

PROCEEDINGS

16th Symposium on Thermal Science and Engineering of Serbia

Sokobanja, Serbia, October 22-25, 2013

University of Niš, Faculty of Mechanical Engineering Niš Society of Thermal Engineers of Serbia

PROCEEDINGS

16th Symposium on Thermal Science and Engineering of Serbia

Sokobanja, Serbia, October 22 - 25, 2013

University of Niš, Faculty of Mechanical Engineering in Niš Society of Thermal Engineers of Serbia

ISBN 978-86-6055-043-1

Publisher: University of Niš, Faculty of Mechanical Engineering in Niš

2013

16th Symposium on Thermal Science and Engineering of Serbia

under title:

"Energy – Ecology – Efficiency"

is organized by:

University of Niš, Faculty of Mechanical Engineering in Niš and Society of Thermal Engineers of Serbia

Under patronage of the

GOVERNMENT OF THE REPUBLIC OF SERBIA MINISTRY OF EDUCATION, SCIENCE AND TECHNOLOGICAL DEVELOPMENT

and supported by:

General Sponsor

SERBIAN CHAMBER OF ENGINEERS, Belgrade

Grand Donor

ENERGOPROJEKT ENTEL, Belgrade

Sponsors and Donors

ŠUKOM,	Knjaževac
JUGOTERM,	Merošina
HERZ,	Belgrade
KGH INŽENJERING,	Zaječar
FENIKS BB,	Niš
MIKOTERM,	Niš
RADING,	Kraljevo
TROX TECHNIK,	Belgrade
VIA OCEL,	Belgrade
RADIJATOR INŽENJERING,	Kraljevo
WILO,	Belgrade
HENCO,	Belgium
YUTKL,	Niš

Влада Републике Србије Министарство просвете, науке и технолошког развоја

ENERGOPROJEKT ENTEL

Inženjering

The art of handling air

International Scientific Committee

Dr. Gligor Kanevče	[MK]	Dr. Sophia Natalia Boemi	[GR]
Dr. Slavtcho G. Slavtchev	[BG]	Dr. Dušan Golubović	[BA]
Dr. Agis M. Papadopoulos	[GR]	Dr. Petar Gvero	[BA]
Dr. Petar Novak	[SI]	Dr. Maria Ichim	[RO]
Dr. Neven Duić	[HR]	Dr. Vesna Barišić	[FI]
Dr. Ljubica Kanevče	[MK]	Dr. Dečan Ivanović	[ME]
Dr. Sašo Medved	[SI]	Dr. Uroš Karadžić	[ME]
Dr. Peter Stankov	[BG]	Dr. Gyula Gróf	[HU]
Dr. Jordan Hristov	[BG]	Dr. Friedrich Dinkelacker	[DE]

Program Committee

Prof. Dr. Mladen Stojiljković	University of Niš, Faculty of Mechanical Engineering in Niš
Prof. Dr. Milan Radovanović	University of Belgrade, Faculty of Mechanical Engineering in Belgrade
Prof. Dr. Simeon Oka	Vinča Institute, Belgrade
Prof. Dr. Miroljub Adžić	University of Belgrade, Faculty of Mechanical Engineering in Belgrade
Prof. Dr. Gradimir Ilić	University of Niš, Faculty of Mechanical Engineering in Niš
Prof. Dr. Bratislav Blagojević	University of Niš, Faculty of Mechanical Engineering in Niš
Prof. Dr. Dragoljub Živković	University of Niš, Faculty of Mechanical Engineering in Niš
Prof. Dr. Velimir Stefanović	University of Niš, Faculty of Mechanical Engineering in Niš
Prof. Dr. Dragoslava Stojiljković	University of Belgrade, Faculty of Mechanical Engineering in Belgrade
Dr. Predrag Stefanović	Vinča Institute, Belgrade
Prof. Dr. Dragoslav Šumarac	University of Belgrade, Faculty of Civil Engineering in Belgrade
Dr. Miodrag Mesarović	Energoprojekt ENTEL, Belgrade
Prof. Dr. Dušan Gvozdenac	University of Novi Sad, Faculty of Technical Sciences
Prof. Dr. Milun Babić	University of Kragujevac, Faculty of Enginnering Sciences in Kragujevac
Prof. Dr. Vladan Karamarković	University of Kragujevac, Faculty of Mechanical and Civil Eng. in Kraljevo
Dr. Žarko Stevanović	Vinča Institute, Belgrade
Prof. Dr. Zoran Stajić	University of Niš, Faculty of Electronic Engineering in Niš
Prof. Dr. Miloš Banjac	University of Belgrade, Faculty of Mechanical Engineering in Belgrade
Prof. Dr. Maja Todorović	University of Belgrade, Faculty of Mechanical Engineering in Belgrade
Prof. Dr. Goran Jankes	University of Belgrade, Faculty of Mechanical Engineering in Belgrade
Honoured Committee	

Prof. Dr Vlastimir Nikolić,	University of Niš, Faculty of Mechanical Engineering in Niš
Prof. Dr. Dragan Antić,	University of Niš, Faculty of Electronic Engineering in Niš
Prof. Dr. Jovan Stepanović,	University of Niš, Faculty of Technology in Leskovac
Prof. Dr. Ćemal Dolićanin,	State University of Novi Pazar
Prof. Dr. Maja Đurović Petrović,	European University, Faculty for International Engineering Management
Jaroslav Urošević,	Energoprojekt ENTEL

Organizing Committee

Doc. Dr. Dejan Mitrović	University of Niš, Faculty of Mechanical Engineering in Niš
Doc. Dr. Mirjana Laković	University of Niš, Faculty of Mechanical Engineering in Niš
Prof. Dr. Branislav Stojanović	University of Niš, Faculty of Mechanical Engineering in Niš
Prof. Dr. Mića Vukić	University of Niš, Faculty of Mechanical Engineering in Niš
Doc. Dr. Jelena Janevski	University of Niš, Faculty of Mechanical Engineering in Niš
Prof. Dr. Gordana Stefanović	University of Niš, Faculty of Mechanical Engineering in Niš
Dr. Goran Vučković	University of Niš, Faculty of Mechanical Engineering in Niš
Doc. Dr. Predrag Zivković	University of Niš, Faculty of Mechanical Engineering in Niš
Mr. Dragan Kuštrimović	University of Niš, Faculty of Mechanical Engineering in Niš
Mirko Stojiljković	University of Niš, Faculty of Mechanical Engineering in Niš
Marko Ignjatović	University of Niš, Faculty of Mechanical Engineering in Niš

Disclaimer

The contents of the papers presented in this publication are the sole responsibility of their authors and can in no way be taken to reflect the views of the Organizer.

Contents

1. Plena	ary Session	1
1.01.	Upgrade by an Innovative Installation of Additional Economizer at the 620 MWe Lignite- Fired Power Plant <i>Vladimir Stevanovic</i>	2
1.02.	The Main Strategic Objectives of the Romanian Energy Sector in National and International Context	
	Maria Ichim	14
1.03.	Some Controversial Issues on Energy Sustainability Miodrag Mesarović	16
1.04.	Ranking Literature Sources for Multidisciplinary Research Miodrag Mesarović	28
2. Tech	nologies and Plants	42
2.01.	Design of a bulb turbine stay vane and runner for the small hydro power plant "Grčki mlin" near Prokuplje Božidar Bogdanović, Dragica Milenković, Jasmina Bogdanović-Jovanović, Živan Spasić	43
2.02	The Use of Preheated Low, Enriched Air in Downdraft Gasifiers: Energy and Every	10
2.02.	Analysis Rade Karamarković, Vladan Karamarković, Anđela Lazarević, Miljan Marašević, Nenad Stojić	54
2.03.	Alternative modeling approaches to sulfation reactions of calcium based sorbents injected in the pulverized coal furnace <i>Ivan D. Tomanović, Srđan V. Belošević, Andrijana D. Stojanović, Dragan R. Tucaković,</i> <i>Titoslav V. Živanović</i>	65
2.04.	Energy Consumption of Compressed Air Systems and Potential of Heat Recovery with example <i>Milovan Medojević, Jovan Petrović</i>	73
2.05.	Analysis of dynamic behaviour of hot water boilers during start up Milena Todorović, Dragoljub Živković, Marko Mančić, Dragan Milčić	86
2.06.	Technology for manufacturing of turbine parts for micro and mini hydroelectric power plants Dragan Temeljkovski, Stojanče Nusev, Dragana Temeljkovski	95
2.07.	Vertical Limited Fluid Bed for Burning Granulated Bio, Fossil and Waste Fuel in Power Plant Boilers and Conversion of Coal by Biomass <i>Radislav Vujadinović</i>	101
2.08.	Thermal Fatigue of Materials Dušan Petković, Goran Radenković	109
3. New	and Renewable Energy Sources	115
3.01.	Potential Fire Hazards of Renewable Energy - Horizons of Tomorrow Miloš Banjac, Barbara Vidaković	116

3.02.	Possibilities and Directions for Participation of Available RES in Macedonia with Scenarios for Achieving the 20/20/20 Goal of the EC <i>Mile Dimitrovski</i>	123
3.03.	Optical Design of a Solar Parabolic Concentrator Based on Square Flat Facets Saša R. Pavlović, Velimir P. Stefanović, Ivan Stojanović, Suad Suljković, Dragan Kuštrimović	128
3.04.	Techno-economic Analysis of Photovoltaic-based Stand-alone Power System for Supply of Metrological Masts' Equipment Saša Stojković, Vukman Bakić	139
3.05.	Solar Drying of Fruits and Vegetables <i>Filip Mojsovski</i>	147
3.06.	Comparative Analysis Between Two Methods for Temperature Measurement of PV panels Uglješa Jovanović, Igor Jovanović, Zoran Petrušić, Dragan Mančić	152
3.07.	Technical and Economic Analysis of Hybrid Wind-photovoltaic Power System for Supply of Meteorological Masts' Measuring Equipment Saša Stojković, Vukman Bakić	160
3.08.	Technical Feasibility and Financial Analysis of Hybrid Wind-photovoltaic System for Supply of One Educational Institution Saša Stojković, Snežana Dragićević	168
3.09.	Current State Wind Energy Utilisation in the Republic of Macedonia Monika Lutovska, Vladimir Mijakovski, Cvete Dimitrieska, Vangelče Mitrevski	176
3.10.	Agricultural biomass utilization for energy purposes Dejan Đurović, Branislav Repić, Dragoljub Dakić, Aleksandar Erić, Stevan Nemoda	182
3.11.	Biogas – Overview of the Possibilities for Implementation in the Macedonian Agricultural Sector Dame Dimitrovski, Mile Dimitrovski, Gordana Popsimonova, Done Tashevski	188
3.12.	Utilization of crude glycerol for the production of biofuels Bojana Danilović, Dragiša Savić, Vlada Veljković	199
3.13.	Renewable energy potential in the Rusanda rehabilitation center Milana Perić, Milovan Medojević	207
3.14.	Guide Vane Position Control of the Mini Hydro Power Plant by Digital Sliding Mode with Additional Integral Action Vladislav Blagojević, Miodrag Stojiljković, Živan Spasić	220
3.15.	Recent Progress in Biomass Pyrolysis/Gasification Technologies Velimir Stefanović, Andrijana Stojanović, Saša Pavlović	226
4. Matl	hematical Modeling and Numerical Simulation	237
4.01.	Dimensioning of Underground Vertical Heat Exchangers for Geothermal Heat Pump Miloš Banjac, Zara Komnenić	238
4.02.	Heat exchangers comparation Kire Popovski, Igor Andeevski	246
4.03.	Modeling Thermal Processes Using Bond Graphs Gordana Janevska	252

4.04.	Referent Wind Speed and Turbulence Intensity Estimation and on-Site Wind Turbines Classification Žarko Stevanović, Nikola Mirkov, Žana Stevanović, Borislav Grubor, Maja Đurović- Petrović	258
4.05.	Wind Load Modeling and Structural Response of Guyed Mast Vukman Bakić, Milada Pezo, Gordana Kastratović, Nenad Vidanović	267
4.06.	Numerical Investigation of Thermal Processes in Shell and Tube Heat Exchanger Mića Vukić, Predrag Živković, Mladen Tomić, Ivan Stojanović	276
4.07.	Numerical Investigation of the Influence of Tip Clearance on Reversible Axial Fan Characteristics Živan Spasić, Božidar Bogdanović, Vladislav Blagojević, Jasmina Bogdanović-Jovanović	286
4.08.	Review of Critical Heat Flux Predictions Andrijana Stojanović, Vladimir Stevanović, Dragoljub Živković, Milada Pezo, Ivan Tomanović	293
4.09.	Determination of centrifugal pump operating parameters in turbine operating regime Živojin Stamenković, Jasmina Bogdanović-Jovanović, Jelena Manojlović	305
4.10.	Euler-Euler Granular Flow Model Applied on Numerical Simulation of Liquid Fuels Combustion in a Fluidized Bed Stevan D. Nemoda, Milica R. Mladenović, Dragoljub V. Dakić, Mirko S. Komatina, Aleksandar M. Erić, Milijana J. Paprika	311
4.11.	A Parametric Study on Correlations for Transport Parameters in Fixed Bed Regenerators Milan Đorđević, Šefik Bajmak, Marko Mančić	324
4.12.	Numerical Prediction of Drag Coefficient for Lattice Structures Milada Pezo, Vukman Bakić, Gordana Kastratović, Nenad Vidanović	336
4.13.	Mathematical models for evaluating evaporation rates from free water surface of indoor swimming pools Marko Mančić, Dragoljub Živković, Jelena Manojlović, Milena Todorović	341
4.14.	Software for Testing the Heat Transfer and Pressure Drop in Vertical Thermosiphon Reboiler <i>Sonja Stefanov, Dragan Skobalj</i>	355
4.15.	Numerical Simulation of Friction Stir Welding Miroslav Mijajlović, Dragan Milčić, Miodrag Milčić	361
5. Expe	erimental Investigation of Processes	367
5.01.	Experimental Plant for Testing of Agricultural Biomass Combustion Zoran Čepić, Biljana Miljković, Branka Nakomčić-Smaragdakis, Nevena Šenk, Dušan Marković	368
5.02.	Investigation of Wood Chips Combustion in Experimental Combustion Chamber Branislav Stojanović, Jelena Janevski	372
5.03.	Experimental and Numerical Study of Biomass Combustion in 50 kW Cigar Furnace Aleksandar M. Erić, Stevan D. Nemoda, Dragoljub V. Dakić, Mirko S. Komatina, Branislav S. Repić	377

5.04.	Experimental and numerical research of thermal processes in the TST tanks with thermal oil and a phase change medium <i>Goran Živković, Nedžad Rudonja, Mirko Komatina, Branislav Repić</i>	386
5.05.	Determining the Theoretical Reliability Functions of the Thermal Power Systems in Power Plant "Nikola Tesla A" Dragan Kalaba, Milan Đorđević, Dušan Adamović	400
5.06.	An Experimental Research of Effects of Adding a Supplementary Component Generated by a Catalytic Reactor on the Combustion of the Primary Fuel at Internal Combustion Engines <i>Miloš Milošević, Jovica Pešić, Boban Nikolić, Miodrag Milenković</i>	408
5.07.	Experimental investigation of flow-thermal and operating properties of adsorption filter prototype under climate <i>Miomir Raos, Ljiljana Živković, Nenad Živković, Jasmina Radosavljević, Milena Jovanović</i>	417
6. Ener	rgy Efficiency in Industry, Civil Engineering, Communal Systems and Traffic	425
6.01.	Survey of Potential Energy Savings in the Building Sector in Serbia and Needed Investments	126
6.02	Maja N. Todorovic, Dragosiav M. Sumarac, Radosiav D. Galic Possibilities of applying beta lower temperatures level for beating by using two stage beat	420
0.02.	pump Šefik M. Bajmak, Milan Đorđević	437
6.03.	Analysis of the possibilities of using geothermal heat pumps in the heating and cooling systems with special emphasis spa Ilidža in Peć Šefik M.Bajmak	444
6.04.	Usage of Low-temperature Energy from the Cooling Tower by applying Cascade Heat Pumps Vladimir I Mijakovski, Vangelče B. Mitrevski	453
6.05.	Refurbishment of Residential Buildings According to Regulation and Policy Vladimir Jovanovic, Karin Stieldorf	458
6.06.	Impact of Insulation on School Building Energy Consumption Snezana Dragićević, Sasa Stojkovic	465
6.07.	Determining important factors for improving the energy efficiency, optimal economic and ecological characteristics of a building Biserka Marković, Vlada Nikolić, Milica Stojanović, Olivera Nikolić, Vuk Milošević, Stevan Marković	472
6.08.	Building Facade with Temperature Barrier in Context of Increasing Building Energy Efficiency Branislay Stojanović, Jelena Janevski, Milica Stojanović, Marko Igniatović	485
6.09.	Energy efficiency of thermal power plant depending on the hydraulic load of cooling tower Mirjana Laković, Milica Jović, Slobodan Mitrović	493
6.10.	Endogenous and Exogenous Exergy Destruction and Exergoeconomic Evaluation of Thermal Processes in a Complex Industrial Plant Goran Vučković, Mirko M. Stojiljković, Gradimir Ilić, Mića Vukić, Miloš Simonović	502

6.11.	Introducing curricula of energy efficiency and renewable energy sources by TEMPUS project ENERESE <i>Ćemal Dolićanin, Bojan Kovačić, Edin Dolićanin</i>	512
6.12.	Energy efficiency increasing of indoor swimming pools using solar technology Dragoljub Živković, Marko Mančić, Peđa Milosavljević, Milena Todorović, Dobrica Pejović, Bojan Stanković	518
6.13.	Energy Efficiency Measures Implemented through Projects in Serbia Dragan Pavlović, Pedja Milosavljević, Andjela Lazarević	529
6.14.	Calibrating Building Energy Models – "FBB" Building Case Study Bratislav Blagojević, Marko Ignjatović	537
6.15.	Energy Efficiency of an Elementary School "Prva Vojvođanska Brigada" Dušan Savić	545
6.16.	Energy-Efficient Technologies Applied in Zero Energy Buildings Suad Suljković, Velimir Stefanović, Saša Pavlović, Ivan Stojanović	552
6.17.	Analysis of the Natural Lighting and Energy Demand in the Student Dormitory in Terms of Architectural Design Petar Pejić, Dušan Petković, Marko Ignjatović, Sonja Krasić	562
6.18.	Principles of design and construction of passive houses Sanja Spasić	569
6.19.	Application of passive solar systems in architecture Sanja Spasić	574
7. Expe	ert Systems	579
7.01.	Governance of energy transition of non-residental buildings by policy intervention Miroslav Kljajić, Dušan Gvozdenac, Jovan Petrović, Aleksandar Andjelković	580
7.02.	Energy systems and their use in public sector in Autonomus Province of Vojvodina Igor Mujan, Aleksandar Anđelković, Jovan Petrović, Miroslav Kljajić	588
7.03.	Risk Analysis Methods for Small Hydro Power Plants in Creating Insurance Policy Andjela Lazarevic, Rade Karamarkovic, Vladan Karamarkovic, Dragoljub Lazarevic	595
7.04.	Optimization of Trigeneration Systems: A Combinatorial Metaheuristic Approach Mirko M. Stojiljković, Mladen M. Stojiljković, Bratislav D. Blagojević	601
7.05.	Cogeneration and Heat Storage in Optimized District Heating Plants. Impact on Heat Costs and Primary Energy Consumption <i>Mirko M. Stojiljković, Goran D. Vučković, Dejan M. Mitrović</i>	616
7.06.	Particle Swarm Optimization for the optimal tilt angle of solar collectors Emina Petrović, Milica Jović, Vlastimir Nikolić, Dejan Mitrović, Mirjana Laković	628
7.07.	Intelligent contemporary heating control of an amphitheatre Žarko Ćojbašić, Milan Ristanović, Vlastimir Nikolić, Slavica Stojiljković, Nemanja Marković	634
7.08.	Intelligent Control System for Thermal Vision-Based Person-Following Robot Platform Ivan Ćirić, Žarko Ćojbašić, Vlastimir Nikolić, Tomislav Igić	640

7.09.	Classification of Mobile Objects According to Shape and Size by Applying the Technique of Digital Image Processing <i>Aca Micić, Biljana Đorđević, Boban Andjelković</i>	649
7.10.	Non-linear contrast image enhancement Biljana Djordjević, Boban Andjelković	654
8. Fluid	d Flow, Heat and Mass Transfer, and Combustion	659
8.01.	Protective Measures Against Water Hammer in a Long Pipeline Hydropower Plant with Pelton Turbine Dragica Milenković, Dragan Syrkota, Milica Nikodijević	660
8.02.	Flow and Heat Transfer of Three Immiscible Fluids in the Presence of Uniform Magnetic Field Dragiša Nikodijević, Živojin Stamenković, Miloš Kocić, Milica Nikodijević	671
8.03.	Influence of Water in Liquid Fuel on the Combustion Stability in Fluidized Bed Milica R. Mladenović, Stevan D. Nemoda, Dragoljub V. Dakić, Milijana J. Paprika, Ana D. Marinković, Branislav S. Repić, Mirko S. Komatina	681
8.04.	Influence of Burner Operating Parameters and Fuel Properties On Pulverized Fuel Combustion Branislav Repić, Dejan Djurović, Ana Marinković, Aleksandar Erić, Goran Živković, Milica Mladenović	690
8.05.	Combustion Experiments with Granular Biomass in a Fluidized Bed Facility Milica R. Mladenović, Stevan Đ. Nemoda, Dragoljub V.Dakić, Milijana J. Paprika, Dejan M. Đurović, Branislav S. Repić, Srđan B. Uzelac	704
8.06.	Determination of a heat transfer coefficient for the back surface of a perforated plate Mladen Tomić, Predrag Živković, Anica Milošević, Biljana Milutinović, Petar Đekić	712
8.07.	Determination of a perforated plate convective heat transfer coefficient for wide range of Prandtl numbers <i>Mladen Tomić, Mića Vukić, Predrag Živković, Gradimir Ilić</i>	719
8.08.	Research of Effectiveness of HHO Production for Use in Internal Combustion Engines Miodrag Milenković, Miloš Milošević, Dušan Stamenković, Milan Pavlović	727
8.09.	Analysis of thermodynamic parameters in the injection mold with metal inserts Saša Ranđelović, Saša Nikolić, Mladomir Milutinović	734
9. Envi	ironmental Protection	740
9.01.	Carbon Dioxide Emission from TPP Nikola Tesla A and B units Zoran Marković, Milić Erić, Dejan Cvetinović, Predrag Stefanović, Vuk Spasojević, Predrag Skobalj	741
9.02.	Reduction of Particulate Matter Emission of the Upgraded Electrostatic Precipitators at Unit B2 of the TPP "Nikola Tesla" <i>Milić Erić, Predrag Stefanović, Zoran Marković, Predrag Škobalj, Nikola Živković, Vuk</i> <i>Spasojević, Dejan Cvetinović</i>	750

9.03.	Indoor Air Parameters Measurements in Kindergartens Located in Different Urban Environments	
	Ivan Lazović, Sandra Stefanović, Žana Stevanović, Marija Živković, Maja Đurović- Petrović, Žarko Stevanović	758
9.04.	The Environmental Indicators Related to Indoor Air Quality in Schools Valentina Turanjanin, Biljana Vučićević, Marina Jovanović, Sandra Stefanović	764
9.05.	Indoor Air Pollution Modeling of Belgrade Typical Dwelling Sandra Stefanović, Marija Živković, Ivan Lazović, Žana Stevanović, Maja Đurović- Petrović, Borislav Grubor, Žarko Stevanović	772
9.06.	AHP method for waste treatments ranking in terms of impact on the environment Biljana Milutinović, Gordana Stefanović, Goran Vučković, Mladen Tomić, Petar Djekić	779
9.07.	Effective and Environmental Parameters of Diesel Engines Using Biodiesel and Biodiesel – Petro Diesel Blends	707
		/0/

Sokobanja, Serbia, October 22-25, 2013

Society of Thermal Engineers of Serbia

Faculty of Mechanical Engineering in Niš

Numerical Simulation of Friction Stir Welding

Miroslav Mijajlović^a, Dragan Milčić^a, Miodrag Milčić^a

^a University of Nis, Faculty of Mechanical Engineering, Aleksandra Medvedeva 14, Nis, Serbia, mijajlom@masfak.ni.ac.rs, milcic@masfak.ni.ac.rs, miodrag21@gmail.com

Abstract: Friction stir welding is a solid-state welding technique that utilizes thermo-mechanical influence of the rotating welding tool on parent material resulting with monolith joint - weld. On the contact of welding tool and parent material, significant stirring and deformation of parent material appears, and during this process mechanical energy is partially transformed into heat. Generated heat affects the temperature of the welding tool and parent material's opposed analytical model for estimation of the amount of generated heat can be verified by temperature: analytically determined heat is used for numerical estimation of the parent material's temperature and this temperature is compared to the experimentally determined temperature. Numerical solution for analytical estimation of welding plates temperature is estimated using finite difference method - explicit scheme with adaptive grid, considering influence of temperature on material's conductivity, contact conditions between welding tool and parent material, material flow around welding tool etc.

Keywords: Numerical Simulation, Friction Stir Welding.

1. Introduction

In recent years, friction stir welding (FSW), which was invented at TWI in 1991 [1], has emerged as an excellent technique for joining aluminum structures that are difficult to be welded with the traditional fusion welding technique. This process uses a specially designed rotating pin that is first inserted into the adjoining edges of the blank sheets with a proper tilt angle and then moved all along the welding line. Such a pin produces frictional and plastic deformation heating in the welding zone; actually, no melting of material is observed in FSW. Furthermore, as the tool moves, material is forced to flow around the tool in a quite complex flow pattern.

Several studies were conducted to deeply understand the process mechanics [2], material flow [3], metallurgical aspects [4], and both static and dynamic strength [5]. Other researches have focused the attention to the weld residual stress. Peel et al. [6] investigated the influence of the tool feed rate on the residual stresses of FSW aluminum joints by using synchrotron X-rays measurement; the residual stresses were highlighted and found out that, in FSW, the weld zone is subjected to longitudinal (parallel to tool travel) and transverse (perpendicular to tool travel) residual stresses.

Staron et al. [7] and Prevéy et al. [8] used non-destructive technique for determining the residual stress in FSW butt-joints in order to investigate the possibility to modify the residual stress state in the joint by exerting external mechanical tensioning or low plasticity burnishing during the welding process. Fratini et al. [9] have also used the hole drilling technique to achieve the residual stress profiles for 6082-T6, 2024-T4, and 7075-T6 aluminum alloys. Although this residual stresses seems to improve the fatigue strength of the joint [10]; they can be considered an obstacle inhibiting the full application of the FSW process in manufacturing process since a detrimental bending and distortion is introduced.

Numerical model were also successfully used to predict the residual stresses in FSW butt joint. Chao et al. [11] for to stainless steel, Chen and Kovacevic [12] and Reynolds et al. [13] for aluminum alloys have developed thermal analyses, based on properly tuned analytical models, and subsequent mechanical ones to obtain the residual stress state due to the thermal input. A few consideration can be developed on the latter papers: first of all the local mechanical action of the tool, and in particular of the tool pin, is not considered. Just the subsequent thermal flux is taken into account and in this way a sort of macro effect of the process on the material is investigated.

What is more, the used thermal models, describing the heat flux due to the tool action, are always axialsymmetric: in other words no effect of the asymmetric material flow occurring in FSW processes is considered. As a consequence symmetric profiles of temperature, strain and strain rate are obtained with respect to the tool axis. In the present paper the effects of the thermal and mechanical actions on the residual stress, occurring in FSW processes of AA7075-T6 aluminum alloy were investigated. Particularly, both numerical simulations and experimental tests were performed to highlight the occurring metallurgical phenomena and induced residual stress field in the FS welded blanks. The FSW process was simulated using a continuous rigid-viscoplastic FEM model with the DEFORM-3DTM [14] software, previously developed by some of the authors to simulate the FSW process with a single block approach [15, 16]. Thus, the temperature history in each node of the FE model was extracted and transferred to a further FE model of the joint considering an elasto-plastic behavior of the AA7075-T6 material. The adopted model was developed with Abaqus/Standard [17] using the coupled temperature-displacement analysis option. As far as the experiments are regarded, the cut-compliance methodology described by Prime [18] was used to determine the profiles of residual stress; this provides extremely accurate measurements of the longitudinal and transversal residual stresses. Furthermore, the method enables the residual stresses at the crack tip to be determined, which play an important role in fatigue crack growth.

The performed analysis permitted to fully predict the residual stress distribution in the longitudinal, transverse and through-thickness directions.

2. Friction Stir Welding

Friction Stir Welding (FSW) is a solid state welding process predominantly used for welding of aluminium, aluminium alloys and other soft metals/alloys. This welding technique requires usage of specialized, cylindrical – shouldered tool, with a profiled threaded/unthreaded probe (Figure 1). Welding tool is rotated at a constant speed and fed at a constant traverse speed into the joint line between two welding plates (workpieces), which are butted together. The parts are clamped rigidly onto a backing plate (anvil) in a manner that prevents the abutting joint faces from being forced apart. The length of the probe is slightly less than the weld depth required and the tool shoulder should have contact with the work surface. The probe is moved against the weld – joint line, or vice versa. While traveling, welding tool stirs, deforms and mixes the material of the workpieces into the monolith mixture that represents the weld.

Figure 1. Principle of the FSW, welding tool and active surfaces of the welding tool

As a solid state welding procedure, FSW uses pure mechanical energy as welding process activation energy and distributes it from the welding machine to the base material (workpieces) over the welding tool. However, only one part of the mechanical energy is used directly as a mechanical energy while the rest of it is transformed in other types of energy: into heat, light, electricity, radiation etc. Researches, experience and engineering practice have shown that, as a result of any kind of energy transformation, direct or indirect product of energy use is transformation of input energy into heat, partially or almost completely. This is a phenomenon that appears during the FSW process as well: mechanical energy given to the welding tool is dominantly used for deformation and mixing of the particles chopped from workpieces during contact of the welding tool and workpieces, the rest of energy is transforming into heat and some of it is transformed in other types of energy (Figure 1).

Figure 2. Space discretization, heat generation and material flow pattern - node substitution and replacement during FSW

Primary transformation of the mechanical power into heat happens on the intimate contact of the welding tool and workpieces or in a thin layer of the softer material (in this case it is the material of workpieces) near the welding tool (Figure 2). This layer represents primary heat generation sources. Secondary transformation of power into heat happens in the volume of deformed material of workpieces and moving particles of workpieces' material represent secondary heat generation sources.

3. Analytical model for estimation of amount of generated during FSW

Heat generation process at FSW has been partially investigated at the beginning of 2002 for the first time [3]. This happened 11 years after invention of the FSW.

Until present days, there are three (four) published analytical models for estimation and assessment of amount of heat generated during FSW [21, 25, 26]. All of them differently approach to the heat generation in FSW, however, all of them consider heat generation in FSW as a process tightly connected with the contact mechanics, tribology, plastic deforming and thermodynamics of deformable bodies. These models show that 60% to 100% of the mechanical power transform into heat during FSW.

Analytical model developed at Faculty of Mechanical Engineering Nis is the fourth published model for estimation of amount of heat generated during FSW [22, 23, 24]. As well as first three models, it relies on the conservation of mechanical energy postulate and starts from the assumption that in theory complete amount of mechanical energy delivered to the welding tool transforms into heat. In reality, one part of mechanical energy can be transformed into heat. In order to estimate maximal possible amount of generated heat during FSW (for certain technological parameters of the process), this model takes into consideration influence of the welding tool to the process of welding, loads, tribological parameters, temperature of workpieces, material flow around the welding tool, heat generation mechanisms etc.

4. Numerical simulation of FSW

Estimation of the amount of generated heat during FSW is basing on analytical expressions that give the amount of heat generated on active surfaces of the welding tool. Due to the numerous parameters involving transformation of mechanical energy into heat, complex mutual dependences between these parameters, as well as the fact that heat generation in FSW is highly process-realization dependent phenomena, analytical estimation of amount of heat generated during FSW is iterative and discrete process. For example, temperature of workpieces is important for the FSW process and estimation of temperature requires solving heat equation. Heat equation is differential equation that has algebraic solutions for limited cases and usually is solved numerically. Even more complex challenge is estimation of heat transfer thru the workpieces initiated with the material flow around the welding tool: it is necessary to recognize material flow patterns, dependences between welding tool, technological parameters of welding process and material properties etc, and then to connect heat transfer with mass transfer.

Material flow in FSW was explained by many [19, 20, 26, 27, 28], however, there is no adequate mathematical model capable to fully describe it. Present works on FSW either neglect the influence of material flow or simplify the material flow patterns considering it purely rotational around the welding tool. Faculty of Mechanical Engineering in Nis has proposed a new numerical procedure for implementation of material flow pattern into numerical simulations of FSW. Procedure is called - node substitution and replacement [24] and uses experimental results, probabilistic theory, technological parameters of the FSW, geometry of the FSW tool etc. to estimate material flow pattern around the FSW tool. The main goal of the procedure was to improve accuracy of the numerical simulation.

All these procedures are numerical and when implemented in analytical model for heat estimation they are part of the numerical simulation of FSW that has a goal estimate amount of heat generated during FSW.

As process-realization dependent phenomena, heat generation during FSW influences analytical model for amount of generated heat estimation to use experimental data of FSW for proper precision (Figure 3). Table 1 shows some important parameters necessary for the numerical simulation.

Figure 3. Numerical simulation of the FSW

Table 1.	Simulation	parameters
----------	------------	------------

T, [°C]	24	100	149	204	260	316	371	400		
$\sigma_{yield}(T)$, [N/mm2] / no plastic strain	345	331	310	138	62	41	28	21		
$\sigma_{yield}(T, \epsilon)$, [N/mm2] / plastic strain ϵ	483 / 0.18	455 / 0.16	379 / 0.11	186 / 0.23	76 / 0.55	52 / 0.75	34 / 1.00	25 / 1.00		
Convection coefficient		$\alpha = 10 \text{ W/(m^2K)}, \alpha_{a prox} = 1500 \text{ W/(m^2K)}$								
Nominal TP* of welding plates:		$\lambda_{pt} = 121 \text{ W/(mK)}, \rho_{pt} = 2780 \text{ kg/m}^3, c_{pt} = 875 \text{ J/(kgK)}$								
Nominal TP of welding tool:		$\lambda_{wt} = 38 \text{ W/(mK)}, \rho_{wt} = 7840 \text{ kg/m}^3, c_{wt} = 500 \text{ J/(kgK)}$								
Material and diameter of bolts:		S335 EN 10025, <i>d</i> _z =10 mm								
Nominal TP of bolts:		$\lambda_{bt} = 43 \text{ W/(mK)}, \rho_{bt} = 7850 \text{ kg/m}^3, c_{bt} = 420 \text{ J/(kgK)}$								
Important dimensions and material of anvil:		$L_a=220 \text{ mm}, B_a=148 \text{ mm}, H_a=16 \text{ mm}, X5CrNi18-10$								
Nominal TP of anvil:		$\lambda_a = 18 \text{ W/(mK)}, \rho_a = 8030 \text{ kg/m}^3, c_a = 500 \text{ J/(kgK)}$								
Minimal discretization dimensions / time step:		$\Delta x_{min} = 3 \text{ mm}, \Delta y_{min} = 1.5 \text{ mm}, \Delta z_{min} = 1.5 \text{ mm}; \Delta t = 0.0055 \text{ s}$								
Adaptive discretization parameters:		ε_x =-1, 1, 5/3, 7/2; ε_y = -4/3, 1, 5/3, 2, 10/3, 16/3, 20/3; ε_z =-1, 1;								
Convergence of FDM**:		$\lambda_{pt} \cdot \Delta t / (\rho_{pt} \cdot c_{pt} \cdot \Delta x_{min}^{2}) = 0.03 < 1/6 = 0.167$ $\lambda_{pt} \cdot \Delta t / (\rho_{pt} \cdot c_{pt} \cdot \Delta y_{min}^{2}) = 0.122 < 1/6 = 0.167$ $\lambda_{nt} \cdot \Delta t / (\rho_{pt} \cdot c_{nt} \cdot \Delta z_{min}^{2}) = 0.122 < 1/6 = 0.167$								
Number of nodes/iterations:		$n_{nod} = 14160 / n_{iter} = 28528$								
Approximate calculation time		$t_{calc} = 1283760 \text{ s} (14 \text{ d} 20 \text{ h} 36 \text{ min}) (\text{processor: } 2 \times 2.30 \text{GHz})$								

*TP-thermomechanical properties, **FDM - finite difference method

5. Discussion and conclusions

Analytical model for the estimation of amount of heat generated during FSW has shown that 60-100% of mechanical power delivered to the welding tool transform into heat. Median value of heat transformation is 86.58% (during plunging phase 79.27%, first dwelling 90.10%, welding 90.25%, second dwelling 90.94%, and pulling out 52.92%). Numerical simulation of FSW included well known finite difference method for numerical estimation of temperatures in discrete nodes of workpieces and accuracy of the simulation is improved by the innovative numerical method for material flow definition - node substitution and replacements. Proposed analytical/numerical model for temperature estimation gave numerically estimated temperature that varies up to 11% from experimentally estimated temperature (that is about 15 °C as absolute error). Maximal temperature on welding plates was numerically estimated T_{max} = 393,538 °C, what is about 80% of Al 2024 T351 melting point. Maximal temperature of the welding tool was experimentally measured T_{max} = 464 °C.

Acknowledgements

This paper is part of the technological project TR35034 "The research of modern non-conventional technologies application in manufacturing companies with the aim of increase efficiency of use, product quality, reduce of costs and save energy and materials" at the University of Nis, Faculty of Mechanical Engineering, and was supported by Ministry of Education, Science and Technological Development of the Republic of Serbia

References

- [1] Thomas WM. Friction stir butt welding. 1991;International Patent Application No. 9125978.8.
- [2] Mishra RS, Ma ZY. Friction stir welding and processing. Materials Science and Engineering. 2005;50:1-77.
- [3] Guerra M, Schmidt C, McClure JC, Murr LE, Nunes AC. Flow patterns during friction stir welding. Materials Characterization. 2002;49(2):95-101.
- [4] Sutton MA, Bangcheng Y, Reynolds AP, Junhui Y. Banded microstructure in 2024-T351 and 2524-T351 aluminum friction stir welds Part II. Mechanical characterization. Materials Science and Engineering. 2004;364:66-74.

- [5] Cirello A, Buffa G, Fratini L, Pasta S. AA6082-T6 Friction Stir Welded Joints Fatigue Colligan K: 'Dynamic material deformation during friction stir welding aluminium.' Proc. 1st Int. Symp. on Friction Stir Welding, Thousand Oaks, USA 1999. Resistance: Influence of Process Parameters. Int Mech E Part B Journal of Engineering Manufacturing. 2006;220(6):805-812.
- [6] Peel M, Steuwer A, Preuss M, Withers PJ. Microstructure, mechanical properties and residual stresses as a function of welding speed in aluminium AA5083 friction stir welds. Acta Materialia. 2003;51(16):4791-4801.
- [7] Staron P, Kocak M, Williams S. Residual stresses in friction stir welded Al sheets. Applied Physics A: Materials Science and Processing. 2002;74(SUPPL.II):S1161-S1162.
- [8] Prevéy P, Mahoney M. Improved fatigue performance of friction stir welds with low plasticity burnishing: residual stress design and fatigue performance assessment. Materials Science Forum 2003;426-432 (4):2933-2940.
- [9] Fratini L, Zuccarello B. An analysis of through-thickness residual stresses in aluminium FSW butt joints. International Journal of Machine Tools and Manufacture. 2006;46(6):611-619.
- [10] Fratini L, Pasta S, Reynolds AP. Fatigue crack growth in 2024-T351 friction stir welded joints: Longitudinal residual stress and microstructural effects. International Journal of Fatigue. 2008; doi: 10.1016 /j.ijfatigue. 2008.05.004.
- [11] Chao YJ, Qi X, Teng W. Heat transfer in friction stir welding . Experimental and numerical studies. Transaction of the ASME. 2003;105:138-145.
- [12] Chen C, Kovacevic R. Thermomechanical modelling and force analysis of friction stir welding by the finite element method. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science. 2004;218(5):509-520.
- [13]Khandkar MZH, Khan JA, Reynolds AP, Sutton MA. Predicting residual thermal stresses in friction stir welded metals. Journal of Materials Processing Technology. 2006;174(1-3):195-203.
- [14] DEFORM. Deform-3D[™] user manual. 2003.
- [15]Buffa G, Hua J, Shivpuri R, Fratini L. A continuum based fem model for friction stir welding Model development. Materials Science and Engineering A. 2006;419(1-2):389-396.
- [16] Buffa G, Hua J, Shivpuri R, Fratini L. Design of the friction stir welding tool using the continuum based FEM model. Materials Science and Engineering A. 2006;419(1-2):381-388.
- [17] ABAQUS user manual vol. I I, and III. ABAQUS, Inc Standard 6.6.1 Standard User manual. 2004.
- [18] Prime MB. Residual stress measurement by successive extension of a slot: The crack compliance method. Applied Mechanics Reviews. 1999;52(2):75-96.
- [19] Colegrove, P.A.; Sherclif, H. R. 3-Dimensional CDF modelling of flow round a threated friction stir welding tool profile, J. Mater. Process. Tech., v.169, p.320-327, 2005.
- [20] M. Song, R. Kovačević: "Thermal modeling of friction stir welding in a moving coordinate system and its validation", Int. J. of Machine Tools & Manufacture, Vol. 43, pp. 605-615, 2003.
- [21] Mijajlović, M. et al: Mathematical Model for Analytical Estimation of Generated Heat During Friction Stir Welding. Part 1, Journal of Balkan Tribological Association, Vol. 17, No 2, 2011, pp. 179-191, ISSN 1310-4772, Sofia, Bulgaria, 2011.
- [22] Mijajlović, M. et al: Mathematical Model for Analytical Estimation of Generated Heat During Friction Stir Welding. Part 2, Journal of Balkan Tribological Association, Vol. 17, No 3, 2011, pp. 361-370, ISSN 1310-4772, Sofia, Bulgaria, 2011.
- [23] Mijajlović, M: Investigation and development of analytical model for estimation of amount of heat generated during FSW, PhD thesis, University of Nis, Faculty of Mechanical Engineering Nis, 2012.
- [24] Schmidt, H et al: An analytical model for the heat generation in Friction Stir Welding, Modeling Simul. Mater. Sci. Eng. 12 No 1 (January 2004) p. 143-157, PII: S0965-0393(04)69225-4, http://iopscience.iop.org/0965-0393/12/1/013/.
- [25]Nandan, R. et al, Three-dimensional heat and material flow during friction stir welding of mild steel, Acta Materialia, v.55, p.883-895, 2007.
- [26] Ouyang, J.H. and Kovačević, R., "Material Flow and Microstructure in the Friction Stir Butt Welds of the Same and Dissimilar Aluminum Alloys", the Journal of Materials Engineering and Performance, ASM International, Vol. 11, No. 1, February 2002, pp. 51-63.
- [27] Ulysse, P. Three-dimensional modeling of the friction stir-welding process, *Int. J. Mach. Tool. Manu.*, v.42, p.1549-1557, 2002.
- [28] Đurđanović, M. et al: Heat Generation During Friction Stir Welding Process, Tribology in Industry, no. 1-2, Journal, vol. 31, pp. 8-14, no. 1-2, Faculty of Mechanical Engineering Kragujevac, Kragujevac, Serbia, May, 2009, ISSN 0354-8996.

