PHYSICAL CHEMISTRY 2016

13th International Conference on
Fundamental and Applied Aspects of
Physical Chemistry

Proceedings
Volume I

BELGRADE
September 26-30, 2016
CONTENT

Volume I
Organizer IV
Comittes V
Sponsors VI
Plenary Lecture 1
Spectroscopy, Molecular Structure, Physical Chemistry of Plasma 47
Kinetics, Catalysis 183
Nonlinear Dynamics, Oscillatory Reactions, Chaos 267
Electrochemistry 355
Biophysical Chemistry, EPR Investigations of bio-systems, 409
Photochemistry, Radiation Chemistry
PHYSICAL CHEMISTRY 2016

13th International Conference on
Fundamental and Applied Aspects of
Physical Chemistry

Organized by

The Society of Physical Chemists of
Serbia

in co-operation with

Institute of Catalysis Bulgarian Academy of Sciences

and

Boreskov Institute of Catalysis Siberian Branch of
Russian Academy of Sciences

and

University of Belgrade, Serbia:

Faculty of Physical Chemistry
Institute of Chemistry, Technology and Metallurgy
Vinča Institute of Nuclear Sciences
Faculty of Pharmacy
Institute of General and Physical Chemistry, Belgrade, Serbia
International Organizing Committee

Chairman: S. Anić (Serbia)
Vice-chairman: M. Gabrovska (Bulgaria)
A. A. Vedyagin (Russia)
S. N. Blagojević (Serbia)

Members:
N. Cvjetićanin (Serbia), S. M. Blagojević (Serbia), M. Daković (Serbia), J. Dimitrić-Marković (Serbia), T. Grozdić (Serbia), Lj. Ignjatović (Serbia), D. Jovanović (Serbia), J. Jovanović (Serbia), M. Kuzmanović (Serbia), D. Marković (Serbia), B. Milosavljević (USA), M. Mojović (Serbia), N. Ostrovsli (Serbia), N. Pejić (Serbia), M. Petković (Serbia), A. Popović-Bjelić (Serbia), B. Simonović (Serbia), D. Stanisavljev (Serbia), M. Stanković (Serbia), Z. Šaponjić (Serbia), Z. Šimonjć (Serbia), B. Stojković (Serbia), G. Tasić (Serbia), N. Vukelić (Serbia), V. Vukojević (Sweden)

International Scientific Committee

Chairman: Ž. Ćupić (Serbia)
Vice-chairmans: V. N. Parmon (Russia)
S. Rakovsky (Bulgaria)
B. Adnađević (Serbia)

Members:
S. Anić (Serbia), A. Antić-Jovanović (Serbia), G. Bačić (Serbia), R. Cervellati (Italy), G. Ćirić-Marjanović (Serbia), A. Cricenti (Italy), V. Dondur (Serbia), S. D. Furrow (USA), L. Gábor (Hungary), Vilmos Gáspár (Hungary), K. Hedrih (Serbia), M. Jeremić (Serbia), E. Kiš (Serbia), Lj. Kolar-Anić (Serbia), U. Kortz (Germany), T. Kowalska (Poland), V. Kunčić (Serbia), Z. Marković (Serbia), S. Mentus (Serbia), K. Novaković (UK), B. Novakovski (Poland), T. Parac Vogt (Belgium), M. Perić (Serbia), M. Plavšić (Serbia), G. Schmitz (Belgium), I. Schreiber (Czech Republic), P. Ševčik (Slovakia), N. Stepanov (Russia), M. Trtica (Serbia), V. Vasić (Serbia), D. Veselinović (Serbia), Á. Tóth (Hungary)

Local Executive Committee

Chairman: S. N. Blagojević
Vice-chairmans: A. Ivanović-Šašić
A. Stoiljković

Members:
CONFORMATIONAL AND VIBRATIONAL ANALYSIS OF 3-METHOXYTYRAMINE

D. Dimić, D. Milenković, Z. Marković and J. Dimitrić Marković

1Faculty of Physical Chemistry, University of Belgrade, Studentski trg 12-16, 11000 Belgrade, Republic of Serbia (ddimic@ffh.bg.ac.rs).
2Bioengineering Research and Development Center, Prvoslava Stojanovića 6, 34000 Kragujevac, Republic of Serbia.
3Department of Chemical-Technological Sciences, State University of Novi Pazar, Vuka Karadžića bb, 36300 Novi Pazar, Republic of Serbia.

ABSTRACT
Conformations and vibrational spectra of 3-methoxytyramine (3-MT), a metabolite of dopamine, have been investigated by density functional theory, at B3LYP/6-311++G(d,p) level, implemented in Gaussian Program package. From crystallographic data, by the conformational search, the most stable conformations were determined in gas phase. The most stable conformer, with emphasis on the specific interactions (hydrogen bonds and N–H···π) stabilizing the structure, is discussed. Experimental IR and Raman spectra, recorded in the region 4000-400 cm⁻¹, have been assigned based on the potential energy distribution (PED).

INTRODUCTION
3-methoxytyramine (3-MT) is a major extracellular metabolite of dopamine, produced via catechol-O-methyltransferase from parent molecule. This molecule acts as neuromodulator that can be involved in movement control. Its elevated concentrations may indicate mental disorders, brain and carcinoid tumors’ development [1]. Unlike the other metabolites of dopamine, for example homovanillic acid and 3,4-dihydroxyphenylacetic acid, 3-MT has not been investigated by the means of theoretical methods and results of those being compared to experimental spectra and crystallographic data. In present study, the theoretical vibrational spectra are compared to experimental (IR and Raman), after the detailed conformational analysis.

THEORETICAL AND EXPERIMENTAL METHODS
All of the calculations have been performed with the Gaussian 09 program package [2]. Density functional theory (DFT) with B3LYP functional in conjunction with 6-311++G(d,p) basis set, has been employed for the conformational search of the most stable conformer of 3-MT. Vibrational
frequencies, computed in harmonic approximation, verified that the minimum of potential energy surface was found. The calculated frequencies were scaled based on the least square method, with scaling factor of 0.9800 in order to obtain better reproduction of experimental spectra. The assignation of vibrational modes was done based on PED analysis implemented in VEDA [3] software. Natural bond Orbital analysis was performed in order to investigate possible stabilization interactions.

RESULTS AND DISCUSSION
Conformational analysis
3-methoxtyramine 3-MT (Figure 1.) consists of aliphatic 2-aminoethyl chain and aromatic ring with hydroxyl and methoxy substituents. For the present study the protonated form of molecule was chosen, because 3-MT hydrochloride was used for experiments. The conformational search was as following: three possible orientations of substituents were selected – hydroxyl and methoxy substituents oriented in the same direction with methoxy group pointing to hydroxyl (a), with hydroxyl group pointing to methoxy (b), and with substituents pointing in opposite directions (c). For these orientations, the rotation around dihedral angles α and β was performed and minima of the potential energy curve taken as starting structures for optimization.

There was the total of 12 structures. Based on differences in energy and enthalpy, two conformers, that were the most stable, were chosen (Figure 2), and named 1-I and 2-I. In the most stable conformers hydroxyl and methoxy substituents are oriented in the same direction, leading to the formation of an intramolecular OH···O–CH$_3$ hydrogen bond. The energy difference was 20.51 kJ/mol with 1-I being more stable, but when enthalpy is concerned structure
2-l is more stable for 13.86 kJ/mol, which is very ambiguous about the real conformation of 3-MT. Structure 1-l resembles the most stable conformer of dopamine from reference of Lagutschewkov[4] and this structure is additionally stabilized by the presence of weak intermolecular bond between N-H group of aliphatic chain and aromatic ring π system. The stabilization energy for this conformer is only 2 kJ/mol as predicted by NBO. These interactions are broken if solvent model for water is used, and more stable conformer is l-l for only 0.29 kJ/mol. Structure 2-l is found in crystallographic structure of some salts of 3-MT, due to strong interactions with surrounding molecules through amino group.

Vibrational analysis
The total of 72 vibrational modes were calculated and scaled, in the region between 4000 and 400 cm$^{-1}$, of which 60 are assigned based on PED analysis. As this is a low symmetry molecule, the most of modes are present in both spectra. The correlation between experimental and theoretical spectra was higher than 0.99. The comparative representation of experimental and theoretical IR and Raman spectra (R) are shown in Figure 3.

In high frequency region (4000-2000 cm$^{-1}$) the most prominent peak is assigned to N-H stretching vibration of aliphatic chain, along with C-H stretching mode of aromatic ring and aliphatic chain (3440-2940 cm$^{-1}$). The mid frequency region (1700-100 cm$^{-1}$) comprises of medium to strong and very strong bands at 1603, 1279, 1249, 1160, 1032 cm$^{-1}$ (IR) and 1616, 1593, 1279 and 1025 cm$^{-1}$ (R) assigned to C–C and C–O stretching vibrations of aromatic ring and aliphatic chain, along with weak vibrations.
of the same type at 1433, 1385, 1085 cm\(^{-1}\) (IR) and 1150 and 1083 cm\(^{-1}\) (R). In the region between 1500 and 1000 cm\(^{-1}\) there are bending H–C–C, C–C–C, H–C–H, H–C–N and H–O–C modes appearing as weak intensity bands at 1623, 1506, 1471, 1458, 1304 cm\(^{-1}\) (IR) and 1508, 1303, 1206 and 1131 cm\(^{-1}\) (R). Below 1000 cm\(^{-1}\), the observed bands go from strong to medium, and are assigned to OC, CC and NC stretching modes (1032 and 799 cm\(^{-1}\) (IR) and 1025 and 803 cm\(^{-1}\) (R)). The torsion modes, composed of mixed vibrations of type C–C–C–C, H–C–C–C, C–C–C–O, H–O–C–C and C–C–O–C are positioned at 816, 724, 571, 460 and 457 cm\(^{-1}\) (IR) and 821, 725, 571 and 454 cm\(^{-1}\) (R) mostly as low intensity bands.

CONCLUSION

The conformational search for the most stable structure of 3-MT was performed at B3LYP/6-311++G(d, p) level. Formation of hydrogen bond between O–H and O–CH\(_3\) additionally stabilizes structure\(1\)-l, along with N–H interactions with π system, thus making the discussed structure the most stable in gas phase, although these interactions are broken in polar solvent. For the comparison, structure \(2\)-l was chosen because it resembles structure from crystallographic data. Experimental vibrational spectra were assigned based on the best-fit comparison between experimental and theoretical spectra, with correlation of higher than 0.99, thus proving that structure of 3-MT describes well structure in solid state and solution.

Acknowledgement

Authors acknowledge the Ministry of Education, Science and Technological Development of the Republic of Serbia (Grants No. 172015, 174028 and 172040).

REFERENCES

