(z) +

1
γ
zp′(z)

)
≤ Fh(U)h(z), i.e. p(z) +

1
γ
zp′(z) ≺F h(z), z ∈ U, (1.2)

then Fp(U)p(z) ≤ Fg(U)g(z) ≤ Fh(U)h(z), i.e. p(z) ≺F g(z) ≺F h(z), z ∈ U, where g(z) = γ
nzγ/n

∫ z
0
h(t)tγ/n−1dt,

z ∈ U. The function q is convex and is the fuzzy best dominant.

Lemma 1.3 ([16]) Let g be a convex function in U and let h(z) = g(z) + nαzg′(z), z ∈ U, where α > 0 and n
is a positive integer.

If p(z) = g(0) + pnz
n + pn+1z

n+1 + . . . , z ∈ U, is holomorphic in U and Fp(U) (p(z) + αzp′(z)) ≤ Fh(U)h(z),
i.e. p(z) + αzp′(z) ≺F h(z), z ∈ U, then Fp(U)p(z) ≤ Fg(U)g(z), i.e. p(z) ≺F g(z), z ∈ U, and this result is
sharp.

We use the following differential operators.

Definition 1.4 (Al Oboudi [9]) For f ∈ An, λ ≥ 0 and n,m ∈ N, the operator Dm
λ is defined by Dm

λ : An → An,

D0
λf (z) = f (z)

D1
λf (z) = (1− λ) f (z) + λzf ′(z) = Dλf (z) , ...

Dm+1
λ f(z) = (1− λ)Dm

λ f (z) + λz (Dm
λ f (z))′ = Dλ (Dm

λ f (z)) , z ∈ U.

2
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Remark 1.2 If f ∈ An and f(z) = z+
∑∞
j=n+1 ajz

j, then Dm
λ f (z) = z+

∑∞
j=n+1 [1 + (j − 1)λ]m ajzj, z ∈ U .

Remark 1.3 For λ = 1 in the above definition we obtain the Sălăgean differential operator [18].

Definition 1.5 (Ruscheweyh [17]) For f ∈ An, n,m ∈ N, the operator Rm is defined by Rm : An → An,

R0f (z) = f (z)
R1f (z) = zf ′ (z) , ...

(m+ 1)Rm+1f (z) = z (Rmf (z))′ +mRmf (z) , z ∈ U.

Remark 1.4 If f ∈ An, f(z) = z +
∑∞
j=n+1 ajz

j, then Rmf (z) = z +
∑∞
j=n+1 C

m
m+j−1ajz

j, z ∈ U .

Definition 1.6 ([4]) Let α, λ ≥ 0, n,m ∈ N. Denote by RDm
λ,α the operator given by RDm

λ,α : An → An,
RDm

λ,αf(z) = (1− α)Rmf(z) + αDm
λ f(z), z ∈ U.

Remark 1.5 If f ∈ An, f(z) = z +
∑∞
j=n+1 ajz

j, then
RDm

λ,αf(z) = z +
∑∞
j=n+1

{
α [1 + (j − 1)λ]m + (1− α)Cmm+j−1

}
ajz

j , z ∈ U.

Remark 1.6 For α = 0, RDm
λ,0f(z) = Rmf(z), z ∈ U, and for α = 1, RDm

λ,1f (z) = Dm
λ f (z), z ∈ U.

For λ = 1, we obtain RDm
1,αf (z) = Lmα f (z) which was studied in [1], [2], [5]. For m = 0, RD0

λ,αf (z) =
(1− α)R0f (z) + αD0

λf (z) = f (z) = R0f (z) = D0
λf (z), z ∈ U. The operator RDm

λ,α was studied in [3], [4],
[6], [7].

2 Main results

Using the operator RDm
λ,α defined in Definition 1.6 we define the class RDFm (δ, λ, α) and we study fuzzy

subordinations.

Definition 2.1 [8] Let f (D) =supp
(
f (D) , Ff(D)

)
= {z ∈ D : 0 < Ff(D)f (z) ≤ 1}, where Ff(D)· is the

membership function of the fuzzy set f (D) asociated to the function f . The membership function of the fuzzy
set (µf) (D) asociated to the function µf coincide with the membership function of the fuzzy set f (D) asociated
to the function f , i.e. F(µf)(D) ((µf) (z)) = Ff(D)f (z), z ∈ D. The membership function of the fuzzy set
(f + g) (D) asociated to the function f + g coincide with the half of the sum of the membership functions of
the fuzzy sets f (D), respectively g (D), asociated to the function f , respectively g, i.e. F(f+g)(D) ((f + g) (z)) =
Ff(D)f(z)+Fg(D)g(z)

2 , z ∈ D.

Remark 2.1 [8] F(f+g)(D) ((f + g) (z)) can be defined in other ways. Since 0 < Ff(D)f (z) ≤ 1 and 0 <
Fg(D)g (z) ≤ 1, it is evidently that 0 < F(f+g)(D) ((f + g) (z)) ≤ 1, z ∈ D.

Definition 2.2 Let δ ∈ [0, 1), α, λ ≥ 0 and n,m ∈ N. A function f ∈ An is said to be in the class RDFm (δ, λ, α)
if it satisfies the inequality

F(RDmλ,αf)
′
(U)

(
RDm

λ,αf (z)
)′
> δ, z ∈ U. (2.1)

Theorem 2.1 The set RDFm (δ, λ, α) is convex.

Proof. Let the functions fj (z) = z +
∑∞
j=n+1 ajkz

j , k = 1, 2, z ∈ U, be in the class RDFm (δ, λ, α). It
is sufficient to show that the function h (z) = η1f1 (z) + η2f2 (z) is in the class RDFm (δ, λ, α) , with η1 and η2
nonnegative such that η1 + η2 = 1.

We have h′ (z) = (µ1f1 + µ2f2)′ (z) = µ1f
′
1 (z) + µ2f

′
2 (z), z ∈ U , and(

RDm
λ,αh (z)

)′
=
(
RDm

λ,α (µ1f1 + µ2f2) (z)
)′

= µ1

(
RDm

λ,αf1 (z)
)′

+ µ2

(
RDm

λ,αf2 (z)
)′

.
From Definition 2.1 we obtain that

F(RDmλ,αh)
′
(U)

(
RDm

λ,αh (z)
)′

= F(RDmλ,α(µ1f1+µ2f2))′(U)

(
RDm

λ,α (µ1f1 + µ2f2) (z)
)′

=

F(RDmλ,α(µ1f1+µ2f2))′(U)

(
µ1

(
RDm

λ,αf1 (z)
)′

+ µ2

(
RDm

λ,αf2 (z)
)′)

=

F(µ1RD
m
λ,α

f1)′(U)
(µ1(RDmλ,αf1(z))

′)+F(µ2RD
m
λ,α

f2)′(U)
(µ2(RDmλ,αf2(z))

′)
2 =

3
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F(RDmλ,αf1)
′
(U)

(RDmλ,αf1(z))
′
+F(RDmλ,αf2)

′
(U)

(RDmλ,αf2(z))
′

2 .

Since f1, f2 ∈ RDFm (δ, λ, α) we have δ < F(RDmλ,αf1)
′
(U)

(
RDm

λ,αf1 (z)
)′
≤ 1 and δ < F(RDmλ,αf2)

′
(U)

(
RDm

λ,αf2 (z)
)′

≤ 1, z ∈ U . Therefore δ <
F(RDmλ,αf1)

′
(U)

(RDmλ,αf1(z))
′
+F(RDmλ,αf2)

′
(U)

(RDmλ,αf2(z))
′

2 ≤ 1 and we obtain that

δ < F(RDmλ,αh)
′
(U)

(
RDm

λ,αh (z)
)′
≤ 1, which means that h ∈ RDFm (δ, λ, α) and RDFm (δ, λ, α) is convex.

We highlight a fuzzy subset obtained using a convex function. Let the function h (z) = 1+z
1−z , z ∈ U . After

a short calculation we obtain that Re
(
zh′′(z)
h′(z) + 1

)
= Re 1+z

1−z > 0, so h ∈ K and h (U) = {z ∈ C : Rez >
0}. We define the membership function for the set h (U) as Fh(U) (h (z)) = Reh (z), z ∈ U and we have
Fh(U)h (z) =supp

(
h (U) , Fh(u)

)
= {z ∈ C : 0 < Fh(U) (h (z)) ≤ 1} = {z ∈ U : 0 < Rez ≤ 1}.

Theorem 2.2 Let g be a convex function in U and let h (z) = g (z) + 1
c+2zg

′ (z) , where z ∈ U, c > 0.
If f ∈ RDFm (δ, λ, α) and G (z) = Ic (f) (z) = c+2

zc+1

∫ z
0
tcf (t) dt, z ∈ U, then

F(RDmλ,αf)
′
(U)

(
RDm

λ,αf (z)
)′ ≤ Fh(U)h (z) , i.e.

(
RDm

λ,αf (z)
)′ ≺F h (z) , z ∈ U, (2.2)

implies F(RDmλ,αG)′(U)

(
RDm

λ,αG (z)
)′
≤ Fg(U)g (z), i.e.

(
RDm

λ,αG (z)
)′
≺F g (z), z ∈ U, and this result is

sharp.

Proof. We obtain that
zc+1G (z) = (c+ 2)

∫ z

0

tcf (t) dt. (2.3)

Differentiating (2.3), with respect to z, we have (c+ 1)G (z) + zG′ (z) = (c+ 2) f (z) and

(c+ 1)RDm
λ,αG (z) + z

(
RDm

λ,αG (z)
)′ = (c+ 2)RDm

λ,αf (z) , z ∈ U. (2.4)

Differentiating (2.4) we have(
RDm

λ,αG (z)
)′ + 1

c+ 2
z
(
RDm

λ,αG (z)
)′′ =

(
RDm

λ,αf (z)
)′ , z ∈ U. (2.5)

Using (2.5), the fuzzy differential subordination (2.2) becomes

FRDmλ,αG(U)

((
RDm

λ,αG (z)
)′ + 1

c+ 2
z
(
RDm

λ,αG (z)
)′′) ≤ Fg(U)

(
g (z) +

1
c+ 2

zg′ (z)
)
. (2.6)

If we denote
p (z) =

(
RDm

λ,αG (z)
)′
, z ∈ U, (2.7)

then p ∈ H [1, n] .
Replacing (2.7) in (2.6) we obtain Fp(U)

(
p (z) + 1

c+2zp
′ (z)

)
≤ Fg(U)

(
g (z) + 1

c+2zg
′ (z)

)
, z ∈ U. Using

Lemma 1.3 we have Fp(U)p (z) ≤ Fg(U)g (z) , z ∈ U, i.e. F(RDmλ,αG)′(U)

(
RDm

λ,αG (z)
)′
≤ Fg(U)g (z), z ∈ U, and

g is the best dominant. We have obtained that
(
RDm

λ,αG (z)
)′
≺F g (z), z ∈ U.

Theorem 2.3 Let h (z) = 1+(2δ−1)z
1+z , δ ∈ [0, 1) and c > 0. If α, λ ≥ 0, m ∈ N and Ic (f) (z) = c+2

zc+1

∫ z
0
tcf (t) dt,

z ∈ U, then
Ic
[
RDFm (δ, λ, α)

]
⊂ RDFm (δ∗, λ, α) , (2.8)

where δ∗ = 2δ − 1 + (c+2)(2−2δ)
n β

(
c+2
n − 2

)
and β (x) =

∫ 1

0
tx+1

t+1 dt.

Proof. The function h is convex and using the same steps as in the proof of Theorem 2.2 we get from the
hypothesis of Theorem 2.3 that Fp(U)

(
p (z) + 1

c+2zp
′ (z)

)
≤ Fh(U)h (z) , where p (z) is defined in (2.7).

4
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Using Lemma 1.2 we deduce that Fp(U)p (z) ≤ Fg(U)g (z) ≤ Fh(U)h (z) , i.e. F(RDmλ,αG)′(U)

(
RDm

λ,αG (z)
)′
≤

Fg(U)g (z) ≤ Fh(U)h (z) , where g (z) = c+2

nz
c+2
n

∫ z
0
t
c+2
n −1 1+(2δ−1)t

1+t dt = (2δ − 1) + (c+2)(2−2δ)

nz
c+2
n

∫ z
0
t
c+2
n
−1

1+t dt. Since g

is convex and g (U) is symmetric with respect to the real axis, we deduce

F(RDmλ,αG)(U)

(
RDm

λ,αG (z)
)′ ≥ min

|z|=1
Fg(U)g (z) = Fg(U)g (1) (2.9)

and δ∗ = g (1) = 2δ − 1 + (c+2)(2−2δ)
n β

(
c+2
n − 2

)
. From (2.9) we deduce inclusion (2.8).

Theorem 2.4 Let g be a convex function, g(0) = 1 and let h be the function h(z) = g(z) + zg′(z), z ∈ U. If
α, λ ≥ 0, n,m ∈ N, f ∈ An and satisfies the fuzzy differential subordination

F(RDmλ,αf)
′
(U)

(
RDm

λ,αf(z)
)′ ≤ Fh(U)h(z), i.e.

(
RDm

λ,αf(z)
)′ ≺F h(z), z ∈ U, (2.10)

then FRDmλ,αf(U)
RDmλ,αf(z)

z ≤ Fg(U)g (z), i.e. RDmλ,αf(z)

z ≺F g(z), z ∈ U, and this result is sharp.

Proof. By using the properties of operator RDm
λ,α, we have

RDm
λ,αf(z) = z +

∑∞
j=n+1

{
α [1 + (j − 1)λ]m + (1− α)Cmm+j−1

}
ajz

j , z ∈ U.

Consider p(z) = RDmλ,αf(z)

z =
z+
∑∞
j=n+1{α[1+(j−1)λ]m+(1−α)Cmm+j−1}ajzj

z = 1 + pnz
n + pn+1z

n+1 + ..., z ∈ U.
We deduce that p ∈ H[1, n].

Let RDm
λ,αf(z) = zp(z), z ∈ U. Differentiating we obtain

(
RDm

λ,αf(z)
)′

= p(z) + zp′(z), z ∈ U. Then (2.10)
becomes Fp(U) (p(z) + zp′(z)) ≤ Fh(U)h(z) = Fg(U) (g(z) + zg′(z)) , z ∈ U.

By using Lemma 1.3, we have Fp(U)p(z) ≤ Fg(U)g(z), z ∈ U, i.e. FRDmλ,αf(U)
RDmλ,αf(z)

z ≤ Fg(U)g(z), z ∈ U.

We obtained that
(
RDm

λ,αf(z)
)′
≺F h(z), z ∈ U, and this results is sharp.

Theorem 2.5 Let h be an holomorphic function which satisfies the inequality Re
(

1 + zh′′(z)
h′(z)

)
> − 1

2 , z ∈ U,
and h(0) = 1. If α, λ ≥ 0, n,m ∈ N, f ∈ An and satisfies the fuzzy differential subordination

F(RDmλ,αf)
′
(U)

(
RDm

λ,αf(z)
)′ ≤ Fh(U)h (z) , i.e.

(
RDm

λ,αf(z)
)′ ≺F h(z), z ∈ U, (2.11)

then FRDmλ,αf(U)
RDmλ,αf(z)

z ≤ Fq(U)q (z), i.e. RDmλ,αf(z)

z ≺F q(z), z ∈ U, where q(z) = 1

nz
1
n

∫ z
0
h(t)t

1
n−1dt. The

function q is convex and it is the fuzzy best dominant.

Proof. Let p(z) = RDmλ,αf(z)

z =
z+
∑∞
j=n+1{α[1+(j−1)λ]m+(1−α)Cmm+j−1}ajzj

z =
1 +

∑∞
j=n+1

{
α [1 + (j − 1)λ]m + (1− α)Cmm+j−1

}
ajz

j−1 = 1 +
∑∞
j=n+1 pjz

j−1, z ∈ U, p ∈ H[1, n].

Since Re
(

1 + zh′′(z)
h′(z)

)
> − 1

2 , z ∈ U, from Lemma 1.1, we obtain that q(z) = 1

nz
1
n

∫ z
0
h(t)t

1
n−1dt is a

convex function and verifies the differential equation asscociated to the fuzzy differential subordination (2.11)
q (z) + zq′ (z) = h (z), therefore it is the fuzzy best dominant.

Differentiating, we obtain
(
RDm

λ,αf(z)
)′

= p(z)+zp′(z), for z ∈ U and (2.11) becomes Fp(U) (p(z) + zp′(z)) ≤

Fh(U)h(z), z ∈ U. Using Lemma 1.2, we have Fp(U)p(z) ≤ Fq(U)q(z), z ∈ U, i.e. FRDmλ,αf(U)
RDmλ,αf(z)

z ≤

Fq(U)q(z), z ∈ U. We have obtained that RDmλ,αf(z)

z ≺F q(z), z ∈ U.

Corollary 2.6 Let h(z) = 1+(2β−1)z
1+z a convex function in U , 0 ≤ β < 1. If α, λ ≥ 0, n,m ∈ N, f ∈ An and

satisfies the fuzzy differential subordination

F(RDmλ,αf)
′
(U)

(
RDm

λ,αf(z)
)′ ≤ Fh(U)h (z) , i.e.

(
RDm

λ,αf(z)
)′ ≺F h(z), z ∈ U, (2.12)

then FRDmλ,αf(U)
RDmλ,αf(z)

z ≤ Fq(U)q (z), i.e. RDmλ,αf(z)

z ≺F q(z), z ∈ U, where q is given by q(z) = 2β − 1 +
2(1−β)

nz
1
n

∫ z
0
t

1
n
−1

1+t dt, z ∈ U. The function q is convex and it is the fuzzy best dominant.

5
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Proof. We have h (z) = 1+(2β−1)z
1+z with h (0) = 1, h′ (z) = −2(1−β)

(1+z)2
and h′′ (z) = 4(1−β)

(1+z)3
, therefore

Re
(
zh′′(z)
h′(z) + 1

)
= Re

(
1−z
1+z

)
= Re

(
1−ρ cos θ−iρ sin θ
1+ρ cos θ+iρ sin θ

)
= 1−ρ2

1+2ρ cos θ+ρ2 > 0 > − 1
2 .

Following the same steps as in the proof of Theorem 2.5 and considering p(z) = RDmλ,αf(z)

z , the differential
subordination (2.12) becomes FRDmλ,αf(U) (p(z) + zp′(z)) ≤ Fh(U)h(z), z ∈ U. By using Lemma 1.2 for γ =

1, we have Fp(U)p(z) ≤ Fq(U)q(z), i.e. FRDmλ,αf(U)
RDmλ,αf(z)

z ≤ Fq(U)q(z) and q (z) = 1

nz
1
n

∫ z
0
h(t)t

1
n−1dt =

1

nz
1
n

∫ z
0
t

1
n−1 1+(2β−1)t

1+t dt = 2β − 1 + 2(1−β)

nz
1
n

∫ z
0
t

1
n
−1

1+t dt, z ∈ U.

Example 2.1 Let h (z) = 1−z
1+z a convex function in U with h (0) = 1 and Re

(
zh′′(z)
h′(z) + 1

)
> − 1

2 .

Let f (z) = z + z2, z ∈ U . For n = 1, m = 1, λ = 1
2 , α = 2, we obtain RD1

1
2 ,2
f (z) = −R1f (z) +

2D1
1
2
f (z) = −zf ′ (z) + 2

(
1
2f (z) + 1

2zf
′ (z)

)
= f (z) = z + z2, z ∈ U . Then

(
RD1

1
2 ,2
f (z)

)′
= f ′ (z) = 1 + 2z

and
RD1

1
2 ,2

f(z)

z = 1 + z. We have q (z) = 1
z

∫ z
0

1−t
1+tdt = −1 + 2 ln(1+z)

z .

Using Theorem 2.5 we obtain 1 + 2z ≺F 1−z
1+z , z ∈ U, induce 1 + z ≺F −1 + 2 ln(1+z)

z , z ∈ U.
Theorem 2.7 Let g be a convex function such that g(0) = 1 and let h be the function h(z) = g(z)+zg′(z), z ∈ U.
If α, λ ≥ 0, n,m ∈ N, f ∈ An and the fuzzy differential subordination FRDmλ,αf(U)(

(m+1)(m+2)
z RDm+2

λ,α f (z)−
(m+1)(2m+1)

z RDm+1
λ,α f (z) + m2

z RD
m
λ,αf (z)− α[(m+1)(m+2)− 1

λ2 ]
z Dm+2

λ f (z) +
α[(m+1)(2m+1)− 2(1−λ)

λ2 ]
z Dm+1

λ f (z)−
α

[
m2− (1−λ)2

λ2

]
z Dm

λ f (z)) ≤ Fh(U)h (z), i.e.

(m+ 1) (m+ 2)
z

RDm+2
λ,α f (z)− (m+ 1) (2m+ 1)

z
RDm+1

λ,α f (z) +
m2

z
RDm

λ,αf (z)−

α
[
(m+ 1) (m+ 2)− 1

λ2

]
z

Dm+2
λ f (z) +

α
[
(m+ 1) (2m+ 1)− 2(1−λ)

λ2

]
z

Dm+1
λ f (z)−

α
[
m2 − (1−λ)2

λ2

]
z

Dm
λ f (z) ≺F h(z), z ∈ U, (2.13)

holds, then F(RDmλ,αf)
′
(U)

[RDm
λ,αf(z)]′ ≤ Fg(U)g (z), i.e. [RDm

λ,αf(z)]′ ≺F g(z), z ∈ U. This result is sharp.

Proof. Let
p(z) =

(
RDm

λ,αf (z)
)′ = (1− α) (Rmf(z))′ + α (Dm

λ f(z))′ (2.14)

= 1 +
∑∞
j=n+1

{
α [1 + (j − 1)λ]m + (1− α)Cmm+j−1

}
jajz

j−1 = 1 + pnz
n + pn+1z

n+1 + .... We deduce that
p ∈ H[1, n].

By using the properties of operators RDm
λ,α, Rm and Dm

λ , after a short calculation, we obtain

p (z) + zp′ (z) = (m+1)(m+2)
z RDm+2

λ,α f (z)− (m+1)(2m+1)
z RDm+1

λ,α f (z) + m2

z RD
m
λ,αf (z)−

α[(m+1)(m+2)− 1
λ2 ]

z Dm+2
λ f (z) +

α[(m+1)(2m+1)− 2(1−λ)
λ2 ]

z Dm+1
λ f (z) −

α

[
m2− (1−λ)2

λ2

]
z Dm

λ f (z) .
Using the notation in (2.14), the fuzzy differential subordination becomes Fp(U) (p(z) + zp′(z)) ≤ Fh(U)h(z) =

Fg(U) (g(z) + zg′(z)) . By using Lemma 1.3, we have Fp(U)p(z) ≤ Fg(U)g(z), z ∈ U, i.e. FRDmλ,αf(U)

(
RDm

λ,αf(z)
)′

≤ Fg(U)g(z), z ∈ U, and this result is sharp.

Theorem 2.8 Let h be an holomorphic function which satisfies the inequality Re
[
1 + zh′′(z)

h′(z)

]
> − 1

2 , z ∈ U,
and h (0) = 1. If α, λ ≥ 0, n,m ∈ N, f ∈ An and satisfies the fuzzy differential subordination

FRDmλ,αf(U)(
(m+1)(m+2)

z RDm+2
λ,α f (z)− (m+1)(2m+1)

z RDm+1
λ,α f (z) + m2

z RD
m
λ,αf (z)− α[(m+1)(m+2)− 1

λ2 ]
z Dm+2

λ f (z)

+
α[(m+1)(2m+1)− 2(1−λ)

λ2 ]
z Dm+1

λ f (z)−
α

[
m2− (1−λ)2

λ2

]
z Dm

λ f (z)) ≤ Fh(U)h (z), i.e.

(m+ 1) (m+ 2)
z

RDm+2
λ,α f (z)− (m+ 1) (2m+ 1)

z
RDm+1

λ,α f (z) +
m2

z
RDm

λ,αf (z)−

α
[
(m+ 1) (m+ 2)− 1

λ2

]
z

Dm+2
λ f (z) +

α
[
(m+ 1) (2m+ 1)− 2(1−λ)

λ2

]
z

Dm+1
λ f (z)−

6
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α
[
m2 − (1−λ)2

λ2

]
z

Dm
λ f (z) ≺F h(z), z ∈ U, (2.15)

then FRDmλ,αf(U)

(
RDm

λ,αf (z)
)′
≤ Fq(U)q (z). i.e.

(
RDm

λ,αf(z)
)′
≺F q(z), z ∈ U, where q is given by q(z) =

1

nz
1
n

∫ z
0
h(t)t

1
n−1dt. The function q is convex and it is the fuzzy best dominant.

Proof. Since Re
(

1 + zh′′(z)
h′(z)

)
> − 1

2 , z ∈ U, from Lemma 1.1, we obtain that q(z) = 1

nz
1
n

∫ z
0
h(t)t

1
n−1dt is

a convex function and verifies the differential equation asscociated to the fuzzy differential subordination (2.11)
q (z) + zq′ (z) = h (z), therefore it is the fuzzy best dominant.

Using the properties of operator RDm
λ,α and considering p (z) =

(
RDm

λ,αf (z)
)′

, we obtain p(z) + zp′(z) =

(m+1)(m+2)
z RDm+2

λ,α f (z)− (m+1)(2m+1)
z RDm+1

λ,α f (z) + m2

z RD
n
λ,αf (z)− α[(m+1)(m+2)− 1

λ2 ]
z Dm+2

λ f (z) +

α[(m+1)(2m+1)− 2(1−λ)
λ2 ]

z Dm+1
λ f (z) −

α

[
m2− (1−λ)2

λ2

]
z Dm

λ f (z) , z ∈ U.
Then (2.15) becomes Fp(U) (p(z) + zp′(z)) ≤ Fh(U)h(z), z ∈ U. Since p ∈ H[1, n], using Lemma 1.2, we

deduce Fp(U)p(z) ≤ Fq(U)q(z), z ∈ U, i.e. FRDmλ,αf(U)

(
RDm

λ,αf(z)
)′
≤ Fq(U)q(z), z ∈ U.

Corollary 2.9 Let h(z) = 1+(2β−1)z
1+z be a convex function in U , where 0 ≤ β < 1. If α, λ ≥ 0, n,m ∈ N, f ∈ An

and satisfies the fuzzy differential subordination FRDmλ,αf(U)(
(m+1)(m+2)

z RDm+2
λ,α f (z)− (m+1)(2m+1)

z RDm+1
λ,α f (z)

+m2

z RD
m
λ,αf (z)− α[(m+1)(m+2)− 1

λ2 ]
z Dm+2

λ f (z) +
α[(m+1)(2m+1)− 2(1−λ)

λ2 ]
z Dm+1

λ f (z)−
α

[
m2− (1−λ)2

λ2

]
z Dm

λ f (z))
≤ Fh(U)h (z), i.e.

(m+ 1) (m+ 2)
z

RDm+2
λ,α f (z)− (m+ 1) (2m+ 1)

z
RDm+1

λ,α f (z) +
m2

z
RDm

λ,αf (z)−

α
[
(m+ 1) (m+ 2)− 1

λ2

]
z

Dm+2
λ f (z) +

α
[
(m+ 1) (2m+ 1)− 2(1−λ)

λ2

]
z

Dm+1
λ f (z)−

α
[
m2 − (1−λ)2

λ2

]
z

Dm
λ f (z) ≺F h(z), z ∈ U, (2.16)

then FRDmλ,αf(U)

(
RDm

λ,αf(z)
)′
≤ Fq(U)q (z) , i.e.

(
RDm

λ,αf(z)
)′
≺F q(z), z ∈ U, where q is given by q(z) =

2β − 1 + 2(1−β)

nz
1
n

∫ z
0
t

1
n
−1

1+t dt, z ∈ U. The function q is convex and it is the fuzzy best dominant.

Proof. Following the same steps as in the proof of Theorem 2.7 and considering p(z) =
(
RDm

λ,αf (z)
)′

, the
differential subordination (2.16) becomes Fp(U) (p(z) + zp′(z)) ≤ Fh(U)h(z), z ∈ U. By using Lemma 1.2 for γ =

1, we have Fp(U)p(z) ≤ Fq(U)q(z), i.e. F(RDmλ,αf)
′
(U)

(
RDm

λ,αf (z)
)′
≤ Fq(U)q (z), i.e.

(
RDm

λ,αf(z)
)′
≺F q(z),

and q (z) = 1

nz
1
n

∫ z
0
h(t)t

1
n−1dt = 1

nz
1
n

∫ z
0
t

1
n−1 1+(2β−1)t

1+t dt = 2β − 1 + 2(1−β)

nz
1
n

∫ z
0
t

1
n
−1

1+t dt, z ∈ U.

Example 2.2 Let h (z) = 1−z
1+z a convex function in U with h (0) = 1 and Re

(
zh′′(z)
h′(z) + 1

)
> − 1

2 .

Let f (z) = z + z2, z ∈ U . For n = 1, m = 1, λ = 1
2 , α = 2, we obtain RD1

1
2 ,2
f (z) = −R1f (z) +

2D1
1
2
f (z) = −zf ′ (z) + 2

(
1
2f (z) + 1

2zf
′ (z)

)
= f (z) = z + z2 and (n+ 1)RDn+1

λ,α f (z) − (n− 1)RDn
λ,αf (z) −

α
(
n+ 1− 1

λ

) [
Dn+1
λ f (z)−Dn

λf (z)
]

= 2RD2
1
2 ,2
f (z) = −2 + 2z, where RD2

1
2 ,2
f (z) = −R2f (z) + 2D2

1
2
f (z) =

−
(
1 + 3z2

)
+ 2

(
1
2z + 3

2z
2
)

= −1 + z. We have q (z) = 1
z

∫ z
0

1−t
1+tdt = −1 + 2 ln(1+z)

z .

Using Theorem 2.8 we obtain −2 + 2z ≺F 1−z
1+z , z ∈ U, induce z + z2 ≺F −1 + 2 ln(1+z)

z , z ∈ U.
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Abstract

In this paper we establish several fuzzy differential subordinations regardind the operator defined as
Hadamard product of Sălăgean operator Sm and Ruscheweyh derivative Rm, denoted SRm, given by SRm :
A → A, SRmf (z) = (Sm ∗Rm) f (z) and An = {f ∈ H(U), f(z) = z + an+1z

n+1 + . . . , z ∈ U} is the
class of normalized analytic functions with A1 = A. A certain fuzzy class, denoted by SRFm (δ) , of analytic
functions in the open unit disc is introduced by means of this operator. By making use of the concept of
fuzzy differential subordination we will derive various properties and characteristics of the class SRFm (δ) .
Also, several fuzzy differential subordinations are established regarding the operator SRm.

Keywords: fuzzy differential subordination, convex function, fuzzy best dominant, differential operator, con-
volution product, Sălăgean operator, Ruscheweyh derivative.
2000 Mathematical Subject Classification: 30C45, 30A20, 34A40.

1 Introduction

In [10] and [11] the authors wanted to launch a new research direction in mathematics that combines the
notions from the complex functions domain with the fuzzy sets theory. Also the author can justify that by
knowing the properties of a differential expression on a fuzzy set for a function one can be determined the prop-
erties of that function on a given fuzzy set. The author has analyzed the case of one complex functions, leaving
as ”open problem” the case of real functions. The ”open problem” statement leaves open the interpretation
of some notions from the fuzzy sets theory such that each one interpret them personally according to their
scientific concerns, making this theory more attractive.

The notion of fuzzy subordination was introduced in [10]. In [11] the authors have defined the notion of
fuzzy differential subordination. In this paper we will study fuzzy differential subordinations obtained with the
differential operator defined in [1].

Denote by U the unit disc of the complex plane, U = {z ∈ C : |z| < 1} and H(U) the space of holomorphic
functions in U .

Let An = {f ∈ H(U) : f(z) = z + an+1z
n+1 + . . . , z ∈ U} with A1 = A and H[a, n] = {f ∈ H(U) : f(z) =

a+ anz
n + an+1z

n+1 + . . . , z ∈ U} for a ∈ C and n ∈ N.
Denote by K =

{
f ∈ A : Re zf ′′(z)

f ′(z) + 1 > 0, z ∈ U
}
, the class of normalized convex functions in U .

In order to use the concept of fuzzy differential subordination, we remember the following definitions:

Definition 1.1 [6] A pair (A,FA), where FA : X → [0, 1] and A = {x ∈ X : 0 < FA(x) ≤ 1} is called fuzzy
subset of X. The set A is called the support of the fuzzy set (A,FA) and FA is called the membership function
of the fuzzy set (A,FA). One can also denote A = supp(A,FA).

Remark 1.1 [5] In the development work we use the following notations for fuzzy sets:
Ff(D) (f (z)) =supp

(
f (D) , Ff(D)·

)
= {z ∈ D : 0 < Ff(D)f (z) ≤ 1},

p (U) =supp
(
p (U) , Fp(U)·

)
= {z ∈ U : 0 < Fp(U) (p (z)) ≤ 1}.

We give a new definition of membership function on complex numbers set using the module notion of a
complex number z = x+ iy, x, y ∈ R, |z| =

√
x2 + y2 ≥ 0.

1

1484

J. COMPUTATIONAL ANALYSIS AND APPLICATIONS, VOL. 15, NO.8, 1484-1489, 2013, COPYRIGHT 2013 EUDOXUS PRESS, LLC



Example 1.1 Let F : C → R+ a function such that FC (z) = |F (z)|, ∀ z ∈ C. Denote by FC (C) = {z ∈ C :
0 < F (z) ≤ 1} = {z ∈ C : 0 < |F (z)| ≤ 1} =supp(C, FC) the fuzzy subset of the complex numbers set. We call
the subset FC (C) = UF (0, 1) the fuzzy unit disk.

Definition 1.2 ([10]) Let D ⊂ C, z0 ∈ D be a fixed point and let the functions f, g ∈ H (D). The function f
is said to be fuzzy subordinate to g and write f ≺F g or f (z) ≺F g (z), if are satisfied the conditions:

1) f (z0) = g (z0) ,
2) Ff(D)f (z) ≤ Fg(D)g (z), z ∈ D.

Definition 1.3 ([11, Definition 2.2]) Let ψ : C3×U → C and h univalent in U , with ψ (a, 0; 0) = h (0) = a. If
p is analytic in U , with p (0) = a and satisfies the (second-order) fuzzy differential subordination

Fψ(C3×U)ψ(p(z), zp′ (z) , z2p′′(z); z) ≤ Fh(U)h(z), z ∈ U, (1.1)

then p is called a fuzzy solution of the fuzzy differential subordination. The univalent function q is called a
fuzzy dominant of the fuzzy solutions of the fuzzy differential subordination, or more simple a fuzzy dominant, if
Fp(U)p(z) ≤ Fq(U)q(z), z ∈ U , for all p satisfying (1.1). A fuzzy dominant q̃ that satisfies Fq̃(U)q̃(z) ≤ Fq(U)q(z),
z ∈ U , for all fuzzy dominants q of (1.1) is said to be the fuzzy best dominant of (1.1).

Lemma 1.1 ([9, Corollary 2.6g.2, p. 66]) Let h ∈ A and L [f ] (z) = G (z) = 1
z

∫ z
0
h (t) dt, z ∈ U. If

Re
(
zh′′(z)
h′(z) + 1

)
> − 1

2 , z ∈ U, then L (f) = G ∈ K.

Lemma 1.2 ([12]) Let h be a convex function with h(0) = a, and let γ ∈ C∗ be a complex number with
Re γ ≥ 0. If p ∈ H[a, n] with p (0) = a, ψ : C2 × U → C, ψ (p (z) , zp′ (z) ; z) = p (z) + 1

γ zp
′ (z) an analytic

function in U and

Fψ(C2×U)

(
p(z) +

1
γ
zp′(z)

)
≤ Fh(U)h(z), i.e. p(z) +

1
γ
zp′(z) ≺F h(z), z ∈ U, (1.2)

then Fp(U)p(z) ≤ Fg(U)g(z) ≤ Fh(U)h(z), i.e. p(z) ≺F g(z) ≺F h(z), z ∈ U, where g(z) = γ
nzγ/n

∫ z
0
h(t)tγ/n−1dt,

z ∈ U. The function q is convex and is the fuzzy best dominant.

Lemma 1.3 ([12]) Let g be a convex function in U and let h(z) = g(z) + nαzg′(z), z ∈ U, where α > 0 and n
is a positive integer.

If p(z) = g(0) + pnz
n + pn+1z

n+1 + . . . , z ∈ U, is holomorphic in U and Fp(U) (p(z) + αzp′(z)) ≤ Fh(U)h(z),
i.e. p(z) + αzp′(z) ≺F h(z), z ∈ U, then Fp(U)p(z) ≤ Fg(U)g(z), i.e. p(z) ≺F g(z), z ∈ U, and this result is
sharp.

We use the following differential operators.

Definition 1.4 (Sălăgean [14]) For f ∈ A, m ∈ N, the operator Sm is defined by Sm : A → A,

S0f (z) = f (z)
S1f (z) = zf ′(z), ...

Sm+1f(z) = z (Smf (z))′ , z ∈ U.

Remark 1.2 If f ∈ A, f(z) = z +
∑∞
j=2 ajz

j, then Smf (z) = z +
∑∞
j=2 j

majz
j, z ∈ U .

Definition 1.5 (Ruscheweyh [13]) For f ∈ A, m ∈ N, the operator Rm is defined by Rm : A → A,

R0f (z) = f (z)
R1f (z) = zf ′ (z) , ...

(m+ 1)Rm+1f (z) = z (Rmf (z))′ +mRmf (z) , z ∈ U.

Remark 1.3 If f ∈ A, f(z) = z +
∑∞
j=2 ajz

j, then Rmf (z) = z +
∑∞
j=n+1 C

m
m+j−1ajz

j, z ∈ U .

Definition 1.6 [1] Let m ∈ N ∪ {0}. Denote by SRm the operator given by the Hadamard product (the
convolution product) of the Sălăgean operator Sm and the Ruscheweyh operator Rm, SRm : A → A, SRmf (z) =
(Sm ∗Rm) f (z) .

Remark 1.4 [1] If f ∈ A, f(z) = z +
∑∞
j=2 ajz

j, then SRmf (z) = z +
∑∞
j=2 C

m
m+j−1j

ma2
jz
j, z ∈ U .

Remark 1.5 The operator SRm was studied in [1], [2], [3], [4].
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2 Main results

Using the operator RDm
λ,α defined in Definition 1.6 we define the class SRFm (δ) and we study fuzzy subor-

dinations.

Definition 2.1 [5] Let f (D) =supp
(
f (D) , Ff(D)

)
= {z ∈ D : 0 < Ff(D)f (z) ≤ 1}, where Ff(D)· is the

membership function of the fuzzy set f (D) asociated to the function f . The membership function of the fuzzy
set (µf) (D) asociated to the function µf coincide with the membership function of the fuzzy set f (D) asociated
to the function f , i.e. F(µf)(D) ((µf) (z)) = Ff(D)f (z), z ∈ D. The membership function of the fuzzy set
(f + g) (D) asociated to the function f + g coincide with the half of the sum of the membership functions of
the fuzzy sets f (D), respectively g (D), asociated to the function f , respectively g, i.e. F(f+g)(D) ((f + g) (z)) =
Ff(D)f(z)+Fg(D)g(z)

2 , z ∈ D.

Remark 2.1 [5] F(f+g)(D) ((f + g) (z)) can be defined in other ways. Since 0 < Ff(D)f (z) ≤ 1 and 0 <
Fg(D)g (z) ≤ 1, it is evidently that 0 < F(f+g)(D) ((f + g) (z)) ≤ 1, z ∈ D.

Definition 2.2 Let δ ∈ [0, 1) and m ∈ N. A function f ∈ A is said to be in the class SRFm (δ) if it satisfies the
inequality

F(SRmf)′(U) (SRmf (z))′ > δ, z ∈ U. (2.1)

Theorem 2.1 Let g be a convex function in U and let h (z) = g (z) + 1
c+2zg

′ (z) , z ∈ U, where c > 0. If
f ∈ SRFm (δ) and G (z) = Ic (f) (z) = c+2

zc+1

∫ z
0
tcf (t) dt, z ∈ U, then

F(SRmf)′(U) (SRmf (z))′ ≤ Fh(U)h (z) , i.e. (SRmf (z))′ ≺F h (z) , z ∈ U, (2.2)

implies F(SRmG)′(U) (SRmG (z))′ ≤ Fg(U)g (z), i.e. (SRmG (z))′ ≺F g (z), z ∈ U, and this result is sharp.

Proof. We have zc+1G (z) = (c+ 2)
∫ z
0
tcf (t) dt. Differentiating, with respect to z, we obtain (c+ 1)G (z)+

zG′ (z) = (c+ 2) f (z) and

(c+ 1)SRmG (z) + z (SRmG (z))′ = (c+ 2)SRmf (z) , z ∈ U. (2.3)

Differentiating (2.3) we have

(SRmG (z))′ +
1

c+ 2
z (SRmG (z))′′ = (SRmf (z))′ , z ∈ U. (2.4)

Using (2.4), the fuzzy differential subordination (2.2) becomes

F(SRmG)′(U)

(
(SRmG (z))′ +

1
c+ 2

z (SRmG (z))′′
)
≤ Fg(U)

(
g (z) +

1
c+ 2

zg′ (z)
)
. (2.5)

If we denote
p (z) = (SRmG (z))′ (2.6)

then p ∈ H [1, n] .
Replacing (2.6) in (2.5) we obtain

Fp(U)

(
p (z) +

1
c+ 2

zp′ (z)
)
≤ Fg(U)

(
g (z) +

1
c+ 2

zg′ (z)
)

, z ∈ U.

Using Lemma 1.3 we have Fp(U)p (z) ≤ Fg(U)g (z), z ∈ U , i.e. F(SRmG)′(U) (SRmG (z))′ ≤ Fg(U)g (z), z ∈ U,
and g is the fuzzy best dominant. We have obtained that (SRmG (z))′ ≺F g (z), z ∈ U.

Theorem 2.2 Let h (z) = 1+(2β−1)z
1+z , β ∈ [0, 1) and c > 0. If m ∈ N and Ic is given by Theorem 2.1, then

Ic
[
SRFm (δ)

]
⊂ SRFm (δ∗) , (2.7)

where β∗ = 2β − 1 + (c+ 2) (2− 2β)
∫ 1

0
tc+1

t+1 dt.
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Proof. The function h is convex and using the same steps as in the proof of Theorem 2.1 we get from the
hypothesis of Theorem 2.2 that Fp(U)

(
p (z) + 1

c+2zp
′ (z)

)
≤ Fh(U)h (z) , where p (z) is defined in (2.6).

Using Lemma 1.2 we deduce that Fp(U)p (z) ≤ Fg(U)g (z) ≤ Fh(U)h (z) , that is F(SRmG)′(U) (SRmG (z))′ ≤
Fg(U)g (z) ≤ Fh(U)h (z) , where g (z) = c+2

zc+2

∫ z
0
tc+1 1+(2β−1)t

1+t dt = 2β−1+ (c+2)(2−2β)
zc+2

∫ z
0
tc+1

t+1 dt. Since g is convex
and g (U) is symmetric with respect to the real axis, we deduce

F(SRmG)′(U) (SRmG (z))′ ≥ min
|z|=1

Fg(U)g (z) = Fg(U)g (1) (2.8)

and β∗ = g (1) = 2β − 1 + (c+ 2) (2− 2β)
∫ 1

0
tc+1

t+1 dt. From (2.8) we deduce inclusion (2.7).

Theorem 2.3 Let g be a convex function, g (0) = 1, and let h be the function h (z) = g (z) + zg′ (z), z ∈ U . If
m ∈ N ∪ {0}, f ∈ A and verifies the fuzzy differential subordination

F(SRmf)′(U) (SRmf (z))′ ≤ Fh(U)h (z) , i.e. (SRmf (z))′ ≺F h (z) , z ∈ U, (2.9)

then FSRmf(U)
SRmf(z)

z ≤ Fg(U)g (z), i.e. SRmf(z)
z ≺F g (z), z ∈ U, and this result is sharp.

Proof. Consider p (z) = SRmf(z)
z =

z+
∑∞
j=2 C

m
m+j−1j

ma2
jz
j

z = 1 +
∑∞
j=2 C

m
m+j−1j

ma2
jz
j−1. We have p (z) +

zp′ (z) = (SRmf (z))′, z ∈ U . Then F(SRmf)′(U) (SRmf (z))′ ≤ Fh(U)h (z), z ∈ U, becomes Fp(U) (p (z) + zp′ (z))
≤ Fh(U)h (z) = Fg(U) (g (z) + zg′ (z)), z ∈ U . By using Lemma 1.3, we obtain Fp(U)p (z) ≤ Fg(U)g (z), z ∈ U ,
i.e. FSRmf(U)

SRmf(z)
z ≤ Fg(U)g (z), z ∈ U. We obtain that SRmf(z)

z ≺F g (z), z ∈ U, and this result is sharp.

Theorem 2.4 Let h ∈ H(U), with h(0) = 1, which verifies the inequality Re
(

1 + zh′′(z)
h′(z)

)
> − 1

2 , z ∈ U. If
m ∈ N, f ∈ A and verifies the fuzzy differential subordination

F(SRmf)′(U) (SRmf(z))′ ≤ Fh(U)h(z), i.e. (SRmf(z))′ ≺F h(z), z ∈ U, (2.10)

then FSRmf(U)
SRmf(z)

z ≤ Fq(U)q(z), i.e. SRmf(z)
z ≺F q(z), z ∈ U, where q(z) = 1

z

∫ z
0
h(t)dt. The function q is

convex and it is the fuzzy best dominant.

Proof. Let p(z) = SRmf(z)
z = 1 +

∑∞
j=2 C

m
m+j−1j

ma2
jz
j−1 = 1 +

∑∞
j=2 pjz

j−1, z ∈ U, p ∈ H[1, 1].

Since Re
(

1 + zh′′(z)
h′(z)

)
> − 1

2 , z ∈ U, from Lemma 1.1, we obtain that q (z) = 1
z

∫ z
0
h(t)dt is a convex function

and verifies the differential equation asscociated to the fuzzy differential subordination (2.10) q (z) + zq′ (z) =
h (z), therefore it is the fuzzy best dominant.

Differentiating, we obtain (SRmf(z))′ = p(z) + zp′(z), z ∈ U, and (2.10) becomes Fp(U) (p(z) + zp′(z)) ≤
Fh(U)h(z), z ∈ U.

Using Lemma 1.3, we have Fp(U)p(z) ≤ Fq(U)q(z), z ∈ U, i.e. FSRmf(U)
SRmf(z)

z ≤ Fq(U)q(z), z ∈ U. We
have obtained that SRmf(z)

z ≺F q(z), z ∈ U.

Corollary 2.5 Let h(z) = 1+(2β−1)z
1+z a convex function in U , 0 ≤ β < 1. If m ∈ N, f ∈ A and verifies the

fuzzy differential subordination

F(SRmf)′(U) (SRmf(z))′ ≤ Fh(U)h(z), i.e. (SRmf(z))′ ≺F h(z), z ∈ U, (2.11)

then FSRmf(U)
SRmf(z)

z ≤ Fq(U)q(z), i.e. SRmf(z)
z ≺F q(z), z ∈ U, where q is given by q(z) = 2β − 1 +

2(1−β)
z ln (1 + z) , z ∈ U. The function q is convex and it is the fuzzy best dominant.

Proof. We have h (z) = 1+(2β−1)z
1+z with h (0) = 1, h′ (z) = −2(1−β)

(1+z)2
and h′′ (z) = 4(1−β)

(1+z)3
, therefore

Re
(
zh′′(z)
h′(z) + 1

)
= Re

(
1−z
1+z

)
= Re

(
1−ρ cos θ−iρ sin θ
1+ρ cos θ+iρ sin θ

)
= 1−ρ2

1+2ρ cos θ+ρ2 > 0 > − 1
2 .

Following the same steps as in the proof of Theorem 2.4 and considering p(z) = SRmf(z)
z , the fuzzy differential

subordination (2.11) becomes Fp(U) (p(z) + zp′(z)) ≤ Fh(U)h(z), z ∈ U.
By using Lemma 1.2 for γ = 1 and n = 1, we have Fp(U)p(z) ≤ Fq(U)q(z), i.e. FSRmf(U)

SRmf(z)
z ≤ Fq(U)q (z)

and q (z) = 1
z

∫ z
0
h (t) dt = 1

z

∫ z
0

1+(2β−1)t
1+t dt = 2β − 1 + 2(1−β)

z ln (1 + z) , z ∈ U.
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Example 2.1 Let h (z) = 1−z
1+z a convex function in U with h (0) = 1 and Re

(
zh′′(z)
h′(z) + 1

)
> − 1

2 .

Let f (z) = z + z2, z ∈ U . For n = 1, m = 1, we obtain SR1f (z) = z + C1
2 · 2 · 11 · z2 = z + 4z2. Then(

SR1f (z)
)′ = 1 + 8z and SR1f(z)

z = 1 + 4z. We have q (z) = 1
z

∫ z
0

1−t
1+tdt = −1 + 2 ln(1+z)

z .

Using Theorem 2.4 we obtain 1 + 8z ≺F 1−z
1+z , z ∈ U, induce 1 + 4z ≺F −1 + 2 ln(1+z)

z , z ∈ U.

Theorem 2.6 Let g be a convex function such that g (0) = 1 and let h be the function h (z) = g (z) + zg′ (z),
z ∈ U . If m ∈ N ∪ {0}, f ∈ A and verifies the fuzzy differential subordination

FSRmf(U)

(
zSRm+1f (z)
SRmf (z)

)′
≤ Fh(U)h (z) , i.e.

(
zSRm+1f (z)
SRmf (z)

)′
≺F h (z) , z ∈ U, (2.12)

then FSRmf(U)
SRm+1f(z)
SRmf(z) ≤ Fg(U)g (z), i.e. SRm+1f(z)

SRmf(z) ≺F g (z), z ∈ U, and this result is sharp.

Proof. Consider p (z) = SRm+1f(z)
SRmf(z) =

z+
∑∞
j=n+1 C

m+1
m+j j

m+1a2
jz
j

z+
∑∞
j=n+1 C

m
m+j−1j

ma2
jz
j =

1+
∑∞
j=n+1 C

m+
m+jj

m+1a2
jz
j−1

1+
∑∞
j=n+1 C

m
m+j−1j

ma2
jz
j−1 . We have p′ (z) =

(SRm+1f(z))′
SRmf(z) −p (z)· (SR

mf(z))′

SRmf(z) . Then p (z)+zp′ (z) =
(
zSRm+1f(z)
SRmf(z)

)′
. Relation (2.12) becomes Fp(U) (p (z) + zp′ (z)) ≤

Fh(U)h (z) = Fg(U) (g (z) + zg′ (z)), z ∈ U, and by using Lemma 1.3, we obtain Fp(U)p (z) ≤ Fg(U)g (z), z ∈ U ,

i.e. FSRmf(U)
SRm+1f(z)
SRmf(z) ≤ Fg(U)g (z), z ∈ U. We obtained that SRm+1f(z)

SRmf(z) ≺F g (z), z ∈ U.

Theorem 2.7 Let g be a convex function such that g (0) = 1 and let h be the function h (z) = g (z)+ 1
m+1zg

′ (z),
z ∈ U, m ∈ N. If f ∈ A and the fuzzy differential subordination

FSRmf(U)

(
1
z
SRm+1f (z)

)
≤ Fh(U)h (z) , i.e.

1
z
SRm+1f (z) ≺F h (z) , z ∈ U, (2.13)

holds, then F(SRmf)′(U) (SRmf (z))′ ≤ Fg(U)g (z), i.e. (SRmf (z))′ ≺F g (z), z ∈ U, and this result is sharp.

Proof. With notation p (z) = (SRmf (z))′ = 1 +
∑∞
j=2 C

m
m+j−1j

m+1a2
jz
j−1 and p (0) = 1, we obtain for

f(z) = z +
∑∞
j=2 ajz

j , p (z) + zp′ (z) = 1
zSR

m+1f (z) + z m
m+1 (SRmf (z))′′ .

We have Fp(U)

(
p (z) + 1

m+1zp
′ (z)

)
≤ Fh(U)h (z) = Fg(U)

(
g (z) + 1

m+1zg
′ (z)

)
, z ∈ U . By using Lemma

1.3, we obtain Fp(U)p (z) ≤ Fg(U)g (z), z ∈ U , i.e. F(SRmf)′(U) (SRmf (z))′ ≤ Fg(U)g (z), z ∈ U, and this result
is sharp. We obtained that (SRmf (z))′ ≺F g (z), z ∈ U.

Theorem 2.8 Let h ∈ H(U) with h(0) = 1, which verifies the inequality Re
[
1 + zh′′(z)

h′(z)

]
> − 1

2 , z ∈ U. If
m ∈ N, f ∈ A and satisfies the fuzzy differential subordination

FSRmf(U)

(
1
z
SRm+1f (z)

)
≤ Fh(U)h(z), i.e.

1
z
SRm+1f (z) ≺F h(z), z ∈ U, (2.14)

then F(SRmf)′(U) (SRmf (z))′ ≤ Fq(U)q(z), i.e. (SRmf (z))′ ≺F q(z), z ∈ U, where q is given by q(z) =
m+1
zm+1

∫ z
0
h(t)tmdt. The function q is convex and it is the fuzzy best dominant.

Proof. Since Re
(

1 + zh′′(z)
h′(z)

)
> − 1

2 , z ∈ U, from Lemma 1.1, we obtain that q (z) = m+1
zm+1

∫ z
0
h(t)tmdt is

a convex function and verifies the differential equation associated to the fuzzy differential subordination (2.14)
q (z) + 1

m+1zq
′ (z) = h (z), therefore it is the fuzzy best dominant.

Using the properties of operator SRm and considering p (z) = (SRmf (z))′, we obtain FSRmf(U)SR
mf (U) =

Fp(U)

(
p(z) + 1

m+1zp
′(z)
)
, z ∈ U. Then (2.14) becomes Fp(U)

(
p(z) + 1

m+1zp
′(z)
)
≤ Fh(U)h(z), z ∈ U. Since p ∈

H[1, 1], using Lemma 1.3 for γ = m+1, we deduce Fp(U)p(z) ≤ Fq(U)q(z), z ∈ U, where q(z) = m+1
zm+1

∫ z
0
h(t)tmdt,

z ∈ U, i.e. F(SRmf)′(U) (SRmf(z))′ ≤ Fq(U)q(z), z ∈ U. We have obtained that (SRmf (z))′ ≺F q(z), z ∈ U.

Corollary 2.9 Let h(z) = 1+(2β−1)z
1+z a convex function in U , 0 ≤ β < 1. If m ∈ N, f ∈ A and verifies the

fuzzy differential subordination

FSRmf(U)

(
1
z
SRm+1f (z)

)
≤ Fh(U)h(z), i.e.

1
z
SRm+1f (z) ≺F h(z), z ∈ U, (2.15)

then F(SRmf)′(U) (SRmf (z))′ ≤ Fq(U)q(z), i.e. (SRmf (z))′ ≺F q(z), z ∈ U , where q is given by q(z) =
2β − 1 + 2(1−β)(m+1)

zm+1

∫ z
0

tm

1+tdt, z ∈ U. The function q is convex and it is the fuzzy best dominant.
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Proof. Following the same steps as in the proof of Theorem 2.7 and considering p(z) = (SRmf (z))′, the
fuzzy differential subordination (2.15) becomes Fp(U)

(
p(z) + 1

m+1zp
′(z)
)
≤ Fh(U)h(z), z ∈ U.

By using Lemma 1.2 for γ = m+1 and n = 1, we have Fp(U)p(z) ≤ Fq(U)q(z), i.e. F(SRmf)′(U) (SRmf(z))′ ≤
Fq(U)q (z) and q (z) = m+1

zm+1

∫ z
0
h(t)tmdt = m+1

zm+1

∫ z
0
tm 1+(2β−1)t

1+t dt = 2β − 1 + 2(1−β)(m+1)
zm+1

∫ z
0

tm

1+tdt, z ∈ U.

Example 2.2 Let h (z) = 1−z
1+z a convex function in U with h (0) = 1 and Re

(
zh′′(z)
h′(z) + 1

)
> − 1

2 .

Let f (z) = z+ z2, z ∈ U . For n = 1, m = 1,we obtain SR1f (z) = z+ 4z2. Then
(
SR1f (z)

)′ = 1 + 8z. We
obtain also 1

zSR
m+1f (z) = 1

zSR
2f (z) = 1+12z, where SR2f (z) = z+C2

3 ·22 ·12 ·z2 +C2
4 ·32 ·0 ·z3 = z+12z2.

We have q (z) = 2
z2

∫ z
0

1−t
1+t tdt = −1 + 4

z −
4 ln(1+z)

z2 .

Using Theorem 2.8 we obtain 1 + 12z ≺F 1−z
1+z , z ∈ U, induce 1 + 8z ≺F −1 + 4

z −
4 ln(1+z)

z2 , z ∈ U.
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Universitatis Apulensis, nr. 24/2010, pp. 201-209.
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In this paper we study certain strong differential superordinations and give a sandwich theorem, obtained
by using a new integral operator introduced in [21].
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1 Introduction and preliminaries

The concept of differential subordination was introduced in [11], [12] and developed in [13], by S.S. Miller
and P.T. Mocanu. The concept of differential superordination was introduced in [14], like a dual problem of the
differential superordination by S.S. Miller and P.T. Mocanu. The concept of strong differential subordination
was introduced in [10] by J.A. Antonino and S. Romaguera and developed in [1], [2], [3], [4], [5], [16], [18], [19],
[20], [22], [24]. The concept of strong differential superordination was introduced in [17], like a dual concept of
the strong differential subordination and developed in [6], [7], [8], [9], [21], [23].

Let H(U × U) denote the class of analytic function in U × U , U = {z ∈ C : |z| < 1}, U = {z ∈ C : |z| ≤
1}, ∂U = {z ∈ C : |z| = 1}.

For a ∈ C and n ∈ N∗, let Hζ[a, n] = {f(z, ζ) ∈ H(U×U) : f(z, ζ) = a+an (ζ) zn+ . . .+an+1 (ζ) zn+1 + . . .}
with z ∈ U , ζ ∈ U , ak(ζ) holomorphic functions in U , k ≥ n, Aζn = {f(z, ζ) ∈ H(U × U) : f(z, ζ) = z +
an+1 (ζ) zn+1+an+2 (ζ) zn+2+. . .} with z ∈ U , ζ ∈ U , ak(ζ) holomorphic functions in U , k ≥ n+1, so Aζ1 = Aζ,
Hζu(U) = {f(z, ζ) ∈ Hζ[a, n] : f(z, ζ) univalent in U, for all ζ ∈ U}, Sζ = {f(z, ζ) ∈ Aζ, f(z, ζ) univalent in U,
for all ζ ∈ U}, denote the class of univalent functions in U×U , S∗ζ = {f(z, ζ) ∈ Aζ : Re zf

′(z,ζ)
f(z,ζ) > 0, z ∈ U, for

all ζ ∈ U}, denote the class of normalized starlike functions in U×U , Kζ = {f(z, ζ) ∈ Aζ : Re
[
zf ′′(z,ζ)
f ′(z,ζ) + 1

]
>

0, z ∈ U, for all ζ ∈ U}, denote the class of normalized convex functions in U × U .
For r ∈ N, A(r)ζ denote the subclass of the functions f(z, ζ) ∈ (U × U) of the form f(z, ζ) = zr +∑∞
k=r+1 ak(ζ)zk, r ∈ N, z ∈ U, ζ ∈ U and set A(1)ζ = Aζ.
To prove our main results, we need the following definitions and lemmas:

Definition 1.1 [16], [18] Let f(z, ζ) and F (z, ζ) analytic functions from H(U × U). The function f(z, ζ) is
said to be strongly subordinated to F (z, ζ), or F (z, ζ) is said to be strongly superordinated to f(z, ζ), if there
exists a function w analytic in U with w(0) = 0 and |w(z)| < 1, such that f(z, ζ) = F (w(z), ζ). In such a case
we write f(z, ζ) ≺≺ F (z, ζ).

If F (z, ζ) is univalent then f(z, ζ) ≺≺ F (z, ζ) if and only if f(0, ζ) = F (0, ζ) and f(U × U) ⊂ F (U × U).

Remark 1.1 If f(z, ζ) ≡ f(z) and F (z, ζ) ≡ F (z), then the strong differential subordination or strong differ-
ential superordination becomes the usual notion of differential subordination or differential superordination.

Definition 1.2 [14], [16] We denote by Qζ the set of functions q(z, ζ) that are analytic and injective with respect

to z on U \E(q(z, ζ)), where E(q(z, ζ)) =
{
ξ ∈ ∂U : lim

z→ξ
q(z, ζ) =∞

}
and q′(ξ, ζ) 6= 0, for ξ ∈ ∂U \E(q(z, ζ)).

The class of Qζ for which q(0, ζ) = a, is denoted by Qζ(a).
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We mention that all the derivatives which appear in this paper are considered with respect to variable z.
Let ψ : C3 × U × U → C and let h(z, ζ) be univalent in U , for all ζ ∈ U . If p(z, ζ) is analytic in U × U and

satisfies the (second-order) strong differential subordination

ψ(p(z, ζ), z′(z, ζ), z2p′′(z, ζ); z, ζ) ≺≺ h(z, ζ), z ∈ U, ζ ∈ U (1.1)

then p(z, ζ) is called a solution of the strong differential subordination.
The univalent function q(z, ζ) is called a dominant of the solutions of the strong differential subordination

or simply a dominant, if p(z, ζ) ≺≺ q(z, ζ) for all p(z, ζ) satisfying (1.1).
A dominant q̃(z, ζ) that satisfies q̃(z, ζ) ≺≺ q(z, ζ) for all dominants q(z, ζ) of (1.1) is said to be the best

dominant of (1.1). (Note that the best dominant is unique up to a rotation of U).
Let ϕ : C3 × U × U → C and let h(z, ζ) be analytic in U × U .
If p(z, ζ) and ϕ(p(z, ζ), zp′(z, ζ), z2p′′(z, ζ); z, ζ) are univalent in U , for all ζ ∈ U and satisfy the (second-

order) strong differential superordination

h(z, ζ) ≺≺ ϕ(p(z, ζ), zp′(z, ζ), z2p′′(z, ζ); z, ζ) (1.2)

then p(z, ζ) is called a solution of the strong differential superordination. An analytic function q(z, ζ) is called
a subordinant of the solutions of the differential superordination, or more simply a subordinant, if q(z, ζ) ≺≺
p(z, ζ) for all p(z, ζ) satisfying (1.2). A univalent subordinant q̃(z, ζ) that satisfies q(z, ζ) ≺≺ q̃(z, ζ) for all
subordinants of (1.2) is said to be the best subordinant. (Note that the best subordinant is unique up to a
rotation of U).

In order to prove the original results of this paper, we need the following definitions and lemmas.

Definition 1.3 [11] For f(z, ζ) ∈ Aζn, n ∈ N∗, m ∈ N, γ ∈ C, let Lγ be the integral operator given by
Lγ : Aζn → Aζn

L0
γf(z, ζ) = f(z, ζ)

L1
γf(z, ζ) =

γ + 1
zγ

∫ z

0

L0
γf(z, ζ)tγ−1dt

L2
γf(z, ζ) =

γ + 1
zγ

∫ z

0

L1
γf(z, ζ)tγ−1dt, ...

Lmγ f(z, ζ) =
γ + 1
zγ

∫ z

0

Lm−1
γ f(z, ζ)tγ−1dt.

By using Definition 1.3, we can prove the following properties for this integral operator:
For f(z, ζ) ∈ Aζn, n ∈ N∗, m ∈ N, γ ∈ C, we have

Lmγ f(z, ζ) = z +
∞∑

k=n+1

(γ + 1)m

(γ + k)m
ak(ζ)zk, z ∈ U, ζ ∈ U (1.3)

and
z[Lmγ f(z, ζ)]′z = (γ + 1)Lm−1

γ f(z, ζ)− γLmλ f(z, ζ), z ∈ U, ζ ∈ U. (1.4)

Definition 1.4 [20] For r ∈ N, f(z, ζ) ∈ A(r)ζ, let H be the integral operator given by H : A(r)ζ → A(r)ζ

H0f(z, ζ) = f(z, ζ)

H1f(z, ζ) =
r + 1
z

∫ z

0

H0f(t, ζ)dt

H2f(z, ζ) =
r + 1
z

∫ z

0

H1f(t, ζ)dt, ...

Hmf(z, ζ) =
r + 1
z

∫ z

0

Hm−1f(t, ζ)dt, z ∈ U, ζ ∈ U.

From Definition 1.4 we have

Hmf(z, ζ) = zt +
∞∑

k=r+1

(r + 1)m

(r + k)m
ak(ζ)zk (1.5)

and
z[Hmf(z, ζ)]′z = (r + 1)Hm−1f(z, ζ)−Hmf(z, ζ), z ∈ U, ζ ∈ U. (1.6)
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Lemma 1.1 [14, Corollary 9.1] Let h1(z, ζ) and h2(z, ζ) be starlike in U ×U , with h1(0, ζ) = h2(0, ζ) = 0 and
the functions qi(z, ζ) defined by qi(z, ζ) =

∫ z
0
hi(t, ζ)t−1dt, for i = 1, 2. If p(z, ζ) ∈ [0, 1] ∩ Qζ and zp′(z, ζ) is

univalent in U × U , then h1(z, ζ) ≺≺ zp′(z, ζ) ≺≺ h2(z, ζ) implies q1(z, ζ) ≺≺ p(z, ζ) ≺≺ q2(z, ζ).
The functions q1(z, ζ) and q2(z, ζ) are convex and they are respectively the best subordinant and best domi-

nant.

Lemma 1.2 [15, Theorem 3] Let θ and φ be analytic in a domain D, and let q(z, ζ) be univalent in U , for all
ζ ∈ U , with q(0, ζ) = a and q(U × U) ⊂ D. Let Q(z, ζ) = zq′(z, ζ) · φ(q(z)), h(z, ζ) = θ(q(z, ζ)) + Q(z, ζ) and
suppose that

(i) Re
[
θ′(q(z,ζ))
φ(q(z,ζ))

]
> 0, and

(ii) Q(z, ζ) is starlike in U , for all ζ ∈ U .
If p(z, ζ) ∈ [a, 1] ∩ Qζ , p(U × U) ⊂ D and θ(p(z, ζ)) + zp′(z, ζ) · φ(z, ζ) is univalent in U , for all ζ ∈ U ,

then h(z, ζ) ≺≺ θ(p(z, ζ)) + zp′(z, ζ) · φ(p(z, ζ)) implies q(z, ζ) ≺≺ p(z, ζ), z ∈ U, ζ ∈ U and q(z, ζ) is the best
subordinant.

2 Main results

Theorem 2.1 Let h1(z, ζ) = ζz
ζ−z and h2(z, ζ) = z

ζ+z , be starlike in U , for all ζ ∈ U , with h1(0, ζ) = h2(0, ζ) =
0, and q1(z, ζ) =

∫ z
0

ζ
ζ−tdt = ζ ln ζ

ζ−z and q2(z, ζ) =
∫ z
0

1
ζ+tdt = ln ζ+z

ζ . For m ∈ N, γ ∈ C, f(z, ζ) ∈ Aζ, if
z2[Lmγ f(z,ζ)]′

Lmγ f(z,ζ) ∈ [0, 1]∩Qζ and 2z2[Lmγ f(z,ζ)]′Lmγ f(z,ζ)+z3[Lmγ f(z,ζ)]′′Lmγ f(z,ζ)−z3[(Lmγ f(z,ζ))′]2

[Lmγ f(z,ζ)]2 is univalent in U , for all

ζ ∈ U , then

ζz

ζ − z
≺≺

2z2[Lmγ f(z, ζ)]′Lmγ f(z, ζ) + z3[Lmγ f(z, ζ)]′′Lmγ f(z, ζ)− z3[(Lmγ f(z, ζ))′]2

[Lmγ f(z, ζ)]2
≺≺ z

ζ + z
(2.1)

implies ζ ln ζ
ζ−z ≺≺

z2[Lmγ f(z,ζ)]′

Lmγ f(z,ζ) ≺≺ ln ζ+z
ζ , z ∈ U, ζ ∈ U.

The functions q1(z, ζ) = ζ ln ζ
ζ−n and q2(z, ζ) = ln ζ+z

z are convex and they are respectively the best subordi-
nant and best dominant.

Proof. In order to prove the theorem, we shall use Lemma 1.1.
We have Re zh

′
1(z,ζ)z
h1(z,ζ)

= Re ζ
ζ−z = 1

2 > 0, z ∈ U, ζ ∈ U and Re zh′2(z,ζ)z
h2(z,ζ)

= Re ζ
ζ+z = 1

2 > 0, z ∈ U, ζ ∈ U
hence h1(z, ζ) and h2(z, ζ) are starlike in U , for all ζ ∈ U .

We consider

p(z, ζ) =
z2[Lmγ f(z, ζ)]′

Lmγ f(z, ζ)
, z ∈ U, ζ ∈ U. (2.2)

Using (1.3) in (2.2), we have p(z, ζ) =
z2
(
z+
∑∞
k=2

(γ+1)m

(γ+k)m ak(ζ)z
k
)

z+
∑∞
k=2

(γ+1)m
(γ+k)m ak(ζ)zk

=
z
(
1+
∑∞
k=2

(γ+1)m

(γ+k)m ak·ζ·k·zk−1
)

1+
∑∞
k=2

(γ+1)m
(γ+k)m ak(ζ)zk

. Since p(0, ζ) = 0,

we have p(z, ζ) ∈ [0, 1]ζ ∩Qζ .
Differentiating (2.2), and after a short calculus we obtain

zp′(z, ζ) =
2z2[Lmγ f(z, ζ)]′Lmγ f(z, ζ) + z3[Lmγ f(z, ζ)]′′Lmγ f(z, ζ)

[Lmγ f(z, ζ)]2
−
z3[Lmγ f(z, ζ)]′2

[Lmγ f(z, ζ)]2
. (2.3)

Using (2.3) in (2.1), we have

ζz

ζ − z
≺≺ zp′(z, ζ) ≺≺ z

ζ + z
, z ∈ U, ζ ∈ U. (2.4)

Using Lemma 1.1, we obtain ζ ln ζ
ζ−z ≺≺

z2[Lmγ f(z,ζ)]′

Lmγ f(z,ζ) ≺≺ ln ζ+z
ζ , z ∈ U, ζ ∈ U.

Theorem 2.2 Let m ∈ N, γ ∈ C, λ ∈ C, q(z, ζ) = eλzζ starlike (univalent) function in U , for all ζ ∈ U , with
q(0, ζ) = 1, and suppose that

(j) Reλzζ > − 1
2 ,

(jj) Reλζ > 0.
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Let Q(z, ζ) = λzζe2λzζ and h(z, ζ) = λzζe2λzζ+eλzζ , z ∈ U , ζ ∈ U . If f(z, ζ) ∈ Aζ, [Lmγ f(z, ζ)]′ ∈ [1, 1]∩Qζ
and [Lmγ f(z, ζ)]′ + z[Lmγ f(z, ζ)]′[Lmγ f(z, ζ)]′′ is univalent in U , for all ζ ∈ U , then

λzζe2λzζ + eλzζ ≺≺ [Lmγ f(z, ζ)]′ + z[Lmγ f(z, ζ)]′[Lmγ f(z, ζ)]′′ (2.5)

implies eλzζ ≺≺ [Lmγ f(z, ζ)]′, z ∈ U, ζ ∈ U and q(z, ζ) = eλzζ is the best subordinant.

Proof. In order to prove the theorem, we shall use Lemma 1.2. For that, we show that the necessary
conditions are satisfied.

Let the functions θ : C→ C, ϕ : C→ C, with

Q(w) = w (2.6)

and
ϕ(w) = w. (2.7)

We check the conditions from the hypothesis of Lemma 1.2. Using (2.6), (2.7), (i) and (ii) we have

Re
θ′(q(z, ζ))
ϕ(q(z, ζ))

= Re
λζeλzζ

eλzζ
= Reλζ > 0, (2.8)

and

Re
zQ′(z, ζ)
Q(z, ζ)

= Re (1 + 2λzζ) > 0. (2.9)

We consider
p(z, ζ) = [Lmγ f(z, ζ)]′, z ∈ U, ζ ∈ U. (2.10)

Using (1.3) in (2.10), we have p(z, ζ) =
[
z +

∑∞
k=2

(γ+1)m

(γ+k)m ak(ζ)zk
]′

= 1 +
∑∞
k=2

(γ+1)m

(γ+k)m ak(ζ)kzk−1. Since
p(0, ζ) = 1, we have p(z, ζ) ∈ [1, 1] ∩Qζ . Differentiating (2.10) and after a short calculus we obtained

p(z, ζ) + zp′(z, ζ)p(z, ζ) = [Lmγ f(z, ζ)]′ + z[Lmγ f(z, ζ)]′′[Lmγ f(z, ζ)]′. (2.11)

Using (2.6) and (2.7), we have

θ(p(z, ζ)) = p(z, ζ) and ϕ(p(z, ζ)) = p(z, ζ) (2.12)

and (2.11) becomes

θ(p(z, ζ)) + zp′(z, ζ)ϕ(p(z, ζ)) = [Lmγ f(z, ζ)]′ + z[Lmγ f(z, ζ)]′′[Lmγ f(z, ζ)]′. (2.13)

Using (2.6) and (2.7), we have θ(q(z, ζ)) = q(z, ζ) and ϕ(q(z, ζ)) = q(z, ζ),

h(z, ζ) = q(z, ζ) + zq′(z, ζ)q(z, ζ) = eλzζ + λzζe2λzζ . (2.14)

Using (2.13) and (2.14), the strong superordination (2.5) becomes

h(z, ζ) ≺≺ θ(p(z, ζ)) + zp′(z, ζ)ϕ(p(z, ζ)), z ∈ U, ζ ∈ U. (2.15)

Since (2.8) and (2.9) give the conditions from the hypothesis of Lemma 1.2 and using (2.15) by applying Lemma
1.2 we obtain q(z, ζ) = eλzζ ≺≺ [Lmγ f(z, ζ)]′, z ∈ U, ζ ∈ U and q(z, ζ) = eλzζ is the best dominant.

Theorem 2.3 Let p ∈ N, m ∈ N, h1(z, ζ) = zζ
1+zζ , h2(z, ζ) = z

1−zζ be starlike in U , for all ζ ∈ U , with

h1(0, ζ) = h2(0, ζ) = 0, and q1(z, ζ) =
∫ z
0
h1(t,ζ)

t dt =
∫ z
0

ζ
1+tζ dt = ln(1 + ζz), q2(z, ζ) =

∫ z
0
h2(t,ζ)

t dt =∫ z
0

1
1−tζ dt = − ln(1−zζ)

ζ . If Hmf(z,ζ)
zr−1 ∈ [0, 1] ∩Qζ and z[Hmf(z,ζ)]′−(r−1)Hmf(z,ζ)

zr−1 is univalent in U , for all ζ ∈ U ,
then

zζ

1 + zζ
≺≺ z[Hmf(z, ζ)]′ − (r − 1)Hmf(z, ζ)

zr−1
≺≺ z

1− zζ
(2.16)

implies ln(1 + zζ) ≺≺ Hmf(z,ζ)
zr−1 ≺≺ − ln(1−zζ)

ζ , z ∈ U, ζ ∈ U.
The functions q1(z, ζ) = ln(1+zζ)

ζ and q2(z, ζ) = − ln(1−zζ)
ζ are convex and they are respectively the best

subordinant and best dominant.
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Proof. In order to prove the theorem, we shall use Lemma 1.1.
We have Re z[h1(z,ζ)]

′

h1(z,ζ)
= Re 1

1+zζ = 1
2 > 0, z ∈ U, ζ ∈ U and Re z[h2(z,ζ)]

′

h2(z,ζ)
= Re 1

1−zζ = 1
2 > 0, z ∈ U, ζ ∈ U.

Hence h1(z, ζ) and h2(z, ζ) are starlike in U , for ζ ∈ U .
We consider

p(z, ζ) =
Hmf(z, ζ)
zr−1

, z ∈ U, ζ ∈ U. (2.17)

Using (1.3), we have p(z, ζ) =
zr+

∑∞
k=r+1

(r+1)m

(r+γ)m ak(ζ)z
k

zr−1 = z +
∑∞
k=r+1

(r+1)m

(r+k)m ak(ζ)zk−r+1. Since p(0, ζ) = 0, we
have p(z, ζ) ∈ Aζ. Differentiating (2.17) and after a short calculus, we obtain

zp′(z, ζ) =
z[Hmf(z, ζ)]′ − (r − 1)Hmf(z, ζ)

zr−1
, z ∈ U, ζ ∈ U. (2.18)

Using (2.18) in (2.16), we have

zζ

1 + zζ
≺≺ zp′(z, ζ) ≺≺ z

1− zζ
, z ∈ U, ζ ∈ U. (2.19)

From Lemma 1.1, we obtain ln(1 + zζ) ≺≺ Hmf(z,ζ)
zr−1 ≺≺ − ln(1−zζ)

ζ , z ∈ U, ζ ∈ U. The functions q1(z, ζ) =

ln(1+zζ) and q2(z, ζ) = − ln(1−zζ)
ζ are convex and they are respectively the best subordinant and best dominant.

Example 2.1 Let γ = 2, m = 1, f(z, ζ) = z + 5ζz3, L1
2f(z, ζ) = 2

3z + 2ζz3, p(z, ζ) = z+9ζz2

1+6ζz2 , zp
′(z, ζ) =

z+18ζz3−36ζ2z4

(1+3ζz2)2 . From Theorem 2.1, we have ζz
ζ−z ≺≺

z3+18ζz5−36ζ2z7

(z+3ζz3)2 ≺≺ z
ζ+z implies ζ ln ζ

ζ−z ≺≺
z+9ζz2

1+6ζz2 ≺≺
ζ+z
ζ , z ∈ U, ζ ∈ U.
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Abstract

In this paper we study certain strong differential subordinations and strong differential superordinations,
obtained by using a new integral operator introduced in [21]. We also give some results as a sandwich
theorem.

Keywords. Analytic function, univalent function, starlike function, convex function, strong differential subor-
dination, strong differential superordination, best dominant, best subordinant.
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1 Introduction and preliminaries

The concept of differential subordination was introduced in [11], [12] and developed in [13], by S.S. Miller and
P.T. Mocanu. The concept of differential superordination was introduced in [14], [15] like a dual problem of the
differential superordination by S.S. Miller and P.T. Mocanu. The concept of strong differential subordination
was introduced in [10] by J.A. Antonino and S. Romaguera and developed in [1], [2], [3], [4], [5], [16], [18], [19],
[20], [22], [24]. The concept of strong differential superordination was introduced in [17], like a dual concept of
the strong differential subordination and developed in [6], [7], [8], [9], [21], [23].

In [16] the author defines the following classes:
Let H(U × U) denote the class of analytic function in U × U , U = {z ∈ C : |z| < 1}, U = {z ∈ C : |z| ≤

1}, ∂U = {z ∈ C : |z| = 1}.
For a ∈ C and n ∈ N∗, let Hζ[a, n] = {f(z, ζ) ∈ H(U×U) : f(z, ζ) = a+an (ζ) zn+ . . .+an+1 (ζ) zn+1 + . . .}

with z ∈ U , ζ ∈ U , ak(ζ) holomorphic functions in U , k ≥ n, Aζn = {f(z, ζ) ∈ H(U × U) : f(z, ζ) = z +
an+1 (ζ) zn+1+an+2 (ζ) zn+2+. . .} with z ∈ U , ζ ∈ U , ak(ζ) holomorphic functions in U , k ≥ n+1, so Aζ1 = Aζ,
Hζu(U) = {f(z, ζ) ∈ Hζ[a, n] : f(z, ζ) univalent in U, for all ζ ∈ U}, Sζ = {f(z, ζ) ∈ Aζ, f(z, ζ) univalent in U,
for all ζ ∈ U}, denote the class of univalent functions in U×U , S∗ζ = {f(z, ζ) ∈ Aζ : Re zf

′(z,ζ)
f(z,ζ) > 0, z ∈ U, for

all ζ ∈ U}, denote the class of normalized starlike functions in U×U , Kζ = {f(z, ζ) ∈ Aζ : Re
[
zf ′′(z,ζ)
f ′(z,ζ) + 1

]
>

0, z ∈ U, for all ζ ∈ U}, denote the class of normalized convex functions in U × U .
For r ∈ N, A(r)ζ denote the subclass of the functions f(z, ζ) ∈ (U × U) of the form f(z, ζ) = zr +∑∞
k=r+1 ak(ζ)zk, r ∈ N, z ∈ U, ζ ∈ U and set A(1)ζ = Aζ. To prove our main results, we need the following

definitions and lemmas:

Definition 1.1 [16], [18] Let f(z, ζ) and F (z, ζ) analytic functions from H(U × U). The function f(z, ζ) is
said to be strongly subordinated to F (z, ζ), or F (z, ζ) is said to be strongly superordinated to f(z, ζ), if there
exists a function w analytic in U with w(0) = 0 and |w(z)| < 1, such that f(z, ζ) = F (w(z), ζ). In such a case
we write f(z, ζ) ≺≺ F (z, ζ).

If F (z, ζ) is univalent then f(z, ζ) ≺≺ F (z, ζ) if and only if f(0, ζ) = F (0, ζ) and f(U × U) ⊂ F (U × U).
If f(z, ζ) ≡ f(z) and F (z, ζ) ≡ F (z), then the strong differential subordination, or strong differential

superordination, becomes the usual notion of differential subordination or differential superordination.
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Definition 1.2 [14], [16] We denote by Qζ the set of functions q(z, ζ) that are analytic and injective, with

respect to z on U \ E(q(z, ζ)), where E(q(z, ζ)) =
{
ξ ∈ ∂U : lim

z→ξ
q(z, ζ) =∞

}
and are such that q′(ξ, ζ) 6= 0,

for ξ ∈ ∂U \ E(q(z, ζ)). The class of Qζ for which q(0, ζ) = a, is denoted by Qζ(a).

We mention that all the derivatives which appear in this paper are considered with respect to variable z.
We shall not indicate that in the paper due to the complexity of the writing.

Let ψ : C3 × U × U → C and let h(z, ζ) be univalent in U , for all ζ ∈ U . If p(z, ζ) is analytic in U × U and
satisfies the (second-order) strong differential subordination

ψ(p(z, ζ), z′(z, ζ), z2p′′(z, ζ); z, ζ) ≺≺ h(z, ζ), z ∈ U, ζ ∈ U (1.1)

then p(z, ζ) is called a solution of the strong differential subordination.
The univalent function q(z, ζ) is called a dominant of the solutions of the strong differential subordination

or simply a dominant, if p(z, ζ) ≺≺ q(z, ζ) for all p(z, ζ) satisfying (1.1).
A dominant q̃(z, ζ) that satisfies q̃(z, ζ) ≺≺ q(z, ζ) for all dominants q(z, ζ) of (1.1) is said to be the best

dominant of (1.1). (Note that the best dominant is unique up to a rotation of U).
Let ϕ : C3×U×U → C and let h(z, ζ) be analytic in U×U . If p(z, ζ) and ϕ(p(z, ζ), zp′(z, ζ), z2p′′(z, ζ); z, ζ)

are univalent in U , for all ζ ∈ U and satisfy the (second-order) strong differential superordination

h(z, ζ) ≺≺ ϕ(p(z, ζ), zp′(z, ζ), z2p′′(z, ζ); z, ζ) (1.2)

then p(z, ζ) is called a solution of the strong differential superordination. An analytic function q(z, ζ) is called
a subordinant of the solutions of the differential superordination, or more simply a subordinant, if q(z, ζ) ≺≺
p(z, ζ) for all p(z, ζ) satisfying (1.2). A univalent subordinant q̃(z, ζ) that satisfies q(z, ζ) ≺≺ q̃(z, ζ) for all
subordinants of (1.2) is said to be the best subordinant. (Note that the best subordinant is unique up to a
rotation of U).

Definition 1.3 [20] For f(z, ζ) ∈ Aζn, n ∈ N∗, m ∈ N, γ ∈ C, let Lγ be the integral operator given by
Lγ : Aζn → Aζn

L0
γf(z, ζ) = f(z, ζ)

L1
γf(z, ζ) =

γ + 1
zγ

∫ z

0

L0
γf(z, ζ)tγ−1dt

L2
γf(z, ζ) =

γ + 1
zγ

∫ z

0

L1
γf(z, ζ)tγ−1dt, ...

Lmγ f(z, ζ) =
γ + 1
zγ

∫ z

0

Lm−1
γ f(z, ζ)tγ−1dt.

By using Definition 1.3, we can prove the following properties for this integral operator:
For f(z, ζ) ∈ Aζn, n ∈ N∗, m ∈ N, γ ∈ C, we have

Lmγ f(z, ζ) = z +
∞∑

k=n+1

(γ + 1)m

(γ + k)m
ak(ζ)zk, z ∈ U, ζ ∈ U, (1.3)

and
z[Lmγ f(z, ζ)]′z = (γ + 1)Lm−1

γ f(z, ζ)− γLmλ f(z, ζ), z ∈ U, ζ ∈ U. (1.4)

Definition 1.4 [20] For r ∈ N, f(z, ζ) ∈ A(r)ζ, let H be the integral operator given by H : A(r)ζ → A(r)ζ

H0f(z, ζ) = f(z, ζ)

H1f(z, ζ) =
r + 1
z

∫ z

0

H0f(t, ζ)dt

H2f(z, ζ) =
r + 1
z

∫ z

0

H1f(t, ζ)dt, ...

Hmf(z, ζ) =
r + 1
z

∫ z

0

Hm−1f(t, ζ)dt, z ∈ U, ζ ∈ U.
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From Definition 1.4 we have

Hmf(z, ζ) = zr +
∞∑

k=p+1

(r + 1)m

(r + k)m
ak(ζ)zk (1.5)

and
z[Hmf(z, ζ)]′z = (r + 1)Hm−1f(z, ζ)−Hmf(z, ζ), z ∈ U, ζ ∈ U. (1.6)

Lemma 1.1 [15, Corollary 3.1] Let β, γ ∈ C, and q(z, ζ) univalent in U , for all ζ ∈ U , with q(0, ζ) = a. Let
h(z, ζ) = q(z, ζ) + zq′(z,ζ)

βq(z,ζ)+γ and suppose that
(i) Re [βq(z, ζ) + γ] > 0, and
(ii) zq′(z,ζ)

βq(z,ζ)+γ is starlike.

If p(z, ζ) ∈ ζ[a, 1]∩Qζ and p(z, ζ)+ zp′(z,ζ)
p(z,ζ)+1 is univalent in U , for all ζ ∈ U , then h(z, ζ) ≺≺ p(z, ζ)+ zp′(z,ζ)

βp(z,ζ)+γ

implies q(z, ζ) ≺≺ p(z, ζ) and q(z, ζ) is the best subordinant.

Lemma 1.2 [13, Theorem 3.2b, p.83] Let h(z, ζ) be convex in U , for all ζ ∈ U , and n a positive integer.
Suppose that the differential equation q(z, ζ) + nzq′(z,ζ)

βq(z,ζ)+γ = h(z, ζ) has an univalent solution q(z, ζ) that satisfies
q(z, ζ) ≺≺ h(z, ζ).

If p(z, ζ) ∈ ζ[a, n] satisfies p(z, ζ) + zp′(z,ζ)
βp(z,ζ)+γ ≺≺ h(z, ζ), then p(z, ζ) ≺≺ q(z, ζ) and q(z, ζ) is the best

dominant.

Lemma 1.3 [14, Corollary 6.1] Let h1(z, ζ) and h2(z, ζ) be convex in U , for all ζ ∈ U , with h1(0, ζ) = h2(0, ζ) =
a. Let γ ∈ C, γ 6= 0, with Reγ ≥ 0, and the functions qi(z, ζ) be defined by qi(z, ζ) = γ

zγ

∫ z
0
hi(t, ζ)tγ−1dt for

i = 1, 2.
If p(z, ζ) ∈ [a, 1]∩Qζ and p(z, ζ)+ zp′(z,ζ)

γ is univalent, then h1(z, ζ) ≺≺ p(z, ζ)+ zp′(z,ζ)
γ ≺≺ h2(z, ζ) implies

q1(z, ζ) ≺≺ p(z, ζ) ≺≺ q2(z, ζ), z ∈ U, ζ ∈ U.
The functions q1(z, ζ) and q2(z, ζ) are convex and they are respectively the best subordinant and best domi-

nant.

2 Main results

Theorem 2.1 Let γ ∈ C, with Re γ ≥ 0, and q(z, ζ) = 1+zζ
1−zζ be univalent in U , for all ζ ∈ U , with q(0, ζ) = 1.

Let

h(z, ζ) =
1 + zζ

1− zζ
+

zζ
(1−zζ)2

1+zζ
1−zζ + 1

=
1 + zζ

1− zζ
+

zζ

2(1− zζ)
=

2 + 3zζ
2(1− zζ)

(2.1)

with

Re
(

1 +
1 + zζ

1− zζ

)
= Re

2
1− zζ

> 0 (2.2)

and

r(z, t) =
zq′(z, ζ)
q(z, ζ) + 1

=
zζ

1− zζ
(2.3)

starlike in U , for all ζ ∈ U .
If Lmγ f(z,ζ)

z[Lmγ f(z,ζ)]′ ∈ [1, 1]∩Qζ and Lmγ f(z,ζ)

z[Lmγ f(z,ζ)]′ + [Lmγ f(z,ζ)]′

Lmγ f(z,ζ) −
[Lmγ f(z,ζ)]′′

[Lmγ f(z,ζ)]′ −1 is univalent in U , for all ζ ∈ U , then

2 + 3zζ
2(1− zζ)

≺≺
Lmγ f(z, ζ)

z[Lmγ f(z, ζ)]′
+

[Lmγ f(z, ζ)]′

Lmγ f(z, ζ)
−

[Lmγ f(z, ζ)]′′

[Lmγ f(z, ζ)]′
− 1 (2.4)

implies 1+zζ
1−zζ ≺≺

Lmγ f(z,ζ)

z[Lmγ f(z,ζ)]′ , z ∈ U, ζ ∈ U and q(z, ζ) = 1+zζ
1−zζ is the best dominant.

Proof. In order to prove the theorem, we shall use Lemma 1.1. For that, we show that the necessary
conditions are satisfied.

Let the functions θ : C→ C and φ : C→ C with

θ(w) = w (2.5)
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and
φ(w) =

1
w + 1

, φ(w) 6= 0. (2.6)

We check the conditions from the hypothesis of Lemma 1.1. For β = 1, γ = 1, we have Re [1 · q(z, ζ) + 1] =
Re
(

1+zζ
1−zζ + 1

)
= Re 2

1−zζ > 0, hence condition (i) is satisfied.

Let r(z, ζ) = zq′(z,ζ)
1·q(z,ζ)+1 =

2zζ
(1−zζ)2

2
1−zζ

= zζ
1−zζ . We have Re zr

′(z,ζ)
r(z,ζ) = Re

zζ

(1−zζ)2
zζ

1−zζ
= Re 1

1−zζ > 0, hence condition

(ii) is satisfied.
We consider

p(z, ζ) =
Lmγ f(z, ζ)

z[Lmγ f(z, ζ)]′
, z ∈ U, ζ ∈ U. (2.7)

Using (1.3) in (2.7), we obtain

p(z, ζ) =
z +

∑∞
k=n+1

(γ+1)m

(γ+k)m ak(ζ)zk

z
(

1 +
∑∞
k=n+1

(γ+1)m

(γ+k)m ak(ζ)kzk−1
) =

1 +
∑∞
k=n+1

(γ+1)m

(γ+k)m ak(ζ)zk−1

1 +
∑∞
k=n+1

(γ+1)m

(γ+k)m ak(ζ)kzk−1
. (2.8)

Since p(0, ζ) = 1, we have p(z, ζ) ∈ [1, 1] ∩Qζ . Differentiating (2.7) and after a short calculus we obtain

p(z, ζ) +
zp′(z, ζ)
p(z, ζ) + 1

=
Lmγ f(z, ζ)

z[Lmγ f(z, ζ)]′
+

[Lmγ f(z, ζ)]′

Lmγ f(z, ζ)
−

[Lmγ f(z, ζ)]′′

[Lmγ f(z, ζ)]′
− 1. (2.9)

Using (2.9) in (2.4), the strong differential superordination becomes 2+3zζ
2(1−zζ) ≺≺ p(z, ζ) + zp′(z,ζ)

p(z,ζ)+1 .

From Lemma 1.1, we have q(z, ζ) ≺≺ p(z, ζ), i.e., 1+zζ
1−zζ ≺≺

Lmγ f(z,ζ)

z[Lmγ f(z,ζ)]′ , z ∈ U, ζ ∈ U and q(z, ζ) = 1+zζ
1−zζ is

the best subordinant.

Theorem 2.2 Let h(z, ζ) = ζ−3z
ζ+z , be a convex function in U , for all ζ ∈ U , with h(0) = 1. Suppose that the

Briot-Bouquet differential equation

q(z, ζ) +
zq′(z, ζ)
q(z, ζ) + 1

=
ζ − 3z
ζ + z

(2.10)

has an univalent solution q(z, ζ) = ζ−z
ζ+z , that satisfies ζ−z

ζ+z ≺≺
ζ−3z
ζ+z .

If p(z, ζ) = Hmf(z,ζ)
zr ∈ [1, 1] ∩Qζ satisfies

Hmf(z, ζ)
zr

+
zr+1[Hmf(z, ζ)]′

[Hmf(z, ζ)]2
− rzr

Hmf(z, ζ)
≺≺ ζ − 3z

ζ + z
(2.11)

then Hmf(z,ζ)
zr ≺≺ ζ−z

ζ+z , z ∈ U, ζ ∈ U and q(z, ζ) = ζ−z
ζ+z is the best dominant.

Proof. In order to prove the theorem, we shall use Lemma 1.2. For that, we show that the necessary
conditions are satisfied.

After a short calculus we obtain

Re
[
1 +

zh′′(z, ζ)
h′(z, ζ)

]
= Re

(
ζ − z
ζ + z

)
≥ 0, z ∈ U, ζ ∈ U. (2.12)

The function q(z, ζ) = ζ−z
ζ+z is the univalent solution of equation (2.10), hence

Re
[
1 +

zq′′(z, ζ)
q′(z, ζ)

]
= Re

[
1− 2z

ζ + z

]
≥ 0. (2.13)

We consider

p(z, ζ) =
Hmf(z, ζ)

zr
. (2.14)

Using (1.5) ı̂n (2.14), we obtain p(z, ζ) =
zr+

∑∞
k=r+1

(r+1)m

(r+k)m ak(ζ)z
k

zr = 1+
∑∞
k=r+1

(r+1)m

(r+k)m ak(ζ)zk−r. Since p(0, ζ) =
1, we have p(z, ζ) ∈ ζ[1, 1] ∩Qζ . Differentiating (2.14) and after a short calculus we obtain

p(z, ζ) +
zp′(z, ζ)
p(z, ζ) + 1

=
Hmf(z, ζ)

zr
+
zr+1[Hmf(z, ζ)]′

[Hmf(z, ζ)]2
− rzr

Hmf(z, ζ)
. (2.15)
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Using (2.15) in (2.11), the strong differential superordination becomes

p(z, ζ) +
zp′(z, ζ)
p(z, ζ) + 1

≺≺ q(z, ζ) +
zq′(z, ζ)
q(z, ζ) + 1

. (2.16)

From Lemma 1.1, we have Hmf(z,ζ)
zr ≺≺ ζ−z

ζ+z , z ∈ U, ζ ∈ U and q(z, ζ) = ζ−z
ζ+z is the best dominant.

Theorem 2.3 Let h1(z, ζ) = 1−zζ
1+zζ and h2(z, ζ) = 1 + z2

ζ be convex in U , for all ζ ∈ U , with h1(0, ζ) =
h2(0, ζ) = 1. Let γ ∈ C, λ 6= 0, with Re γ ≥ 0, and the functions defined by q1(z, ζ) = −1 + 2γζ

zγ · σ1(z, ζ), where
σ1(z, ζ) is given by

σ1(z, ζ) =
∫ z

0

tγ−1

1 + tζ
dt (2.17)

and q2(z, ζ) = 1 + γ
γ+2 ·

z2

ζ , z ∈ U, ζ ∈ U.
If f(z, ζ) ∈ Aζ(r), H

mf(z,ζ)[Hmf(z,ζ)]′

rz2r−1 ∈ [1, 1]∩Qζ , and Hmf(z,ζ)(Hmf(z,ζ))′

γrz2r−1 + [(Hmf(z,ζ))′]2

γrz2r−2 + Hmf(z,ζ)(Hmf(z,ζ))′′

γrz2r−2 −
(2r−1)Hmf(z,ζ)(Hmf(z,ζ))′

γrz2r−1 is univalent in U , for all ζ ∈ U , then

1− zζ
1 + zζ

≺≺ (2− 2r)Hmf(z, ζ)(Hmf(z, ζ))′

γrz2r−1
+

[(Hmf(z, ζ))′]2 +Hmf(z, ζ)(Hmf(z, ζ))′′

γrz2r−2
≺≺ 1 +

z2

ζ
, (2.18)

implies −1 + 2γζ
zγ σ1(z, ζ) ≺≺ Hmf(z,ζ)(Hmf(z,ζ))′

rz2r−1 ≺≺ 1 + γ
γ+2 ·

z2

ζ , where σ1(z, ζ), given by (2.17), z ∈ U , ζ ∈ U .

The functions q1(z, ζ) = −1 + 2γζ
zγ σ1(z, ζ) and q2(z, ζ) = 1 + γ

γ+2 ·
z2

ζ are convex and they are respectively
the best subordinant and best dominant.

Proof. In order to prove the theorem, we shall use Lemma 1.3. For that, we show that the necessary
conditions are satisfied. Re

[
1 + zh′′1 (z,ζ)

h′1(z,ζ)

]
= Re 1−zζ

1+zζ ≥ 0, z ∈ U, ζ ∈ U and Re
[
1 + zh′′2 (z,ζ)

h′1(z,ζ)

]
= Re 2 ≥ 0, z ∈

U, ζ ∈ U we put

p(z, ζ) =
Hmf(z, ζ)(Hmf(z, ζ))′

rz2r−1
, z ∈ U, ζ ∈ U. (2.19)

Using (1.5) in (2.14), we obtain p(z, ζ) =

[
zr+

∑∞
k=r+1

(γ+1)m

(γ+k)m ak(ζ)z
k
][
rzr−1+

∑∞
k=r+1

(γ+1)m

(γ+k)m ak(ζ)kz
k−1

]
rz2r−1 =[

1 +
∑∞
k=r+1

(γ+1)m

(γ+k)m ak(ζ)zk−r
] [
r +

∑∞
k=r+1

(γ+1)m

(γ+k)m ak(ζ)kzk−r
]
.

Since p(0, ζ) = 1, we have p(z, ζ) ∈ ζ[1, 1] ∩Qζ . Differentiating (2.14), and after a short calculus we obtain

p(z, ζ) +
zp′(z, ζ)

γ
=

(2− 2r)Hmf(z, ζ)(Hmf(z, ζ))′

γrz2r−1
+

[(Hmf(z, ζ))′]2 +Hmf(z, ζ)(Hmf(z, ζ))′′

γrz2r−2
. (2.20)

Using (2.20) in (2.18), we have

1− zζ
1 + zζ

≺≺ p(z, ζ) +
zp′(z, ζ)

γ
≺≺ 1 +

z2

ζ
, z ∈ U, ζ ∈ U. (2.21)

Using Lemma 1.3, we have −1 + 2γζ
zγ σ1(z, ζ) ≺≺ Hmf(z,ζ)(Hmf(z,ζ))′

rz2r−1 ≺≺ 1 + γ
γ+2 ·

z2

ζ .

Example 2.1 Let γ = 1, m = 1, r = 3, f(z, ζ) = x3 + x4ζ, H1(z, ζ) = 2
z

∫ z
0

(t3 + t4ζ)dt = 1
4z

3 + 2ζ
5 z

4,

p(z, ζ) = 1
16 + 7ζ

30z + 16ζ2

75 z2, p(z, ζ) + zp′(z, ζ) = 1
6 + 7ζ

15z + 16ζ2

25 z2, q1(z, ζ) = −1 + ln(1+zζ)
z , q2(z, ζ) = 1 + z2

3ζ .

From Theorem 2.3, we have 1−zζ
1+zζ ≺≺

1
6 + 7ζ

15z+ 16ζ2

25 z2 ≺≺ 1 + z2

3ζ implies −1 + ln(1+zζ)
z ≺≺ 1

4z
3 + 2ζ

5 z
4 ≺≺

1 + z2

3ζ , z ∈ U, ζ ∈ U.
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Ruscheweyh derivative, Journal of Concrete and Applicable Mathematics, Vol. 10, No.’s 1-2, 2012, 17-23.
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