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A B S T R A C T

Immune thrombocytopenia (ITP) is an autoimmune disorder characterized by low platelet counts due to en-
hanced platelet clearance and compromised production. Traditionally, ITP was regarded a B cell mediated
disorder as anti-platelet antibodies are detected in most patients. The very nature of self-antigens, evident
processes of isotype switching and the affinity maturation of anti-platelet antibodies indicate that B cells in order
to mount anti-platelet immune response require assistance of auto-reactive CD4+ T cells. For a long time, ITP
pathogenesis has been exclusively reviewed through the prism of the disturbed balance between Th1 and Th2
subsets of CD4+ T cells, however, more recently new subsets of these cells have been described including Th17,
Th9, Th22, T follicular helper and regulatory T cells. In this paper, we review the current understanding of the
role and immunological mechanisms by which CD4+ T cells contribute to the pathogenesis of ITP.

1. Introduction

Immune thrombocytopenia (ITP) is an autoimmune disorder char-
acterized by a low platelet count (< 100 × 109/L) due to enhanced
platelet clearance and compromised production, typically manifesting
with bleeding [1]. Traditionally, the acronym ITP stood for “idiopathic
thrombocytopenic purpura”, however in 2009, The International
Working Group (IWG) introduced instead the term “immune throm-
bocytopenia” to emphasize two facts: immune mechanisms that med-
iate the pathogenesis of ITP and a significant number of patients who do
not clinically present with purpura [2]. According to the IWG, ITP is
classified as primary disease, when it presents as an isolated clinical
syndrome (the diagnosis of exclusion) or secondary, when it is asso-
ciated with other disorders including autoimmune and lymphoproli-
ferative diseases, infection or medication [2–4]. Based on the disease
natural history, three distinctive phases of ITP are introduced: i) newly
diagnosed ITP (up to 3 months from diagnosis); ii) persistent ITP (be-
tween 3 and 12 months); iii) chronic ITP (more than 1 year from di-
agnosis). The distinction between the three is of relevance for the
choice of treatment [2,5]. ITP affects both children and adults, how-
ever, children are more prone to developing newly diagnosed and
persistent forms of ITP which have a tendency to resolve spontaneously;
on the other hand, the chronic form is more prevalent in adults and is
most often not self-limiting [6,7].

Historically, ITP was regarded a B cell mediated disorder con-
sidering that multiple antibodies against a range of platelet antigens are
identified in the majority of patients. Most of these autoantibodies are
of the IgG class, directed against platelet membrane glycoprotein
complexes – GPIIb-IIIa and GPIb-IX and undergoing affinity maturation
through somatic hypermutation of the variable regions. [8–10]. The
very nature of self-antigens, evident processes of isotype switching and
the affinity maturation of anti-platelet antibodies suggest that B cells in
order to mount deleterious immune response in ITP require assistance
of autoreactive, platelet specific CD4+ T cells, implicating the im-
portance of these cells in disease pathogenesis. In concordance to this,
after in vitro GPIIIa stimulation, a significant CD4+ T cell proliferative
response and IL-2 production was observed in peripheral blood mono-
nuclear cell (PBMC) cultures obtained from ITP patients in contrast to
healthy donors [11,12]. Furthermore, accumulation of oligoclonal T
cells was also documented in the peripheral blood of ITP patients [13].
In the experimental model of ITP, depletion of CD4+ T cells completely
abolished mice suitability to the disease [14]. Depending on the mi-
croenvironment stimuli, activated CD4+ T cells may differentiate to
diverse polarization states, defined as Th1, Th2, Th17, Th22, Th9 and
regulatory T cells, all of which have distinguished master transcription
factors, unique cytokine profiles and functions. In the recent years,
CD4+ T cells responsible for mounting antibody dependant anti-platelet
immune response have been intensively studied however, similar to
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other autoimmune disorders, exact phenotype profile of these cells in
ITP still remain elusive. Besides CD4+ T cells, recent studies also sug-
gested involvement of CD8+ T cell in the depletion of platelets but also
disruption of normal thrombocytopoiesis in the bone marrow, espe-
cially in ITP patients without detectable anti-platelet antibodies
[15–17].

In this review we have summarized the current data supporting T
cell relevance in ITP pathophysiology from the aspects of both func-
tional and phenotypic heterogeneity of this cell lineage.

2. Th1 and Th2 immune response in ITP

Th1/Th2 cell dichotomy has been considered the main feature that
defines the cellular immune response, and the pathogenesis of many
immune mediated disorders was exclusively viewed from the aspect of
the altered balance between those two T cell subsets. Th1 cells are in-
duced by IL-12 and IFN-γ, characterized by the expression of T-box
expressed in T cells (T-bet) as a master transcription factor and pre-
dominant production of IFN-γ and IL-2. Th2 cells are induced by IL-4,
express GATA binding protein 3 (GATA-3) as a master regulator and
produce a broader spectrum of cytokines including IL-4, IL-5, IL-9, IL-
10 and IL-13 [18].

Pioneering studies of Th1 cell role in the pathogenesis of ITP were
performed by determining the levels of Th1 signature cytokines in pa-
tients’ serum or plasma; however this approach prove to be unreliable,
considering many inconsistencies in reported results. Specifically, ele-
vated serum levels of IFN-γ, IL-10 and IL-2 were found in both pediatric
and adult ITP patients that might suggest Th0/Th1 polarization; but
that was not consistent across all studies [19–25]. The other approach
was to investigate mRNA levels of Th1 cytokines and master tran-
scription factors in patients’ PBMCs; and similar to previous studies,
both higher [25–27] and unaltered [28,29] expression levels of IFN-γ,
IL-2, as well as T-bet were reported. Direct Th1 cell detection by flow
cytometric analysis also provided opposing results [28–31]. On the
other hand, in the spleen, which is the primary site for the activation of
platelet-reactive T and B cells [32], higher frequency of Th1 cells was
detected, especially in rituximab (RTX) non-responder patients [33].

Similar to Th1 cells, conflicting data on aberrant Th2 cell mediated
immune response in ITP are present. Several studies have shown lower,
unaltered or even higher Th2 associated cytokine serum levels in both
pediatric and adult ITP patients [19–23,28]. In contrast to serum level,
gene expression analyses generally show lower expression levels of Th2
cytokines and GATA-3 in PBMCs and splenocytes isolated from ITP
patients [26,28,34], accordingly, lower percentage of Th2 cells is found
in peripheral blood of ITP patients compared to healthy controls
[28,29,35].

In addition to the differences in study designs and methodology,
many discrepancies in the reported results could be partially explained
by the fact that primary ITP is a diagnosis of exclusion. Therefore,
especially in the early, yet unrecognized stages, various other disorders
could be classified as primary ITP. Another feasible explanation may be
substantial individual variations in the immune system constitutional
characteristics influenced by genetic features, environment and age
[36,37]. In order to overcome these individual variations, in many
studies, Th1 and Th2 immune profiles were not considered separately
yet in the contexts of their mutual relationship. Both T-bet/GATA-3
ratio in PBMCs and splenocytes [28,38] and Th1/Th2 cell ratio in the
peripheral blood of patients with ITP was shown to be increased
[28,30,35] and inversely correlated with platelet counts [26]. The
conventional ITP therapies such as high-dose dexamethasone (HD-
DXM) or RTX [23,29,39] as well as experimental treatments, including
IL-11 and GM-CSF [38,40], restore the Th1/Th2 balance to the control
levels, resulting in clinical improvement. Upon relapse, the cytokine
profile tends to revert to the pretreatment levels [23]. Taken together
these data indicate that ITP is a Th1 dominant disease, a view currently
widely accepted.

2.1. Th1/Th2 dysregulation and platelet destruction

Th1/Th2 immune imbalance observed in patients with ITP is di-
rectly involved in the pathogenesis and progression of the disease, in-
cluding platelet destruction mediated by both autoantibodies and CD8+

T cells. Splenic monocytes and macrophages play a major role in the
phagocytosis of autoantibody opsonized platelets via the Fcγ receptor
(FcγR) engagement, thus stimulating both platelet autoantigen pre-
sentation and clearance [32,41]. Fcγ receptors are heterogeneous fa-
mily of membrane glycoproteins widely distributed on different im-
mune cells, capable of binding the Fc fragment of IgG antibody. Both
monocytes and macrophages express activating (FcγRI, FcγRIIA/C,
FcγRIIIA) but also inhibitory (FcγRIIB) FcγRs the simultaneous stimu-
lation of which establishes a threshold needed for cell activation that
consequentially regulates their functional response [42]. Although FcγR
polymorphisms that increase binding affinity to IgG were documented
in ITP patients [43–45], the Th1/Th2 cytokine axis could induce
quantitative and qualitative alterations in phagocyte FcγR expression
pattern thus influencing platelet clearance. In monocyte/macrophage
cell cultures, IFN-γ was able to up-regulate expression of activating
FcγRs and down-regulate expression of inhibitory FcγRIIB, whereas IL-4
produced completely opposite effects [46]. Accordingly, the higher
FcγRI expression and increased FcγRIIA/IIB ratio was detected on
monocytes isolated from ITP patients at both mRNA and protein level
which was normalized following HD-DXM or thrombopoietin receptor
agonist therapy [47,48]. While not consistently, in the spleen, reduced
FcRIIB expression was reported on macrophages [44,49]; furthermore,
their phagocytic capacity was significantly increased and there was a
positive correlation with the Th1/Th2 ratio [50]. In addition to effects
on FcγR expression, IFN-γ primed macrophages also enhance the ex-
pression of costimulatory molecules CD80 and CD86. They have a
higher capacity to produce proinflammatory cytokines including IL-12,
which in turn favors Th1 polarization and additional IFN-γ production,
thus forming a positive feedback loop [51,52]. In ITP patients, higher
expression levels of CD80 and CD86 were indeed found on splenic
macrophages [44] together with higher plasma level of IL-12 [53].
Interestingly, a specific subset of IL-12 producing CD16+ monocytes
was shown to be expanded in patients with active ITP. In vitro these
cells were able to promote T cell differentiation into Th1 cells [54].
Taken together, these results suggest that strong Th1 biased environ-
ment may promote alterations in FcγR expression on monocyte-mac-
rophage cell lineage toward a proinflammatory profile, thus estab-
lishing a lower threshold for cellular activation and increase in their
phagocytic capabilities. Consequently, FcγR mediated internalization of
antibody opsonized platelets by macrophages induces enhanced pro-
cessing and subsequent presentation of cryptic platelet peptides (e.g.
GPIIb/IIIa) to CD4+ T cells which, upon antigen recognition and
costimulation, facilitate B cell activation and anti-platelet antibody
production. In support of this theory, macrophage cell cultures pulsed
with opsonized platelets were shown to promote GPIIb/IIIa specific
antibody production when cocultured with autologous GPIIb/IIIa re-
active T cells and B cells [41].

In addition to antibody mediated platelet destruction, Th1/Th2
dysregulation could also affect platelet clearance by modifying CD8+ T
cell activity. Significant role of CD8+ T cells in ITP pathogenesis has
been indicated in many different experimental studies performed on
murine models of ITP [55,56] but also in the clinical studies [15,16].
Direct lysis is suggested to be the main pathogenic mechanism by which
CD8+ T cells promote platelet depletion, especially in patients without
detectable anti-platelet antibodies [16,57]. However, these cells are
also shown to mediate platelet apoptosis [15] and compromise normal
thrombocytopoiesis by inhibiting megakaryocyte apoptosis and platelet
production [17]. Furthermore, both megakaryocytes and platelets
could elicit platelet specific CD8+ T cell response considering that in
ITP these cells express costimulatory molecules (CD80 and CD86) and
present self-antigens in conjunction with MHC class I molecules. This
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could be one of the potential mechanisms involved in ITP progression
[19,58,59].

Analogous to Th cells, CD8+ T cells are also classified in various
subsets, including Tc1, Tc2, Tc17, Tc22, Tc9 and CD8+ T regulatory
cells, based on their cytokine profile and specific functions. It is be-
lieved that CD8+ T cell differentiation is directly influenced by the
polarization state of CD4+ T cells that facilitate their activation and
promote their functions [60]. In the peripheral blood and the spleen of
ITP patients, higher Tc1/Tc2 ratio as well as relative number of Tc1
cells was documented and, interestingly, there was a significantly po-
sitive correlation with the frequency of Th1 cells [29,31,39]. Currently,
we do not have a thorough understanding of how precisely Tc1/Tc2
deviation in CD8+ T cell populations promotes ITP development.
However, two potential scenarios are postulated. Firstly, by producing
IFN-γ, these cells could further promote Th1 biased microenvironment
[61], stimulating platelet sequestration and destruction by macro-
phages and antibody production by B cells. Secondly, both autocrine
and paracrine IFN-γ signaling, alone or in synergy with other Th1 po-
larizing cytokines such as IL-12, can substantially enhance CD8+ T cell
cytolytic potential [62,63] and thus promote platelet lysis. Accordingly,
Tc1 cells are shown to have higher lytic capacity then Tc2 cells, and
their signature cytokines (IFN-γ and IL-4) antagonistically modulate
CD8+ T cell cytolytic activity in vivo [64]. Compared to healthy con-
trols, in spleens of RTX non-responder ITP patients, parallel to in-
creased number of Tc1 cells, CD8+ T cells indeed showed higher cy-
totoxic activity based on granzyme B expression [33].

2.2. The origin of Th1/Th2 dysregulation

The very origin of Th1/Th2 dysregulation in ITP still remains un-
clear. Constitutional alterations could be one of potential risk factors,
considering that some IFN-γ and IL-4 gene polymorphisms were asso-
ciated with ITP susceptibility. IFN-γ +874 TT genotype, linked to
higher expression of IFN-γ, was found more frequently in chronic ITP
patients in contrast to low-expression IFN-γ +874 AA genotype which
was significantly lower [65]. In addition, higher-expression-IFN-γ
genotype, as well as higher-function-IFN-γ-receptor genotype (IFN-γR
-611GA), correspond to higher Th1/Th2 ratio and more severe throm-
bocytopenia [66]. Similarly, IL-4 (IL-4 VNTR intron 3) and IL-4 receptor
(IL-4Rα Q576R) polymorphisms were detected in ITP patients and as-
sociated with a higher number of required treatment regimens [65,67],
however, that was not seen in all studies [65,68], probably due to small
sample sizes and ethnic homogeneity of the investigated subjects.

In addition to genetic factors directly involved in defining the
characteristics of Th1 and Th2 immune response, Th1/Th2 dysregula-
tion is also associated with altered innate immune functioning of an-
tigen presenting cells (APCs) that are crucial for T cell activation and
subsequent polarization. Professional APCs, such as dendritic cells
(DCs), macrophages and B cells, express numerous pattern-recognition
receptors (PPRs), including toll-like receptors (TLRs), the stimulation of
which leads to the secretion of different cytokines directly involved in
the polarization process of activated CD4+ T cells. Both TLR7 and TLR4
expression was found increased in ITP patients [69,70]. In macrophages
obtained from ITP patients, TLR7 stimulation induced significantly
higher IL-12 production compared to the control group, and in a murine
model of ITP promoted Th1 polarization which corresponded to de-
creased platelet count [71]. The increased expression of TLR4 was
found on monocytes, but also on CD4+ T cells where TLR4 expression
level corresponded to the higher IFN-γ/IL-4 ratio [70,72,73]. Con-
sidering that TLRs recognize pathogen associated molecular patterns
(PAMPs), the alterations in TLR expression may suggest that ITP de-
velops as a reflection of aberrant immune response to infectious agents.
Accordingly, association between infection and ITP onset, as well as
disease exacerbation, is well established especially in children but also
adults [4,74,75]. Platelets themselves also express TLR4 which upon
stimulation with lipopolysaccharide (LPS) in the presence of anti-

platelet antibodies leads to increased platelet phagocytosis. This may
explain why Gram-negative infections result in worsening of throm-
bocytopenia in some ITP patients [76].

While, splenic macrophages are recognized as key triggers of anti-
platelet immune response in ITP [41], altered DC function can also
affect Th1/Th2 balance. Compared with healthy donors, monocyte
derived DCs from ITP patients were shown to have higher expression
level of costimulatory molecules and efficiently promote Th1 polar-
ization via enhanced IL-12 production [77]. In the physiological con-
text, monocyte derived DCs per se are prone to induce Th1 cell polar-
ization [78]. However, it appears that this feature is more pronounced
in ITP patients. In addition to phenotype alterations, changes in the
distribution pattern of specific DC subsets could contribute to the dis-
ease development and progression. In a murine model of ITP, a sig-
nificant deficiency of tolerogenic and an increase of activating DCs
were reported in animals’ spleens during active phase of the disease. It
has also been shown that intravenous immunoglobulin treatment could
raise platelet counts by stimulating thymic release of tolerogenic DC
and their re-distribution in the spleen [79].

Plasmacytoid DCs (pDCs) are another unique subset of DCs produ-
cing IFN-α and β but also other proinflammatory cytokines, which are
of particular importance for antiviral protection [80]. The involvement
of pDCs in ITP pathogenesis is still controversial. Increased number of
pDCs and higher plasma level of IFN-α were reported in patients with
ITP. Moreover, patients’ plasma was able to increase T cell stimulatory
capacity of monocytes and myeloid DCs. This effect was suppressed by
blocking IFN-α receptor, suggesting the important role of this IFN in the
pathogenesis of ITP [81]. In addition to stimulatory effects on T cell
activation, IFN-α is well known to be potent Th1 promoting factor
[82,83]. Interestingly, IFN-α/β production in pDCs is multifold in-
creased following TLR7 stimulation [84], and its expression, as pre-
viously mention, was found to be increased in ITP [69]. However, in the
study of Saito et al. reduced frequency of pDCs was found in the blood of
both primary and Helicobacter pylori associated ITP patients. Even more,
the numbers of circulating pDCs highly correlated with the platelet
counts [85]. In some of the studies no statistically significant differ-
ences in the numbers of circulating pDCs were observed between ITP
patients and healthy controls [86]. Thereby, further research is war-
ranted to establish the precise role of pDCs in ITP pathogenesis.

3. Th17 immune response in ITP

Significant advances in the research of CD4+ T cell biology made
clear that established Th1/Th2 paradigm cannot completely explain the
vast heterogeneity of this cell population, which led to the definition of
new, unique Th subsets. Accordingly, more than a decade ago, Th17
cells were described as a T cell subset that expresses retinoic acid-re-
lated orphan receptor γT (RORγT) as a master regulator and pre-
dominantly produces IL-17, IL-21 and IL-22. Interleukin-6, IL-1, IL-21,
IL-23, and TGF-β were identified as the major signaling cytokines in-
volved in Th17 cell commitment [18].

First evidence to suggest the pathogenetic role of Th17 cells in ITP
was based on elevated plasma levels of IL-17 and other Th17 associated
cytokines IL-1, IL-6 and IL-23 [87–89]. Moreover, IL-23 was found to
positively correlate with IL-17 plasma levels and the number of Th17
cells, while it was negatively correlated with the platelet counts, sug-
gesting important role of this cytokine in promoting Th17 immune re-
sponse and disease pathogenesis [89,90]. At the mRNA level, the ex-
pression of IL-17 and IL-23, their relevant receptors as well as RORγT
was found increased in PBMCs isolated from ITP patients [89,91]. In
concordance, during the active phase of the disease, patients had higher
frequency of Th17 cells, which were alongside neutrophils identified as
the main IL-17 producers [31,87–89,91]. The percentage of Th17 cells
in the blood was also proposed to be a positive indicator of sensitivity to
corticosteroid treatment, considering that corticosteroid non-re-
sponding newly diagnosed ITP patients before the treatment had
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significantly lower numbers of Th17 cells than responders [92]. In
addition to Th17 cells, Tc17 subset of CD8+ T cells was found to be
expanded in ITP patients, which could be another significant cellular
source of IL-17 [93]. In several studies, however, the frequency of
circulating Th17 cells did not differ significantly between patients and
healthy controls [35,94]. Analysis of IL-17 expression in the bone
marrow of ITP patients revealed that macrophages and/or monocytes,
but not lymphocytes, had increased IL-17 expression. Interestingly,
better clinical responses to thrombopoietin receptor agonist therapy
were achieved in the IL-17 low expression patients than in those with a
high expression profile of IL-17, indicating that IL-17 could be also
involved in disturbed thrombocytopoesis [95].

3.1. Th17 cells and platelets

It appears that Th17 cells and platelets have multifaceted and pro-
active mutual relationship. Upon activation, multiple mediators with
pronounced immunomodulatory properties are rapidly released from
platelet storage granules. Specifically, platelet factor 4 (PF4), also
known as CXCL4, stored in α-granules, has been found to directly sti-
mulate Th17 differentiation program in naïve T cells [96], and, ad-
ditionally, it is a well-known inhibitor of megakaryopoiesis and platelet
production [97]. In ITP, platelets are constantly activated [98,99], thus,
higher level of CXCL4 could promote the continuation and amplifica-
tion of Th17 mediated autoimmune process. Although, CXCL4 is the
most abundant mediator of platelet granules, other products of acti-
vated platelets such as platelet-derived serotonin, CXCL1, CCL5, and
platelet-activating factor (PAF) were also shown to promote Th17 cell
differentiation [100]. On the other hand, platelets express functional IL-
17 receptor and its stimulation facilitates their activation [101], in-
dicating that Th17 cells and platelets might form a self-perpetuating
cycle. Interestingly, human megakaryocyte progenitors, before com-
plete maturation, may act as professional APCs and augment Th17
immune response by secreting Th17 inducing cytokines including IL-1,
IL-6, IL-18, TGF-β, and IL-23 [102]. Direct IL-17 effect on mega-
karyopoiesis is still unknown. However, IL-21 as an important cytokine
of the Th17 spectrum, promoted megakaryocyte differentiation, but did
not have any effects on mature megakaryocytes and platelet production
process itself. Curiously, in contrast to enhanced megakaryopoiesis, IL-
21 decreased total platelet counts due to higher platelet consumption in
the spleen and in the liver [103].

Genetic background for Th17 cell abnormalities in ITP was mainly
associated with IL-17F gene polymorphisms. IL-17F is the most recently
discovered cytokine of the IL-17 family, mainly produced by Th17 cells,
but also activated monocytes, basophils and mast cells [104]. The fre-
quency of G allele of IL-17F rs763780 polymorphism was found to be
significantly decreased in ITP patients, suggesting its protective features
[105]. On the other hand, IL-17F rs763780 AA genotype was associated
with a more severe thrombocytopenia at the time of the diagnosis
[106]. The exact mechanisms by which IL-17F gene polymorphisms, as
well as IL-17F itself, are implicated in ITP development are still un-
known; however in the animal model of ITP, elevated IL-17F expression
was observed in splenocytes [107]. These polymorphism association
studies should be viewed with caution, considering that they were
mainly performed on a single ethnic population, and the results were
not reconfirmed in other ethnic groups [108].

4. Regulatory T cells in ITP

Regulatory T cells (Tregs) are a specific subset of CD4+ T cells ac-
tively engaged in establishing immune homeostasis by maintaining self-
tolerance and contracting the immune response. These physiological
properties of Tregs are achieved by different means, including direct
inhibition of potentially autoreactive T cells by producing im-
munosuppressive mediators (TGF-β and IL-10) or by direct cell-to-cell
contact via inhibitory molecules such as the programmed death ligand

1 (PD-L1) and the cytotoxic T lymphocyte associated antigen 4 (CTLA-
4). Immunosuppressive effects are also achieved indirectly by pro-
moting tolerogenic APC phenotypes. Forkhead box P3 (FoxP3) is the
major lineage-specific transcription factor which is induced by TGF-β
signaling and amplified by IL-2, after antigen recognition [18].

4.1. Numerical and functional abnormalities of Tregs

Both numerical and functional abnormalities of Tregs have been
implicated in the pathogenesis of various autoimmune disorders [109].
In concordance, decreased Treg frequency was reported in the periph-
eral blood of ITP patients during the active phase of the disease when
compared with the patients in remission and control subjects, in both
adults and children [35,110–113]. Tregs were also found to be reduced
in number, in the bone marrow and the spleen of ITP patients
[114,115]. In contrast, some studies show no significant difference in
Treg frequency, especially when Tregs were identified as CD4+ CD25+

FoxP3+ cells [115–118]. While those markers are most commonly used
for Treg detection, other CD4+ FoxP3− T cell subsets with regulatory
functions have been firmly established including IL-10 producing T
regulatory-1 cells (Tr1) and TGF-β producing T helper 3 cells (Th3)
[119]. Thereby, in the evaluation of ITP immune profile, functional
assessment of CD4+ T cell immunosuppressive effects could be more
interpretive than their phenotypic characteristics. In this regard, CD4+

CD25+ T cells isolated from ITP patients with active disease had sig-
nificantly diminished suppressive effect on cell proliferation when co-
cultured with auto or allologous CD4+ CD25− lymphocytes compared
with the control subjects [116,117,120]. Functional defects of Tregs
were associated with decreased production of immunosuppressive cy-
tokines TGF-β and IL-10, which serum/plasma levels were found to be
lower in ITP patients and positively correlate with the platelet counts
[117,121–123]. Treg mediated suppression is also achieved by direct
cell to cell contact via inhibitory molecules PD-L1 and CTLA-4. PD-L1 is
a principal ligand of the coinhibitory receptor - programmed death 1
(PD-1), preferentially expressed on effector T cells where stimulation
initiates intracellular signaling pathways that inhibit cell activation and
function. Currently, PD-1/PD-L1 signaling is a well-established phy-
siological mechanism in down-regulating self-reactive T cells, thus, it is
considered to be an important factor in promoting both central and
peripheral T cell autotolerance. Interestingly, Tregs also express PD-1,
however PD-1 signaling pathway in Tregs has significant role in their
development, survival and sustaining of their suppressive capacity
[124]. In PBMCs isolated from ITP patients, reduced expression of both
PD-1 and PD-1L was detected. Unfortunately, further phenotype ana-
lyses were not performed in order to specifically identify the cells ex-
pressing those molecules [125]. CTLA-4 is another inhibitory molecule
expressed by Tregs with high binding affinity for costimulatory mole-
cules - CD80 and CD86, required for complete T cell activation. By
employing CTLA-4, Tregs deprive other T cells of costimulatory mole-
cules, thus inhibiting their activation. PBMCs of the patients with acute
ITP showed decreased expression of CTLA-4 at both protein and mRNA
level and, interestingly, HD-DXM treatment enhanced CTLA-4 expres-
sion in responding but not in non-responding patients [126,127]. In
addition to PD-1/PD-1L and CTLA-4, other recently identified mole-
cules expressed by Tregs are also involved in contracting the immune
response and maintaining self-tolerance. CD39 is a membrane protein
with enzymatic activity that degrades extracellular adenosine tripho-
sphate (ATP) to adenosine monophosphate (AMP), which is then de-
phosphorylated into adenosine by CD73 molecule (ecto-5′-nucleoti-
dase). Adenosine signaling in lymphocytes via adenosine A2A receptor
can elicit diverse functions in the immune system, including suppres-
sion of proinflammatory cytokine production by effector T cells but also
activation of Tregs [128]. The expression of CD39 on CD4+ CD25+

Tregs as well as its enzymatic activity was found to be decreased in ITP
patients and it could be restored by HD-DXM therapy. Those abnorm-
alities could cause a reduced adenosine production leading to
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compromised immunosuppressive function of Tregs, enhanced pro-
duction of proinflammatory cytokines thus contributing to the perpe-
tuation of autoimmune process. Additionally, the expression of ade-
nosine A2A receptor in CD4+ cells was decreased in ITP patients,
suggesting that those cells are less sensitive to adenosine stimulation
[129]. Considering that adenosine A2A receptor activation suppresses
the production of IL-2, IL-17, TNF-α and IFN-γ, but up-regulates the
expression of PD-1, CTLA-4 and FoxP3 [130], adenosine A2A receptor
agonists could be a promising strategy for ITP treatment.

Additional evidence supporting the important role of Tregs in ITP
development was obtained by analyzing the effects of different ther-
apeutic strategies used in ITP treatment on Treg compartment. In dif-
ferent studies, in addition to the aforementioned HD-DXM treatment,
thrombopoietin receptor agonists, RTX and intravenous im-
munoglobulins were also shown to normalize both numerical and
functional Treg aberrations [117,120,131–133]. Moreover, platelet
specific Tregs could be successfully generated de novo from non-reg-
ulatory CD4+ CD25− CD45RA+ cells isolated from ITP patients, which
makes them very attractive for antigen-specific cellular im-
munotherapy. Tregs generated in such a way could suppress pro-
liferation of anti-platelet CD4+ T cells by modulating the stimulatory
capacity of DCs in vitro, however their clinical safety and efficacy still
remains to be investigated [134].

4.2. Treg/Th17 dysregulation

Tregs and Th17 cells serve different functions but share a common
signaling pathway induced by TGF-β. The definite fate of activated
CD4+ T cell is defined by additional microenvironmental stimuli, spe-
cifically TGF-β alone drives CD4+ T cell differentiation into Treg but in
the presence of IL-6, IL-1, IL-21 or other proinflammatory cytokines
gives rise to Th17 cell subset [18]. Therefore, factors affecting Treg/
Th17 balance could be regarded as a corner stone of the immunological
tolerance, considering anti- and pro-inflammatory nature of these cells.
In ITP, Treg/Th17 balance is skewed toward Th17 cells, and long term
correlates with disease activity [135,136]. The precise immunological
mechanisms that underline the Th17/Treg imbalances in ITP are still
largely unknown. Considering the differentiation patterns of Tregs and
Th17 cells, it is plausible that immune deviation towards Th17 profile is
a secondary event that reflects previously established proinflammatory
environment. However, in the study of Catani et al. it was shown that
circulating DCs isolated from ITP patients as well as DCs generated ex
vivo from PBMCs had reduced ability to up-regulate the expression of
immunomodulatory enzyme indoleamine 2,3-dioxygenase 1 (IDO1)
which is crucial in promoting Treg development and the maintenance
of their suppressive function [137]. Simultaneously, IDO1 activity in
DCs blocked IL-6 expression thus inhibited Th17 cell differentiation but
also Treg re-programming to IL-17 producing T cells (Th17 like T cells)
[138]. These results suggest that decreased IDO1 expression in DCs may
initially skew immune response toward proinflammatory Th17 pheno-
type and consequently disturb delicate balance between Tregs and Th17
cells. Additionally, CTLA-4-Ig fusion protein was able to successfully
enhance IDO1 expression in DCs isolated from ITP patients and restore
their ability to suppress T cell proliferation and promote Treg devel-
opment, suggesting its therapeutic potential [139]. Disturbed Treg/
Th17 balance in ITP was also associated with aberrant expression of
microRNAs (miRs). By modulating post-transcriptional gene expression,
miRs influence T cell activation and differentiation but also provide
stability to the specific T cell subsets [140]. In ITP, miR-146a, com-
monly associated with various immune mediated disorders, was found
to be decreased in PBMCs [141]. MiR-146a deficiency favors Th17
differentiation by stimulated IL-6 and IL-21 production and simulta-
neously inhibits the differentiation of Tregs [142]. Accordingly, in ITP
patients, miR-146a levels negatively correlated with the number of
Th17 cells and positively with the Treg number as well as platelet
counts [141]. In addition to miR-146a, other miRs including miR-99a,

miR-182-5p, miR-183-5p and miR-125a-5p were also suggested to
contribute to Treg/Th17 imbalance in ITP patients [143,144].

5. Th22 immune response in ITP

Th22 cells were originally described in 2009 as a unique subset of
CD4+ T cells characterized by the production of IL-22, IL-13, TNF-α
and the expression of aryl hydrocarbon receptor (AhR) as an important
transcription regulator [145]. Lack of the expression of the signature
cytokines (IFN-γ, IL-4, IL-17) and master transcription factors (T-bet,
GATA-3, RORγT) of Th1, Th2 and Th17 cells, respectively, as well as a
specific chemokine receptor pattern (CCR4, CCR6, CCR10) distinguish
this cell lineage from other Th profiles [145–147]. Proinflammatory
cytokines IL-6 and TNF-α were firstly identified to drive Th22 cell
differentiation program; whereas TGF-β appeared to exert the re-
pressive effects [146]. Further, in vitro studies revealed that the optimal
Th22 differentiation conditions could be achieved with the combination
of four factors IL-6, IL-23, IL-1β and the tryptophan derivative 6-for-
mylindolo[3,2-b]carbazole (FICZ) in the presence of TGF-β receptor
inhibitor [148]. Plasmacytoid DCs in proinflammatory microenviron-
ment were accredited to have the highest potential in inducing Th22
polarization of naïve CD4+ T cells [146].

In the initial study of Cao et al. elevated plasma levels of IL-22 were
detected in patients with ITP, which correlated with the number of Th1
and Th22 cells (identified as CD4+ IL22+ IL-17− T cells), but not Th17
cells [149]. Th17 cells in addition to IL-17 can also produce significant
amounts of IL-22, however, due to the lack of correlation with IL-22
levels, the authors speculated that Th22 and Th1 cells could be more
important cellular source of elevated IL-22 in ITP [149]. Later studies
reconfirmed elevated Th22 immune profile of ITP patients, however, in
these studies more precise identification markers of Th22 cells were
applied (CD4+ IL-22+ IL-17− IFN-γ− T cells) and a significant positive
correlation between all three investigated cell types (Th22, Th1 and
Th17) was found, suggesting their cooperative function during disease
development [150,151]. Interestingly, in ITP patients, the frequency of
Th22 cells was significantly higher in patients without detectable anti-
platelet auto-antibodies [150]. The exact mechanism by which Th22
cells might promote platelet destruction in an antibody independent
manner still remains to be investigated. However, it has recently been
shown that granzyme B, an enzyme with cytolytic function, usually
expressed by CD8+ T cells and natural killer (NK) cells, was also highly
expressed in Th22 cells [148]. The expression level of AhR, a tran-
scription factor of Th22 cell lineage responsible for IL-22 production,
was also found to be significantly up-regulated in CD4+ T cells isolated
from ITP patients and AhR antagonist, resveratrol, was able to diminish
the production of both IL-22 and IL-17A, whereas it enhanced the se-
cretion of immunosuppressive IL-10 in vitro. This effect was achieved by
down-regulating RORγT and promoting FoxP3 expression [152]. In-
terestingly, RORγt expression albeit essential for Th17 differentiation,
was also important for IL-22 production and Th22 cell differentiation
[148]. In clinical settings, HD-DXM treatment was also able to decrease
IL-22 plasma level and the number of Th22 and Th1 cells in responding
patients to the levels that were comparable with healthy controls [153].
Elevated plasma IL-22 level was also detected in pediatric ITP patients,
suggesting that Th22 cell could be involved in ITP pathogenesis in
children [154].

6. Th9 immune response in ITP

Similar to Th22 cells, within the past decade Th9 cells have been
suggested to be a distinct CD4+ T cell lineage. These cells produce large
amounts of IL-9 as well as IL-10 and IL-21 and their differentiation is
initiated in the presence of IL-4 and TGF-β. The transcription factors
interferon regulatory factor 4 (IRF4), signal transducer and activator of
transcription 6 (STAT6), basic leucine zipper ATF-like transcription
factor (BATF) and GATA-3 are required for Th9 differentiation;

M. Kostic, et al. Cellular Immunology 351 (2020) 104096

5



however, IL-9 production is exclusively dependent on the expression of
transcription factor PU.1, which is often referred to as a master reg-
ulator of this cell lineage [155]. The involvement of IL-4 and especially
GATA-3 in Th9 differentiation still raises doubts whether Th9 cells re-
present a distinct Th lineage or a specific transient differentiation state
of Th2 cells, characterized by the production of IL-9 but not other Th2
associated cytokines [156].

Currently, there are limited data on the potential Th9 cell con-
tribution to the immunopathogenesis of ITP. In the study of Qiao et al.
elevated plasma levels of IL-9, higher expression levels of Th9 asso-
ciated transcription factors (PU.1, BATF and IRF4) in PBMCs as well as
higher percentage of circulating Th9 cells were found in active ITP
patients when compared with healthy controls and the patients in re-
mission [157]. Other studies reconfirmed these findings and, ad-
ditionally, showed negative correlation between Th9 cell numbers and
platelet counts [113,158]. Plasma levels of IL-9 and Th9 cells counts
were also found to correlate with the levels of IL-17 and Th17 cells in
both active and remitting ITP patients [157]. Cooperative function of
IL-9 and Th17 cells has been previously suggested both in vitro and in
the setting of different autoimmune disorders. Specifically, Th17 cells
stimulated with TGF-β could acquire ability to produce IL-9; and Th17
cell pathogenicity in the animal models of multiple sclerosis and psor-
iasis was suggested to be at less partially dependent on the production
of IL-9 [159,160]. There are also conflicting results demonstrating that
IL-9 production in Th17 cells could limit their pathogenic capacity to
induce organ-specific autoimmunity [161].

7. T follicular helper cells in ITP

T follicular helper (Tfh) cells are also one of the recently discovered
distinct subset of CD4+ T cells specialized in promoting humoral im-
mune response by supporting survival, affinity maturation and im-
munoglobulin isotype switch of B cells in the germinal centre. Tfh cells
have unique chemokine receptor profile (CXCR5high CCR7low), express
different co-stimulatory molecules inducible co-stimulator (ICOS) and
CD40L but also inhibitory PD-1 and produce large amount of IL-21
which is considered the most important cytokine of this cell lineage. All
of these molecules are closely related to the functions performed by Tfh

cells. Specifically, CXCR5 induces Tfh cell migration into B cell-rich
follicles within secondary lymphoid organs, whereas ICOS, CD40L, PD-
1 and IL-21 regulate differentiation of activated B cells into antibody
producing plasma cells and memory B cells. Differentiation of Tfh cells
is a complex and multi-step process that requires coordinated activity of
both DCs and activated B cells. The essential transcription factor of Tfh

cells is B cell lymphoma 6 (Bcl-6), and its expression in humans is at
least partially dependent on specific cytokine milieu including IL-12,
and to a lesser extent TGF-β [162].

Tfh cells are particularly interesting from the aspect of ITP patho-
genesis, considering that the majority of the patients have anti-platelet
antibodies of IgG class, which is produced subsequent to im-
munoglobulin isotype switching supported by Tfh cells. Accordingly, in
the blood of ITP patients, the population of circulating Tfh cells, iden-
tified as both CD4+ CXCR5+ ICOS+ or CD4+ CXCR5+ ICOS+ PD-1high

T cells, was found to be expanded and negatively correlated with the
platelet count, suggesting pathogenic role of this cell lineage during
disease development [163–165]. More importantly, the subgroup of
patients with anti-platelet antibodies had a higher frequency of circu-
lating Tfh cells then anti-platelet antibody negative patients [164]. Gene
expression analyses of PBMCs have also revealed increased expression
of the transcription factors Bcl-6 and c-Maf, highly expressed by mature
Tfh cells, and, interestingly, decreased expression of PD-1 which is
generally considered to be a negative regulator of immune response
[163,164]. This gene expression pattern might indicate that beside
numerical aberrations of circulating Tfh cells in ITP, these cells may also
be functionally altered. Finally, serum level of IL-21 was found to be
increased and positively correlated with the percentages of circulating

Tfh cells, additionally, this trend was more pronounced in anti-platelet
antibody positive subgroup of patients [163,164]. In support of pa-
thogenicity of Tfh cells in ITP are also studies performed on patients’
spleens. Splenic Tfh cells (CD3+ CD4+ CXCR5+ ICOS+ PD-1high cells)
were found to be expanded in ITP patients compared with healthy
controls. In parallel, the mRNA levels of CXCL13 and IL-21, which are
both known to be produced by Tfh cells, were significantly increased in
splenic CD4+ T cells [165]. The significance of these findings was
evaluated in the context of promoting B cell mediated anti-platelet
immune response. Firstly, the number of Tfh cells positively correlated
with different subsets of splenic B cells including pre-germinal center B
cells, germinal center B cells and plasma cells, which frequencies were
also found to be higher in ITP patients. Secondly, splenic CD19+ B cells,
isolated from ITP patients, treated with an anti-IgM, anti-CD40L anti-
body and IL-21, conditions that mimic antigen stimulation and Tfh cell
activity, resulted in production of anti-platelet antibodies in contrast to
healthy controls [165]. In pediatric patients, similar results supporting
Tfh cell involvement in the pathogenesis of ITP were also reported
[166].

The beneficial effects of different therapeutic strategies used in ITP
treatment (intravenous immunoglobulin, corticosteroids or both) seem
to be partially dependent on the alterations in Tfh cell compartment.
Following treatment, in responding patients, the frequency of circu-
lating Tfh cells was significantly reduced in addition to decreased level
of IL-21 and reduced expression of Bcl-6 and c-Maf. In contrast, no
significant differences were identified in the non-responding patients
before and after treatment [163]. B cell depleting RTX therapy was also
shown to decrease the number of Tfh cells which was in line with the
observations that B cells are needed for complete Tfh differentiation;
however, in this study the therapeutic response was not related to the
total number of Tfh cells in either spleen or circulation [167].

8. Conclusion

It is well established that CD4+ T cells play an essential and in-
dispensable role in orchestrating multiple immunopathological me-
chanisms that could lead to the development of different immune
mediated disorders. Considering the nature of auto-antibodies produced
in ITP, it is plausible that the initial event during disease pathogenesis is
actually activation of the auto-reactive, platelet-specific CD4+ T cells
that echoes through the B cell production of auto-antibodies. While the
role of CD4+ T cells in the pathogenesis of ITP is today firmly estab-
lished, there are many inconsistencies regarding their phenotypic
characteristics. In general, the alterations in the composition of the
CD4+ T cell compartment are evident, in terms of increased proin-
flammatory Th1, Th17 and newly identified Th9, Th22 and Tfh phe-
notypes and reduced number of cells with immunoregulatory properties
such as T regulatory cells. The diversity as well as a phenotypic plas-
ticity of Th profiles implicated in ITP development, indicates that pa-
thogenesis could be more dependent on the constitutional character-
istics of patient’s immune system, thus it is unlikely that a single,
universal immunological pattern of disease development would be ever
identified. Another issue is the heterogeneous nature of ITP itself, due
to its diagnosis of exclusion which allows that various other diseases in
their early stages could be misdiagnosed as primary ITP. However, it is
certain that proinflammatory polarized CD4+ T cells contribute to the
microenvironment conditions that could promote activation of innate
immunity, primarily macrophages and APCs, priming them to become
more potent inducers of the immune response. In that context, activated
macrophages have increased phagocytic capabilities and consequently
more efficiently internalize antibody opsonized platelets inducing en-
hanced processing and subsequent presentation of cryptic platelet
peptides (e.g. GPIIb/IIIa) to CD4+ T cells. Activated platelet specific
CD4+ T cells then facilitate B cell activity and additional anti-platelet
antibody production, forming a positive feedback loop that sustains
autoimmune response in ITP.
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